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Abstract: Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM),
resulting in high mortality. Myocardial fibrosis, cardiomyocyte apoptosis and inflammatory cell
infiltration are hallmarks of DCM, leading to cardiac dysfunction. To date, few effective approaches
have been developed for the intervention of DCM. In the present study, we investigate the effect of krill
oil (KO) on the prevention of DCM using a mouse model of DM induced by streptozotocin and a high-
fat diet. The diabetic mice developed pathological features, including cardiac fibrosis, apoptosis and
inflammatory cell infiltration, the effects of which were remarkably prevented by KO. Mechanistically,
KO reversed the DM-induced cardiac expression of profibrotic and proinflammatory genes and
attenuated DM-enhanced cardiac oxidative stress. Notably, KO exhibited a potent inhibitory effect
on NLR family pyrin domain containing 3 (NLRP3) inflammasome that plays an important role in
DCM. Further investigation showed that KO significantly upregulated the expression of Sirtuin 3
(SIRT3) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which are negative
regulators of NLRP3. The present study reports for the first time the preventive effect of KO on the
pathological injuries of DCM, providing SIRT3, PGC-1α and NLRP3 as molecular targets of KO. This
work suggests that KO supplementation may be a viable approach in clinical prevention of DCM.

Keywords: krill oil; NLRP3 inflammasome; diabetes; diabetic cardiomyopathy

1. Introduction

The prevalence of diabetes mellitus (DM) is increasing dramatically worldwide. The
global DM prevalence is estimated to be 10.2% (578 million) by 2030 and 10.9% (700 million)
by 2045 [1]. Diabetic cardiomyopathy (DCM) is a common complication of DM, exhibiting
pathophysiological abnormalities, including inflammation, oxidative/nitrosative stress,
cardiomyocyte apoptosis and accumulation of fibrosis in the heart [2]. Eventually, DCM
results in heart failure [3]. The current strategies to prevent DCM are far from satisfactory.
Hence, it is important to develop more effective approaches for the prevention of DCM.

Inflammation and oxidative stress are key mechanisms in the pathogenesis of DCM [4].
DM induces the expression of a series of cardiac proinflammatory genes, leading to the
infiltration of inflammatory cells in the heart [4]. In addition, DM stimulates the formation
of cellular reactive oxygen species and advanced glycation end products that enhance
oxidative stress [4]. The DM-induced cardiac inflammation and oxidative stress boost
mutually, forming a vicious circle that results in detrimental effects, such as apoptosis
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of cardiomyocytes and formation of fibrosis [5]. Therefore, targeting inflammation and
oxidative stress is a viable strategy for the intervention of DCM.

Omega-3 fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA), are known to have anti-inflammatory and anti-oxidative effects [6]. However,
little is known for the effects of DHA and EPA on DCM. To date, there has been only one
study reporting that DHA protected against palmitate-induced mitochondrial dysfunction
in DCM [7]. Thus, the effects of DHA and EPA on DCM warrants more investigation.

Krill oil (KO), extracted from the Euphausia superba (Antarctic krill), is an alternative
source of marine omega-3 fatty acids [8]. KO is rich in DHA, EPA and astaxanthin [9].
Notably, the DHA and EPA found in KO are mainly in the form of phospholipids, which
are more beneficial compared with the triacylglycerol form [10]. Astaxanthin has anti-
inflammatory and anti-oxidative effects, protecting against DM and complications, such
as diabetic retinopathy, nephropathy, neuropathy and atherosclerosis [11]. Given the anti-
inflammatory and anti-oxidative effects of its major components, KO has potential for
prevention of DCM. However, the effect of KO on DCM and the underlying mechanism
remain unknown. In the present study, we hypothesize that KO could prevent the patho-
logical injuries of DCM possibly through its anti-inflammatory or antioxidant activities.
Therefore, KO is evaluated for its effect on DCM using a mouse model of T2DM.

