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Abstract: Tumour metabolomics and transcriptomics co-expression network as related to biological
folate alteration and cancer malignancy remains unexplored in human non-small cell lung can-
cers (NSCLC). To probe the diagnostic biomarkers, tumour and pair lung tissue samples (n = 56)
from 97 NSCLC patients were profiled for ultra-performance liquid chromatography tandem mass
spectrometry (UPLC/MS/MS)-analysed metabolomics, targeted transcriptionomics, and clinical
folate traits. Weighted Gene Co-expression Network Analysis (WGCNA) was performed. Tumour
lactate was identified as the top VIP marker to predict advance NSCLC (AUC = 0.765, Sig = 0.017,
CI 0.58–0.95). Low folate (LF)-tumours vs. adjacent lungs displayed higher glycolytic index of
lactate and glutamine-associated amino acids in enriched biological pathways of amino sugar and
glutathione metabolism specific to advance NSCLCs. WGCNA classified the green module for hub
serine-navigated glutamine metabolites inversely associated with tumour and RBC folate, which
module metabolites co-expressed with a predominant up-regulation of LF-responsive metabolic
genes in glucose transport (GLUT1), de no serine synthesis (PHGDH, PSPH, and PSAT1), folate
cycle (SHMT1/2 and PCFR), and down-regulation in glutaminolysis (SLC1A5, SLC7A5, GLS, and
GLUD1). The LF-responsive WGCNA markers predicted poor survival rates in lung cancer patients,
which could aid in optimizing folate intervention for better prognosis of NSCLCs susceptible to
folate malnutrition.

Keywords: tumour folate; target metabolomics; transcriptional profile; WGCNA; non–small-cell
lung cancers

1. Introduction

Folate is an essential nutrient with a diverse metabolic role of supporting normal
cellular function and health [1]. Folate-mediated one-carbon metabolism contributes to
multiple biochemical pathways of nucleotide biosynthesis, amino acid homeostasis [2],
redox homeostasis [3,4], and epigenetic regulation to support normal growth and mass
expansion of organism [5]. Cellular and animal studies has shown that folate restriction
enhanced migration, invasiveness, and anchorage-independent oncospheroid formation
in human colon [6,7], lungs [8], and human breast cancers [9]. However, supplemental
high folate did not offset folate deprived-metabolic perturbation, but further promoted
metastatic potentials of lung cancer cells and mouse tumours [10,11]. Human studies have
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examined association of dietary and blood folate status with lung cancer, but results were
inconclusive [12–15]. Regardless of the mixed outcome of preclinical and clinical studies
on suboptimal folate-associated cancers, the direct link of altered tumour folate availability
to cancer malignancy biomarkers remains rarely explored in human.

Recent advances propose the reprogramming of cancer metabolism as the hallmark of
cancer malignancies [16], in particular for lung cancer (LC), as the leading cause of cancer-
related deaths worldwide with high prevalence and low survival rates [17]. Studies on cel-
lular and rodent models had documented lactate metabolic phenotype of LC [18] associated
with malignancy transformation [19], known for aerobic glycolysis as “Warburg effect” [20].
Multiple altered metabolic pathways in tumours are made even more complex by the
diverse genome-wide backgrounds, various metabolite requirements of tumours, and
differential pathological course at malignancy progress [21]. Crosstalk network between
transcriptional regulators and metabolism results in metabolically heterogeneous entity of
cancers, which is remodelled by metabolite nutrient availability and mobilization in the
tumour microenvironment [22–24]. Thus far, it remains unexplored whether limited folate
metabolite availability, the most prevalent folate malnutrition prone to cancer cachexia
and chemotherapy [25], may remodel tumours’ genetic and metabolic crosstalk network
to impact cancer malignancy transformation. This knowledge gap highlights the urgent
need to understand folate metabolism in spontaneously arising human tumours. Studies
to probe folate-responsive and advance stage-sensitive tumour markers are warranted for
optimizing folate intervention and better prognosis of non-small cell lung cancer (NSCLC),
accounting for 80% of LC types [26].

Accordingly, the aims of the study were to explore tumour metabolomics and tran-
scriptomics co-expression network markers as to biological folate alteration and cancer
stage in NSCLC. Tumour and pair lung tissue samples (n = 56) from NSCLC patients were
collected and analysed for metabolomics markers by ultra-performance liquid chromatog-
raphy tandem mass spectrometry (UPLC/MS/MS), and for transcriptomics profiling by
RT-PCR. Comprehensive folate-responsive and stage-sensitive metabolic and genetic net-
work analysis was performed by Weight Gene Co-expression Network Analysis (WGCNA).
Multiple linear regression and the Kaplan–Meier survival curves were conducted to iden-
tify folate-sensitive tumour markers to predict overall survival of LC patients. The results
are discussed.