2. Materials and Methods
2.1. Animals Housing and Experiments

C57BL/6 male mice were purchased from Charles River Laboratories (Beijing, China)
and were housed in the Animal Center of Shandong University at 22 ◦C, on a 12:12 h light–
dark cycle, with free access to a standard AIN-93G diet and tap water. The Institutional
Animal Care and Use Committee at Shandong University approved all the experimental
procedures (permission number: SYKX20200022).

DM was induced in 8 week old mice by intraperitoneal injection with streptozo-
tocin (STZ, Sigma-Aldrich, Shanghai, China) at 50 mg/kg/body weight (BW) per day, for
5 consecutive days. One week after the last injection, mice with fasting (6 h fast) blood
glucose levels above 13.89 mmol/L were considered diabetic [12,13]. The nondiabetic
control mice (8-week old) were intraperitoneally injected with sodium citrate (pH 4.5) as
the vehicle for STZ. After the confirmation of DM, the diabetic mice were immediately fed
either a high-fat diet or a 1.5% KO-containing high-fat diet (the ingredients of experimental
diets are shown in Supplementary Table S1). The average food intake of mice in the KO-
treated group is approximately 2.79 g/d (Supplementary Figure S1A), delivering a dose
of KO equivalent to 7 g/d for a 60 kg adult according to the body surface area normaliza-
tion method [14]. KO was provided by Qingdao Antarctic Weikang Biotechnology Co.,
Ltd. (Qingdao, China). The composition analysis of KO is summarized in Supplementary
Table S2. The non-diabetic control mice continuously received the standard AIN-93G diet.

For all the mice, body weight and food intake were recorded every 2 days post DM
onset. Blood glucose levels were determined every 4 weeks post DM onset. By the end of
the 22nd week post DM, glucose tolerance test (GTT) was performed. After 24 weeks of
DM, the mice were euthanized under an aesthesia by intraperitoneal injection of chloral
hydrate (0.3 mg/kg), with their hearts harvested for analysis.

2.2. Glucose Tolerance Test (GTT)

After a 12 h fast, the mice were intraperitoneally injected with glucose at a dose of
2 g/kg/BW. Blood glucose levels were recorded at 0, 30, 60 and 120 min post the injection.

2.3. Assessment of Cardiac Pathology

After harvesting, the heart tissues were fixed into a 10% buffered formalin solution
and embedded in paraffin, followed by sectioning into 5 µm thick sections onto glass slides.
Hematoxylin and eosin (H&E) staining (ThermoFisher Scientific, Shanghai, China) was
performed to evaluate cardiac histology and inflammatory cell infiltration.
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Terminal deoxynucleotidyl transferase dUTP nick-end label (TUNEL) staining (Key-
GEN BioTECH, Nanjing, China) was performed to detect cardiomyocyte apoptosis. Mas-
son’s trichrome staining (Solarbio, Beijing, China) was used for the evaluation of cardiac
fibrosis. The infiltration of inflammatory cells, TUNEL positive cells and Masson’s positive
area were quantified using Image J software (National Institutes of Health, Bethesda, MD,
USA). The selection of areas to photograph and scoring was conducted by people blind to
the identity of the samples.