2. Materials and Methods
2.1. Patient Cohort and Paired Tumours Tissue Acquisition

The study cohort consisted of consecutive patients with lung cancer diagnosed at
Clinical Thoracic Surgery Department in National Taiwan University Hospital (NTUH),
Taipei, Taiwan, between 2017 and 2020. The criteria for inclusion were (1) low-dose
computed tomography and histopathologic diagnosis of NSCLC lesions; (2) None received
either chemotherapy or radiotherapy before surgery; (3) no serious complication of liver
diseases, cardiovascular diseases, kidney diseases, diabetes, and other cancers. Ninety-
seven NSCLC patients were included into the cohort study according to the designated
criteria. The Joint Ethical Committee of NTUH and Fu Jen Catholic University Hospital
approved the study. Written informed consent was secured from all the study subjects.

The institutional review board (IRB) protocol was approved by the ethics committee at
Fu Jen Catholic University Hospital (ethic approval code: C105018), and National Taiwan
University Hospital (ethic approval code: 201701123RINC). Thirty patients approved the
IRB protocol with their denoting consent for paired tumours tissue acquisition. Residual
tumours and adjacent lung tissues were resected by surgeons, and were aliquoted into
1.5 mL Nunc vials, immediately placed in liquid nitrogen, barcoded, and stored at −80 ◦C
for subsequent analysed. After surgery, cancer malignancy was diagnosed by pathologists
according to the International Association for the Study of Lung Cancer, American Thoracic
Society, and European Respiratory Society (IASLC/ATS/ERS) classification [27].
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2.2. Basic Data and Blood Sample Collection

Basic anthropometric and dietary intake data of 97 NSCLCs patients were collected
by dietitians. The dietary folate intake was calculated by a specialized quantitative food
frequency questionnaire specifically designed for the assessment of folate with reference
to the previously described semiquantitative FFQ for folate [28]. Body mass index (BMI)
was calculated by body weight in kilograms divided by the square of height in meters.
Prior to the surgery, fasting blood samples were collected, chilled, and transported to
the Biomedicine Laboratory at Fu Jen Catholic University. Plasma and red blood cells
(RBC) samples were immediately separated upon arrival and were stored at −80 ◦C until
further analysis.

2.3. Determination of Clinical Folate Markers

Plasma folate and homocysteine levels were measured using commercially available
kits by fluorescence polarization immunoassay (Becton Dickinson, Franklin Lakes, NJ, USA)
on an Abbott 130 AxSYM system (Becton Dickinson). Tissue folate was quantified using a
microbiological assay by glycerol-protected Lactobacillus casei (BCRC®10697) in 96-well
microtiter plates as previously described elsewhere [29]. Lymphocytic DNA was extracted
using standard proteinase K digestion and the phenol–chloroform extraction procedure.
The MTHFR C677T polymorphism was determined through RT-PCR and melting curve
analysis by using a LightCycler instrument (Light-Cycler, Roche Diagnostics, Mannheim,
Germany) as previously described [30]. Bisulfite modification of lymphocytic DNA was
performed using the EpiTect PCR Control DNA set (Qiagen, Hilden, Germany), and the
high-resolution melt-based PCR method was used to measure DNA methylation. Primers
used for LINE-1 were F 5′-GCG AGG TAT TGT TTT ATT TGG GA-3′ and R 5′-CGC CGT
TTC TTA AAC C-3′ to encompass eight CpG islands between primers and yield 141 bp of
amplicon size. RT-PCR was conducted by use of a LightCycler instrument (Light-Cycler,
Roche Diagnostics, Mannheim, Germany).

2.4. Transcripomics Analysis

Total RNA was extracted with an RNA REzol C&T reagents kit (Protech Technology,
Taipei, Taiwan), and RT-PCR was conducted as previously described [6]. Briefly, 1 µg
of each sample was reverse-transcribed in an MMLV Reverse Transcriptase 1st-Strand
cDNA Synthesis Kit. Gene transcripts were amplified with specific primers. The cycling
conditions included an initial phase of 2 min at 50 ◦C; 10 min at 95 ◦C; then 40 cycles of 10 s
at 95 ◦C, 0.5 min at 60 ◦C, and 10 s at 72 ◦C. Amplified complementary DNA was quantified
using the StepOnePlus Real-Time PCR system (Applied Biosystems, Waltham, MA, USA).

2.5. UPLC/MS/MS Quantitative Metabolomics Analysis

Targeted UPLC/MS/MS metabolites analysis was used to detect the metabolites
concentration in lung and tumour tissue. Frozen tumour and matched adjacent nontumor
lung tissues (100 mg) were placed in a homogenization tube containing ceramic beads
with a diameter of 1.4 mm (Precellys, Bertin Technologies, France). Ice-cold 50% methanol
was added to each tube for tissue homogenization by Percellys 24 homogenizer (PEQLAB
Biotechnology GmbH, Germany). The homogenized samples were then centrifuged at
4 ◦C with 12,000× g for 30 min, and acetonitrile was added to the supernatant for protein
precipitation. After centrifugation, the supernatant was dried under nitrogen gas, dissolved
in water, and centrifuged to remove debris. The supernatant was analysed using Waters
ultra-high-performance liquid chromatography coupled with Waters Xevo TQ XS Mass
Spectrometer (Waters Corp., Milford, MA, USA). Mass spectrometer was operated in
negative with multiple reaction monitoring mode. Major fragment patterns of each analyte
were determined with tuning. The chromatographic separation was achieved on a BEH
C18 (100 × 2.1 mm, particle size of 1.7 µm; Waters Corp.) at 45 ◦C with elute A (water
with 10 mM tributylamine and 15 mM acetic acid) and eluent B (50% acetonitrile with
10 mM tributylamine and 15 mM acetic acid), and the flow rate was set at 0.3 mL/min.
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The gradient profile was as follows: isogradient 4% B, 6 min; linear gradient 4–50% B,
0.1 min; 50–60% B, 2.9 min; 60–100% B, 0.8 min; and keep 2.2 min. The column was then re-
equilibrated for 3 min. Chromatographic separation was performed on a Waters ACQUITY
BEH C18 column (2.1 mm × 100 mm × 1.7 µm, Waters corp.). QC samples (laboratory
quality control cells) were prepared for analysed during the analytical runs after every 10th
sample [31].

2.6. Enrichment Analysis

To identify significantly enriched pathway, metabolites in this study were performed
using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca, accessed on 21 December 2021)
for enrichment analysis and visualization of the affected pathway. Metabolites set enrich-
ment analysis was analysed based on the folate-responsive and stage-sensitive. Metabolites
involved in the significantly enrichment pathways were identified based on Kyoto Ency-
clopaedia of Genes and Genomes database.

2.7. Metabolite and Genetic Correlation Network Analysis

A correlation network was used to visualize the relationship between metabolites
and metabolites, and genes and metabolites. Debiased Sparse Partial Correlation (DSPC)
algorithm was used to calculate partial correlation between metabolomics markers in folate-
responsive, stage-sensitive, and LINE-1 levels. The correlation networks were mapped
based on DSPC results using MetScape version 3.1.3 [32]. In genes and metabolites cor-
relation network analysis, Pearson correlation was used to explore relationship between
transcripts levels and metabolites signal intensity in tumour. The heatmap was constructed
according to correlation results and performed using GraphPad Prism 9.

2.8. Survival Analysis of Public Data from Cancer Genomics Studies

Data from The Cancer Genome Atlas Research Network (TCGA; Lung AC and Lung
Squamous Cell Carcinoma Provisional sequenced tumours sample sets) were used to
analyse ADSL and ATIC genetic alterations including mRNA expression z-scores (Mi-
croarray, threshold 2.0) by use of CBIPORTAL software (http://www.cbioportal.org/,
accessed on 29 June 2021). Exploration from Human genetic Atlas datasets and two public
metabolomics databases from the study of Luo et al. [33] and from the study of Qi et al. [34]
were conducted. The effect of ADSL and ATIC genetic expression on LC patient prognoses
was evaluated by Kaplan–Meier survival curves of NSCLC patients with low or high mRNA
expression (KMPLOTTER; http://www.kmplot.com/analysis, accessed on 19 June 2021).
A log-rank test was calculated to determine differences in overall survival using SPSS
11.5.0 for Windows (IBM Corp., Armonk, NY, USA). For selecting the oncotargets with a
significant survival rate, p ≤ 0.05 was set as a cut off parameter.