2.4. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis

For the determination of mRNA levels, total RNA was extracted from the heart
tissue using an RNAeasy™ Animal RNA Isolation Kit (Beyotime, Shanghai, China). RNA
concentration and purity were measured using Nanodrop 2000c (ThermoFisher Scientific).
The total RNA was reverse transcribed into complementary DNA using a PrimeScript RT
reagent Kit (Takara Biomedical Technology, Beijing, China). qRT-PCR was carried out in
a 20 µL reaction volume containing 10 µL LightCycler 480 SYBR Green I Master (Roche,
Shanghai, China), 1 µL forward primer, 1 µL reverse primer, 2 µL cDNA and 6 µL RNase
Free dH2O. A PCR was carried out in LightCycler 480II Real-Time PCR system (Roche).
The fluorescence intensity of each sample was measured at each temperature change to
monitor amplification of the genes. The comparative cycle time (CT) was used to determine
fold differences between the samples. Levels of the housekeeping gene acidic ribosomal
phosphoprotein P0 (Rplp0, also known as 36b4) were used as an internal control for the
normalization of RNA quantity and quality differences among the samples. Fold change
in gene expression was normalized to Rplp0 by the ∆∆CT method using equation 2−∆∆CT.
The results were presented as fold changes compared with the control group. The primers
for actin alpha 2 (Actα2), Rplp0, C-C motif chemokine ligand 2 (Ccl2), collagen type I alpha 1
(Col1α1), gasdermin D (Gsdmd), intercellular adhesion molecule 1 (Icam1), interferon gamma
(Ifn-γ), interleukin 1 beta (Il-1β), NADPH oxidase 4 (Nox4), selectin E (Sele), sirtuin 3 (Sirt3)
and tumor necrosis factor alpha (Tnf-α) were synthesized at Sangon Biotech (Shanghai,
China). The sequences of the primers are listed in Table S3.

2.5. Western Blot Analysis

To measure protein levels, cardiac tissue was homogenized in a lysis buffer (Beyotime).
Western blot analysis was carried out as previously described [15]. Briefly, a bicinchoninic
acid assay (Thermofisher Scientific) was used for the determination of the protein concen-
tration. A standard curve was constructed by determining the absorbance of bovine serum
albumin with concentrations of 0, 0.025, 0.125, 0.5, 0.75, 1 and 1.5 mg/mL. For the measure-
ment of the absorbance of the protein samples, after adding 200 µL of working solution to
each well of a 96-well plate, 25 µL of the protein sample was added to each well, and the
absorbance was measured at 562 nm after incubation at 37 ◦C for 30 min. The protein con-
centration was then calculated using the standard curve. The primary antibodies used were
apoptosis-associated speck-like protein containing a CARD (ASC, 1:1000, Cell Signaling
Technology, Shanghai, China), β-tubulin (1:1000, Proteintech, Wuhan, China), Caspase-1
(1:1000, AdipoGen Life Sciences, Beijing, China), collagen type III alpha 1 (COL3A1, 1:1000,
Santa Cruz Biotechnology, Shanghai, China), gasdermin D (GSDMD, 1:1000, Cell Signaling
Technology), inducible nitric oxide synthase (iNOS, 1:1000, Cell Signaling Technology),
IL-1β (1:1000, Cell Signaling Technology), NLR family pyrin domain containing 3 (NLRP3,
1:1000, Cell Signaling Technology) and peroxisome proliferator-activated receptor-γ coacti-
vator 1α (PGC-1α, 1:1000, Affinity Biosciences Ltd., Shanghai, China). Western blot images
were quantified utilizing Image StudioTM Lite software (LI-COR, Lincoln, NE, USA).

2.6. Immunohistochemical Staining

To determine cardiac protein expression and localization, the tissue sections were
deparaffinized and rehydrated. Endogenous peroxidase was inactivated by 3% hydrogen
peroxide. Antigens were retrieved using citrate buffer (0.01 M, pH 6.0) at 100 ◦C for
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3 min. After blocking with 5% BSA, the sections were incubated with antibodies against
alpha-smooth muscle actin (α-SMA, 1:100, Santa Cruz Biotechnology), COL1A1 (1:100,
Santa Cruz Biotechnology), 8-hydroxy-2’-deoxyguanosine (8-OHdG, 1:100, Santa Cruz
Biotechnology) or PGC-1α (1:100, Affinity Biosciences Ltd.) at 4 ◦C overnight. Following
incubation with a secondary antibody at 37 ◦C for 1 h, color was developed with a DAB
Horseradish Peroxidase Color Development Kit (BOSTER Biological Technology, Wuhan,
China), followed by counterstaining with hematoxylin.