2.9. General Statistical Analysis

Statistical analyses on clinical and biochemical data were performed using the statisti-
cal analysis system (SAS/STAT version 9.4, SAS Institute, Cary, NC, USA; SPSS Statistics,
version 14, SPSS Inc., Chicago, IL, USA). Demographic and laboratory data of continuous
variables were compared using one-way ANOVA (analysis of covariance) followed by a
Duncan test. A chi-squared test was for categorial variables. Differences were considered
to be statistically significant at p < 0.05. Multivariate linear regression models were con-
structed to evaluate the folate determinants of altered metabolomics signatures in tumours.
The interaction of tumour folate and stage was tested using two-way ANOVA analysis.
Survival analyses were performed on categorical variables of dichotomized metabolite
abundances in SAS Enterprise Guide, version 4.2 (SAS Institute Inc., Cary, NC, USA), and
all reported p values are two sided. Moreover, to assess the predictive power of biomarkers,
receiver operating characteristic (ROC) analyses were performed through GraphPad Prism
9 (GraphPad Software, San Diego, CA, USA).

http://www.metaboanalyst.ca
http://www.cbioportal.org/
http://www.kmplot.com/analysis
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2.10. Metabolomics Statistical Analysis

Statistical mixed effects models, orthogonal partial least squares discriminant analysis
(OPLS-DA) and network integration, were used to identify key cancer-associated metabolic
perturbations in adenocarcinoma compared to non-malignant paired lung tissue. The
metabolomics data files were subjected to extensive statistical analysis using MetaboAnalyst
software (version 5.0; https://www.metaboanalyst.ca/, accessed on 21 December 2021)
in order to identify the comparative and statistically distinguished metabolites for the
search of FD-reprogramed NSCLC biomarkers. The data were normalized to unit scale to
eliminate baseline differences in metabolism between tumours/adjacent lung tissues. The
data on differential metabolites in paired tumours tissues or in blood metabolic conditions
were validated at the univariate level using Student’s t-test (p < 0.05). A partial least
square discriminant analysis (PLSDA) model was generated using statistically significant
metabolites which, on external validation, provided high sensitivity (100%) and specificity
(78.6%). Multivariate statistical analysis includes principal component analysis (PCA),
the supervised OPLS-DA, the volcano plot analysis on fold change of metabolites, and
variable importance in projection (VIP) as a measure of their relative influence on the model
with a threshold > 2 through OPLS-DA. Partial Correlation heatmap was constructed by
Spearman correlation coefficient analysis. Differences were considered to be statistically
significant set at a level of probability of p < 0.05 and fold change > 2.

2.11. Weight Gene Co-Expression Network Analysis

WGCNA was performed to analysis metabolomic dataset according to Pei et al. [35]
reported and constructed using R package “WGCNA”. Thirty-one metabolites were per-
formed to explore the interactions between metabolites, and between metabolites and
clinical traits (folate status, LINE-1, MTHFR, TMN stage, and gene expression) by WGCNA.
First, we performed sample clustering to check for outliers. Second, correlation analysis was
used to calculate the correlations between metabolites. Then, we used network topology
analysis to determine the optimal soft threshold that can enhance the strong correlations
between metabolites and punish the weak correlations between metabolites. The expres-
sion matrix was converted to obtain a topological overlap matrix. The soft threshold was
chosen to be four, which complied with the scale-free network rules (Figure S3). After the
minimum module size was set to three, hierarchical clustering was performed to generate
co-expression modules [36]. At the same time, module eigengenes (MEs) in each module
were also calculated. Finally, we evaluated the associations between ME and clinical traits
to determine NSCLC-related modules for subsequent joint pathway analysis [37]. Hub-
metabolites were constructed by CytoHubba in Cytoscape plug-in and verified by Maximal
Clique Centrality method [38].

3. Results
3.1. Discover Stage-Sensitive Tumour Metabolomics Markers in Paired NSCLCs

Basic and pathologic data of the paired NSCLCs are shown in Supplementary Table S1.
Neither demographic (age, sex, BMI, and smoking) nor biological folate trait (dietary,
plasma, RBC, lungs, and tumours) significantly differs between early (IA) and advance
stage (IB-IVB) NSCLCs.