2.7. Statistical Analysis

Eight mice per group were studied. The data were expressed as the means ± standard
deviation. All the assays were conducted in triplicate. The data were analyzed using
one-way analysis of variance (SPSS 19.0). The difference between groups were assessed by
the least significant difference (LSD). p < 0.05 was considered statistically significant.

3. Results
3.1. KO Alleviated the DM-Induced Cardiac Pathological Injuries

To investigate the effect of KO on DM-induced cardiac pathological injuries, C57BL/6
mice were induced to DM and were treated with KO for 24 weeks. Blood glucose levels
were elevated in the diabetic mice and were not affected by KO (Figure 1A). In consistence,
KO did not improve the DM-induced glucose intolerance (Figure 1B,C). Body weight, heart-
weight-to-body-weight ratio and heart-weight-to-tibia-length ratio were not affected by KO
(Supplementary Figure S1B–D). The diabetic mice had increased infiltration of inflammatory
cells into the paravascular spaces (Figure 1D,E), and developed cardiomyocyte hypertrophy
(Figure 1D). These effects were remarkably inhibited by KO (Figure 1D,E). Moreover, KO
significantly reduced the DM-enhanced accumulation of cardiac fibrosis (Figure 1F,G) and
apoptotic cell death (Figure 1H,I).

3.2. KO Prevented the DM-Induced Cardiac Expression of Profibrotic Genes

Since the DM-induced cardiac fibrosis was inhibited by KO, KO was tested for its effect
on cardiac profibrotic gene expression. The diabetic mice had increased cardiac expression
of Actα2 and Col1α1 mRNAs (Figure 2A,B), and COL3A1 protein (Figure 2C). IHC staining
revealed increased α-SMA and COL1A1 positive areas in the diabetic heart (Figure 2D,E).
These effects were markedly prevented by KO (Figure 2A–E).

3.3. KO Attenuated the DM-Generated Cardiac Oxidative Stress

To assess the effect of KO on cardiac oxidative stress, the mRNA levels of Nox4
(Figure 3A), protein levels of iNOS (Figure 3B), positive stain of DHE (Figure 3C) and
8-OHdG (Figure 3D) were determined. All these oxidative markers were elevated in the
DM group and were decreased in the presence of KO (Figure 3A–D).
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Figure 1. KO alleviated the DM-induced cardiac pathological injuries. (A) Blood glucose levels of
C57BL/6 male mice were recorded every 4 weeks post diabetes mellitus (DM) onset. (B) Glucose
tolerance test was performed 22 weeks post DM onset, with (C) the areas under the curve quantified.
(D) Hematoxylin and eosin (E,H) staining with (E) the number of inflammatory cells infiltrated per
vessel quantified (Bar = 20 µm). (F) Masson’s trichrome staining with (G) the positive area quantified
(Bar = 20 µm). (H) TUNEL staining with (I) the ratio of apoptosis cells quantified (Bar = 100 µm).
The data were normalized to Ctrl and summarized as means ± SD. *, p < 0.05 vs. Ctrl; #, p < 0.05 vs.
DM. Abbreviations, Ctrl, control; DM, diabetes mellitus; H&E, hematoxylin and eosin; KO, krill oil;
TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end label.
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Figure 2. KO prevented the DM-induced cardiac expression of profibrotic genes. Cardiac mRNA
expression of (A) Actα2 and (B) Col1α1 were determined by qRT-PCR. Cardiac protein expression
of (C) COL3A1 was determined by Western blot and (D) α-SMA and (E) COL1A1 were detected by
Immunohistochemical staining (Bar = 20 µm). Tubulin and Rplp0 (also known as 36b4) were used
as endogenous controls for Western blot and qRT-PCR, respectively. The data were normalized to
Ctrl and summarized as means ± SD. *, p < 0.05 vs. Ctrl; #, p < 0.05 vs. DM. Abbreviations: α-SMA,
alpha-smooth muscle actin; Actα2, actin alpha 2; Col1α1, collagen 1 alpha 1; COL3A1, collagen 3 alpha
1; Rplp0, acidic ribosomal phosphoprotein P0. Other abbreviations are the same as Figure 1.
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Figure 3. KO attenuated the DM-generated cardiac oxidative stress. (A) Nox4 mRNA levels. (B) iNOS
protein levels. Tubulin and Rplp0 were used as endogenous controls for Western blot and qRT-PCR,
respectively. (C) Representative microphotographs of DHE staining in heart sections in each group
(Bar = 100 µm). (D) Immunohistochemical staining showed expression of 8-OHdG (Bar = 20 µm).
The data were normalized to Ctrl and summarized as means ± SD. *, p < 0.05 vs. Ctrl; #, p < 0.05
vs. DM. Abbreviations: DHE, dihydroethidium; Nox4, NADPH oxidase 4; iNOS, inducible ni-
tric oxide synthase; 8-OHdG, 8-hydroxy-2 deoxyguanosine. Other abbreviations are the same as
Figures 1 and 2.

3.4. KO Ameliorated the DM-Promoted Proinflammatory Gene Transcription

Based on the KO-reduced infiltration of inflammatory cells in the hearts of the diabetic
mice (Figure 1D), KO was further evaluated for its effect on the transcription of proinflam-
matory genes. The diabetic mice had increased mRNA levels of Tnf-α (Figure 4A), Ifn-γ
(Figure 4B), Icam1 (Figure 4C), Sele (Figure 4D), Ccl2 (Figure 4E) and Il-1β (Figure 4F), all of
which were significantly decreased by KO.
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Figure 4. KO ameliorated the DM-promoted proinflammatory gene transcription. Cardiac mRNA
expression of (A) Tnf-α, (B) Ifn-γ, (C) Icam1, (D) Sele, (E) Ccl2, and (F) Il-1β were determined by qRT-
PCR. Rplp0 was used as an endogenous control. The data were normalized to Ctrl and summarized
as means ± SD. *, p < 0.05 vs. Ctrl; #, p < 0.05 vs. DM. Abbreviations: Ccl2, C–C motif chemokine
ligand 2; Icam1, intercellular adhesion molecule 1; Ifn-γ, interferon gamma; Il-1β, interleukin 1beta;
Sele, selectin; Tnf-α, tumor necrosis factor alpha. Other abbreviations are the same as Figures 1 and 2.

3.5. KO Drastically Inhibited NLRP3 Inflammasome Activation in the Diabetic Hearts

To further investigate the mechanism by which KO markedly inhibited cardiac proin-
flammatory gene transcription in the diabetic mice (Figure 4A–F), the protein levels of
NLRP3 inflammasome components—NLRP3 (Figure 5A), cleaved caspase-1 (Figure 5B),
ASC (Figure 5C) and cleaved IL-1β (Figure 5D)—were measured. All these proteins were
increased in the DM group and were dramatically reduced by KO (Figure 5A–D). As cleav-
age of GSDMD is induced by cleaved caspase-1, leading to pyroptosis in DCM [16], we
further determined the protein levels of cleaved GSDMD (Figure 5E) and mRNA levels of
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Gsdmd (Figure 5F), both of which were increased in the diabetic hearts and were decreased
by KO (Figure 5E,F).

Figure 5. KO drastically inhibited NLRP3 inflammasome activation in the diabetic hearts. Cardiac
protein expression of (A) NLRP3, (B) Cleaved caspase-1, (C) ASC, (D) Cleaved IL-1β, (E) Cleaved
GSDMD were determined by Western Blot. (F) Gsdmd mRNA levels. Tubulin and Rplp0 were used
as endogenous controls for Western blot and qRT-PCR, respectively. The data were normalized to
Ctrl and summarized as means ± SD. *, p < 0.05 vs. Ctrl; #, p < 0.05 vs. DM. Abbreviations: ASC,
adaptor apoptosis-associated speck-like protein containing a caspase activation and recruitment
domain; GSDMD, gasdermin D; NLRP3, Nod-like receptor family, pyrin domain containing 3. Other
abbreviations are the same as Figures 1 and 2.