Metabolomics data in the paired NSCLCs were analysed by MetaboAnalyst 5.0 for
multivariate analysis and normalized by sum normalization, cube root transformation,
and auto scaling. OPLS-DA was first used to explore the metabolites disparities between
the NSCLC and paired lungs. As illustrated in Figure 1A, a clear trend of separation
manifested significant metabolic alterations in tumours and paired lungs. OPLS-DA
was used as the supervised model to predict the different changes by a 10-fold cross-
validation (CV) and 1000-times permutation test (p < 0.001) in paired NSCLCs. After
OPLS-DA, VIP analysis was applied to identify 15 important metabolites that contribute to
classification (Figure 1B). Among those 15 important metabolites, lactate, glucose, and N-
acetylglucosamine (GlcNAc) rank as the top three tumour markers to contribute metabolic

https://www.metaboanalyst.ca/
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diversity in NSCLCs. A volcano map was drawn to show how the 15 metabolites changed
significantly (Figure 1C). According to FDR < 0.05 and log2FC > 2, of which 10 metabolites
(lactate, GlcNAc, arginosuccinate, pyruvate, malate, UDP-N-acetylglucosamine (UDP-
GlcNAc), sedoheptulose-7-phosphate (S7P), 2-hydroxyglutarate, UDP-Glucose, and AMP)
were significantly up-regulated, and one of phosphoenolpyruvate (PEP) was down reg-
ulated in NSCLCs. The tumour markers were then normalized with PEP (glycolytic
flux intermediate) to express the glycolytic index. As compared with the early stage-
tumours and the paired adjacent lungs, advance tumours displayed higher glycolytic
indexes for metabolites in lactate metabolism (glucose, pyruvate, and lactate), TCA cycle
(malate, fumurate, succinate, α-ketoglutarate, and aconite), pentose phosphate pathway
(PPP) (ribose-5-phosphate (R5P), erythrose-4-phosphate (E4P), (S7P), nucleotide biosyn-
thesis of AMP, and amino sugar metabolism (UDP-Glucose, GlcNAc, and UDP-GlcNAc)
(Figure 1D). In particular, contents of gluconeogenesis amino acids (glutamine, gluta-
mate, aspartate, asparagine, arginine, alanine, and serine) were significantly enriched
in advance tumours (Figure 1E). The area under the curve (AUC) of the ROC analysis
was applied to evaluate the classification performance of the above stage-sensitive tu-
mour markers by GraphPad prism 9. Among those potential tumour biomarkers, lactate
(AUC = 0.765, Sig = 0.017, CI: 0.580–0.951), 2-phosphoglycerate (AUC = 0.806, Sig = 0.005,
CI 0.643–0.969), AMP (AUC = 0.719, Sig = 0.048, CI 0.525–0.914), arginine (AUC = 0.801,
Sig = 0.006, CI 0.634–0.968), and UDP-glucose (AUC = 0.714, Sig = 0.053, CI 0.522–0.907)
displayed the high accuracy in diagnosing advance NSCLC (Figure 1F).

Figure 1. Cont.
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Figure 1. Discover stage-sensitive tumour metabolomics markers in paired NSCLCs (A) OPLS-DA of
tissue samples for NSCLC and paired adjacent lungs; (B) VIP analysis on important metabolites that
distinguish NSCLC from adjacent lungs; (C) Multivariate model of volcano plot analysis identifies
significantly changed metabolites between tumours and paired lungs based on the selection criteria
of VIP > 1, p < 0.05, R < 0.05, and fold-change > 2. Glycolytic index of metabolites (metabolites/PEP
ratio) in (D) lactate metabolism pathways and (E) gluconeogenic amino acids of NSCLCs. Variables
without common letter differed at p < 0.05. (F) ROC curve of each potential stage-sensitive biomarkers
in paired NSCLCs. The ROC curve was plotted using GraphPad Prism 9.