3.6. KO Activated Cardiac PGC1-α/SIRT3 as the Upstream Regulators of NLRP3

In order to further explore potential molecular targets of KO, we determined the ex-
pression of PGC1-α/SIRT3 that are known as the upstream regulators of NLRP3 in kidneys
of the mice. KO significantly increased both mRNA and protein levels of cardiac SIRT3
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(Figure 6A,B) and protein levels of cardiac PGC1-α (Figure 6C) in the diabetic mice. IHC
staining further confirmed that PGC1-α protein was reduced in the diabetic cardiomyopa-
thy, whereas KO could increase cardiac PGC1-α protein expression (Figure 6D).

Figure 6. KO activated cardiac PGC1-α/SIRT3 as the upstream regulators of NLRP3. (A) Sirt3 mRNA
levels, (B) SIRT3 protein levels, (C) PGC-1α protein levels, (D) immunohistochemical staining of
cardiac PGC-1α (Bar = 20 µm). Tubulin and Rplp0 were used as endogenous controls for Western
blot and qRT-PCR, respectively. The data were normalized to Ctrl and summarized as means ± SD.
*, p < 0.05 vs. Ctrl; #, p < 0.05 vs. DM. Abbreviations: PGC-1α, PPARG coactivator 1 alpha; SIRT3,
sirtuin 3. Other abbreviations are the same as Figures 1 and 2.
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4. Discussion

In the present study, we report the preventive effect of KO on the pathological injuries
of DCM using a mouse model of T2DM. The diabetic mice developed cardiac pathological
injuries, inflammation and oxidative stress, the effects of which were prevented by KO.
Notably, KO significantly inhibited NLRP3. Further investigation revealed SIRT3/PGC-1α
as potential molecular targets of KO (Figure 7).

Figure 7. The possible molecular mechanism of KO in inhibiting pyroptosis in DCM. Under diabetic
condition, NLRP3 inflammasome is activated, leading to the cleavage of GSDMD and the following
pyroptosis. KO could upregulate the expression of PGC-1α and SIRT3, which are upstream negative
regulators of NLRP3 inflammasome. ↓, activation; ⊥, inhibition. Abbreviations: DCM, diabetic
cardiomyopathy. Other abbreviations are the same as in Figures 1, 5 and 6.

Accumulation of fibrosis and apoptosis of cardiomyocytes are key pathological fea-
tures of DCM [17]. In the DM milieu, extracellular matrix proteins are overproduced
and form fibrosis in the heart, contributing to cardiac dysfunction [4,17,18]. Apoptosis of
cardiomyocytes causes a reduction in the cardiomyocyte population, enhancing the burden
of viable cardiomyocytes to maintain normal cardiac function. This subsequently enlarges
the cells, leading to pathological hypertrophy and the following cardiac dysfunction [19].
Therefore, the inhibition of profibrotic gene expression and cardiomyocyte apoptosis is key
to the successful prevention of DCM. In the present work, we observed the potent inhibitory
effects of KO on DM-induced cardiac fibrosis and apoptotic cell death (Figure 1F–I and
Figure 2), shedding light on the future clinical prevention of DCM.

Inflammation and oxidative stress cause the generation of fibrosis and apoptosis of
cardiomyocytes, thereby playing essential roles in the pathogenesis of DCM [20]. DM-
induced cardiac inflammation is driven by NLRP3 inflammasome [21,22], which can be
activated by reactive oxygen species (ROS) [23]. Upon various stimuli, including ROS,
pro-caspase-1 is cleaved, resulting in the cleavage of proinflammatory cytokines IL-1β
and IL-18, and the protein gasdermin D (GSDMD). The N-terminal domain of GSDMD
penetrates pores in the plasma membrane, thereby triggering a lytic, pro-inflammatory
form of cell death, namely pyroptosis [16]. Pyroptosis leads to the release of cytokines
that, in turn, exacerbate NLRP3-mediated inflammation and facilitate inflammatory cells
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infiltration [24]. In the present study, we found remarkable elevated cardiac oxidative stress
and proinflammatory gene transcription in the diabetic mice (Figures 3 and 4). In line
with previous reports [23,25,26], NLRP3 was significantly activated in the diabetic hearts
(Figure 5A–D). Notably, KO had a striking inhibitory effect on the DM-activated NLRP3
(Figure 5A–D). These data suggest that NLRP3 is an important molecular target of KO.