3.2. Association of Clinical Folate Trait with Advance Stage-Sensitive Tumour Markers in NSCLCs

Next, we explore association of clinical folate trait with advance stage-sensitive tumour
metabolomics markers. As shown in Figure 2A, the clear trend of separation manifested
the existence of significant metabolic alterations with tertile tumour folate. Low (LF: TF1)
vs. TF2 and TF3 tumours displayed significantly higher metabolite content in glycolysis
pathway (glucose and glucose-6-phosphate), PPP pathway (R5P, S7P, and E4P) (Figure 2B),
and glycogenic amino acids (glutamine, glutamate, asparagine, aspartate, arginine, ser-
ine, and alanine) (Figure 2C). T1 vs. T2/T3 folate was associated with higher glycolytic
index for lactate, malate, glutamine, and its intermediate partners compared with HF, and
adjacent lungs in advance stage (Figure S2). By WGCNA analysis to identify metabolite
module and its correlation with systematic folate traits, six modules were obtained, of
which the green module clustered 3 tumour metabolites (dihydroxyacetone phosphate,
E4P, and R5P) associated with change of plasma folate (r = 0.594, p = 0.001), RBC folate
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(r = 0.489, p = 0.007), tumour folate (r = 0.439, p = 0.019), and genomic DNA methylation
(r = 0.391, p = 0.04) (Figure 2D,E). The brown module clustered six tumour metabolites
(glutamine, serine, aspartate, asparagine, arginine, and glutamate), which were inversely
associated with changes of RBC folate (r = −0.521, p = 0.005), and tumour folate (r = −0.457,
p = 0.015) (Figure 2D,F). Serine and asparagine (red block) were identified as the hub
metabolites navigating the contents of glutamine, glutamate, and aspartate in the network
analysis (Figure 2F). Tumour folate predicted altered tumour serine (Model 3: beta: −3.12,
p = 0.026) and glutamine (Model 2: beta: −0.95, p = 0.043) after multivariable adjustment
of age, sex, smoking status, BMI, plasma folate, genomic LINE1 methylation, and MTHFR
677CT/TT genotype (Figure 2G). Two-way ANOVO analysis revealed that TF1 (low folate:
LF) vs. TF3 (high folate: HF) was significantly associated with elevated metabolites in
the brown module (glutamine, aspartate, serine, and alanine) only for advance tumours
(Figure 2F,H). No stage × tumour folate interaction effect was detected except for alanine
(p for interaction = 0.03) (Figure 2H).

Figure 2. Cont.
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Figure 2. Association of clinical folate trait with stage-sensitive tumour markers in NSCLCs.
(A) OPLS-DA of paired NSCLCs stratified by tertile tumour folate. Relative abundance of metabolites
in (B) central carbon and (C) glycolytic amino acids metabolisms among tertile tumour folate-stratified
NSCLCs. Signal intensity of the designated tumour metabolites was normalized with each paired
adjacent lung. Z-scored values were expressed as mean ± SD. (D) Identify metabolite modulates
associated with clinical folate traits by weighted gene co-expression network analysis (WGCNA).
Each row stands for a module metabolite (MM), and each column represents a clinical folate marker.
Each long square contains the correlation coefficient with p value in parenthesis. Differential enriched
metabolites network in the clinical folate-associated (E) green and (F) brown module. Red block
represents the hub metabolites. (G) Multivariable linear regression models were constructed to
analyse the association of tumour folate with glutamine and serine. Model 1: adjusted for age, sex,
smoking status, and BMI. Model 2: additional adjustment for plasma folate; Model 3: additional
adjustment for genomic epigenetic mark (LINE1 methylation) and genetic polymorphism of MTHFR
677CT/TT genotypes. (H) Interaction of tumour folate and TNM stage analysed by two-way ANOVA.
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NSCLCs were stratified into LF and HF groups by median cut out levels at early (IA) and advance
stage (IB-IV). Data were expressed as the ratio of tumour metabolites normalized with those of
adjacent lungs. Variables without common letter differed at p < 0.05. * p < 0.05 between early and
advance stage. # p < 0.05 compared between the LF and HF group. p for interaction < 0.05 compared
between tumour folate and TNM stage.

3.3. Enrichment Analysis on Metabolic Pathways by Folate-Responsive and Stage-Sensitive
Tumour Metabolomics Markers

To obtain biological information related to the overrepresentation function of the
identified folate-responsive tumour markers as to cancer stage, enrichment analyses were
performed. For advance tumours with LF status, the “amino sugar metabolism” ranks the
top one enriched pathway, followed by “glutathione metabolism”, “transfer of acetyl group
into mitochondria”, “pyruvate metabolism”, “gluconeogenesis”, “glucogenic amino acid
metabolism”, “glucose-alanine cycle”, and “urea cycle” (Figure 3A). Differential metabolic
enrichment profiles were detected for early stage-tumours with LF status (Figure 3B). The
“lactose degradation” and “pyrimidine metabolism” ranked the top two enriched pathways,
respectively, with moderately enriched Warburg effect pathway.

Figure 3. Enrichment analysis on metabolic pathways by folate-responsive and stage-sensitive
tumour metabolomics markers. Enrichment analysis based on KEGG (Kyoto Encyclopaedia of Genes
and Genomes) of the differential metabolites between suboptimal folate-NSCLC and paired lung
tissues using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/, accessed on 21 December 2021).
Enrichment metabolic pathways were analysed for the metabolomics signatures of low folate-tumours
at (A) early stage and (B) advance stage. Median tumour folate was the cut out to stratify low and
high folate-exposed NSCLCs. p ≤ 0.05 was used to select the significant enrichment. Bar length
presents for enrichment ratio. Colour intensity of scale bar represents for log p values.

3.4. The Transcriptomics Signatures Associated with Folate-Sensitive and Stage-Responsive
Tumour Metabolomics Markers

To delineate molecular mechanisms for folate-responsive and stage-sensitive tumour
metabolomics markers, we performed a transcriptomics analysis targeting the metabolic

http://www.metaboanalyst.ca/
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genes of regulatory enzymes and nutrient transporters in one-carbon and glycogenic amino
acids metabolism (Figure 4). Compared with the T2 tumours (control), transcript levels
of glucose transporters (GLUT1 and GLUT4) and pruvate dehydrogenase A (PDHA), the
rate-limiting enzyme for mitochondria bioenergetic, were differentially up-regulated in T1
and T3 tumours. Both T1 and T3 tumours overexpressed the monocarboxylic transporter
4 (MCT4) (data not shown) for lactate export, whereas T3 vs. T1 tumours specifically up
regulated transcript expression of monocarboxylic transporter 1 (MCT1) for lactate import
and lactate dehydrogenase A (LDHA) for lactate metabolism (Figure 4A). Expressions
of four transcripts including L-type amino acid transporter 1 (SLC7A5), the high-affinity
L-glutamine transporter (SLC1A5), glutaminase (GLS), and glutamate dehydrogenase 1
(GLUD1) were all significantly up regulated in T3 as compared with T1 and T2 tumours
(Figure 4B). Transcripts expressions of three key enzymes (phosphoglycerate dehydroge-
nase (PHGDH), phosphoserine phosphatase (PSPH), and phosphoserine aminotransferase
(PSAT1)) involving in de novo serine synthesis, and two key enzymes that channel ser-
ine into folate-cycle as the cytosolic serine hydroxymethyltransferase 1 (SHMT1) and
mitochondrial SHMT2, and the proton-coupled folate transporter (PCFT) are highly over
expressed in T1 and T3 vs. T2 tumours (Figure 4C). The above differential expression genes
(DEGs) in response to altered tumour folate were TNM stage sensitive. Only for advance
NSCLC, high vs. low tumour folate was significantly associated with the overexpression
of MCT1, MCT4, LDHA, SLC7A5, SIRT3, and GLUD1 (Figure 4D). When these folate-
responsive DEGs were selected for WGCNA, six modules of metabolites were obtained,
of which the MEgreen, turquoise, and brown modules clustered the metabolites most sen-
sitive to DEGs (Figure 4E). In MEgreen module, increased expression of MCT1 (r = 0.444,
p = 0.018), LDHA (r = 0.487, p = 0.009), and SLC7A5 (r = 0.575, p = 0.001) was significantly
associated with enriched metabolites in glycolytic and PPP (dihydroxyacetone, E4P and
R5P) (Figure 4E,F). In MEturquoise module, increased expression of GLUT1 (r = 0.457,
p = 0.015), FOLR1 (r = 0.497, p = 0.007), PCFT (r = 0.4, p = 0.035), RFC (r = 0.438, p = 0.02),
PDHA (r = 0.469, p = 0.012), PHGDH (r = 0.505, p = 0.006), PSPH (r = 0.405, p = 0.033),
SHMT1(r = 0.46, p = 0.014), SHMT2 (r = 0.482, p = 0.021), and SIRT3 (r = 0.497, p = 0.007)
were associated with nine enriched metabolites in PPP (glucose-6-P and S7P), TCA cycle
(succinate, α-ketoglutarate and GABA), nucleotide synthesis (AMP and NAD), and amino
sugar (UDP-glucose and UDP-GlcNAc) metabolic pathways (Figure 4E,G). In MEbrown
module, increased expression of GLUT4 (r = −0.434, p = 0.021), PCFT (r = −0.432, p = 0.022),
PDHA (r = −0.143, p = 0.029), PHGDH (r = −0.389, p = 0.041), PSPH (r = −0.410, p = 0.03),
and SHMT2 (r = −0.434, p = 0.021) was inversely associated with decreased content of
nine glycolytic amino acids metabolism including glutamine, serine, arginine, aspartate,
asparagine, and glutamate (Figure 4E,H).