Recent findings have uncovered important protective roles of SIRT3 and PGC-1α in
DCM [27–29]. SIRT3 belongs to the sirtuin family of proteins, exerting an NAD+-dependent
deacetylase activity [30]. Compared with wild-type (WT) diabetic mice, Sirt3 gene knockout
diabetic mice developed more severe DM-induced cardiac injuries [27]. The activation of
SIRT3 by polydatin, icariin and salidroside attenuated DCM in WT diabetic mice [27,29,31].
SIRT3 deacetylase activity is required for the protein stability of PGC-1α [32]—a member
of a family of transcription coactivators that plays a central role in the regulation of cellular
energy metabolism [33]. PGC-1α, in turn, activates SIRT3 [34,35], and is protective in DCM
pathogenesis [36–39]. Collectively, these studies have demonstrated a positive feedback
interaction between SIRT3 and PGC-1α, providing SIRT3/PGC-1α activation as a viable
strategy for the intervention of DCM. Moreover, SIRT3 has been reported to be a crucial
negative regulator of NLRP3 [40–43]. Mechanistically, SIRT3 deacetylates SOD2, leading to
SOD2 activation, which impairs NLRP3 inflammasome assembly and activation [41]. The
present study found that KO upregulated the protein levels SIRT3 and PGC-1α (Figure 6),
the effects of which were in accordance with KO’s inhibitory effect on NLRP3. Thus, KO
might inhibit NLRP3 via the upregulation of SIRT3/PGC-1α in DCM. The identification of
PGC-1α and SIRT3 in addition to NLRP3 provided more viable molecular targets of KO in
the prevention of DCM. Although KO is known to have inflammatory efficacies, its effect
on NLRP3, SIRT3 and PGC-1α is not previously reported. To date, this has been the first
study to report KO’s effect on SIRT3/PGC-1α/NLRP3. Given that SIRT3, PGC-1α and
NLRP3 play important roles in various diseases, the findings in our study might indicate
SIRT3, PGC-1α and NLRP3 as potential mechanisms through which KO benefits diseases.

In human studies, KO has proven beneficial for a few diseases, including osteoarthritis,
arthritis, knee joint pain and hyperlipidemia [44], all of which are closely associated with
inflammation and oxidative stress. To date, KO has not been investigated for its effects
on clinical DM and complications. The potent inhibitory effects of KO on DM-induced
cardiac inflammation holds promise for future clinical intervention of DM and complica-
tions, including DCM. Additionally, the present work might indicate that functional lipids
containing bioactive components, such as KO, hazelnut oil [45], among others, warrant
more attention in the future intervention of diseases.

5. Conclusions

The present study reports for the first time the preventive effect of KO on the patholog-
ical injuries of DCM. In addition, SIRT3, PGC-1α and NLRP3 were identified as molecular
targets of KO. Our work presents KO supplementation as a viable approach in the clinical
intervention of DCM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu14020368/s1. Table S1: The composition of ingredients of experimental diets; Table S2:
Composition analysis of the krill oil used in the study; Table S3: Sequences of primers used for
qRT-PCR; Figure S1: Basic data for animal models. (A) Average food intake. (B) Body weight. After
harvesting, the hearts were weighed, with ratios of (C) heart to body weight, and (D) heart weight to
tibia length calculated. For (C,D), the data were normalized to Ctrl and summarized as means ± SD.
*, p < 0.05 vs. Ctrl; Abbreviations: Ctrl, control; DM, diabetes mellitus; KO, krill oil.
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