Figure 4. Cont.
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Figure 4. The transcriptomics signatures associated with folate-sensitive and stage-responsive tumour
metabolomics markers. By tertile tumour folate stratification, transcript levels of regulatory enzymes
and nutrient transporters involving (A) lactate metabolism, (B) glutamine metabolism, and (C) serine
and folate cycle metabolism in pair NSCLCs were analysed by qPCR. Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as reference gene. Variables without common letter differed at
p < 0.05. (D) Differential expression gene (DEGs) stratified by advance stage and altered tumour
folate. Data are presented as delta delta Ct for relative expression as opposed to the paired lungs.
Means for variables without common letter differed at p < 0.05 by One-way ANOVA (analysis of
covariance) following a Duncan test or a student t test. * p < 0.05; ** p < 0.01. (E) Metabolite modulates
associated with DEGs clustering by weighted gene co-expression network analysis (WGCNA). Each
row stands for a module metabolite (MM), and each column represents DEGs. Each long square
contains the correlation coefficient with p value in parenthesis. Differential enriched metabolites
network in folate-associated (F) green, (G) turquoise, and (H) brown module. Red block represents
the hub metabolites.

3.5. The Interactive Network of Metabolites and Genetic Signatures Modified by Advance Stage
and Clinical Folate Trait in NSCLCs

We construct the partial correlation heat map and interactive network for metabolites
and genetic signatures in responsive to advance stage and altered clinical folate trait. For
aggressive tumours (Figure 5A), decreased tumour folate was strongly associated with
elevated serine, glutamine, and glucose, and weakly correlated with AMP as illustrated
in the interactive network (Figure S5). Elevated glutamine was specifically associated
with decreased expression of GLUT4 and SHMT2, and elevated serine with increased
GLUD1 expression (Figure 5A). Elevated aggressive tumour marker of AMP and UDP-
GluNAc was associated with up regulated transcript expression of clustering metabolic
enzymes involving in glucose transport (GLUT1), mitochondria bioenergetics (PDHA),
glutaminolysis (GLS), serine biosynthesis (PHGDH and PSPH), folate transport (PCFT
and FOLR1), and folate cycle (SHMT1 and SHMT2) (Figure 5A). These metabolites and
gene interactive network signatures were not expressed in early stage-NSCLCs (Figure S4).
NSCLCs with low tumour folate (<median: 138 ng/g) (Figure 5B), low plasma folate
(<5.5 ng/mL; Figure 5C), and low dietary folate intake (<497 ug/day; Figure 5D) displayed
onco-metabolite and genetic interactive network signatures resembling the aggressive
tumours signature profile (Figure 5A) and the genomic hypomethylated-NSCLCs signature
profile (Figure 5E). Such metabolite and genetic integrated network signatures did not
express in the elevated folate trait counterparts (Figure S4).
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Figure 5. The interactive network of metabolites and genetic signatures modified by advance stage
and clinical folate trait in NSCLCs. The correlation heat map was constructed for (A) advance
stage-NSCLC; (B) low tumour folate-NSCLC (< media tumour folate); (C) low plasma folate-NSCLC
(< median blood folate: 5.5 µg/mL); (D) low dietary folate intake-NSCLC (media intake: 497 µg/day);
and (E) genomic DNA hypomethylation (LINE1 methylation < 66%). The Pearson coefficient correla-
tion was considered to be statistically significant at * p < 0.05.

3.6. Folate-Responsive Tumour Signatures Predicted Overall Survival of Patients
with Lung Cancers

To demonstrate the clinical relevance of the folate-responsive and stage-sensitive tu-
mour signatures, we explored the Kaplan–Meier survival curves to predict overall survival
of LC patients. Higher expression of metabolic genes in glycolytic lactate and serine/folate
cycle metabolism, such as GLUT1 (HR = 1.43, log-rank p = 3.3 × 10−8), GLUT4 (HR = 1.25,
log-rank p = 0.00045), MCT1 (HR: 1.36, log-rank p = 1.9 × 10−6), MCT4 (HR = 1.5, log-rank
p = 3.1 × 10−10), LDHA (HR: 1.63, log-rank p = 4 × 10−14), PHGDH (HR = 1.46, log-rank
p = 3.4 × 10−9), PSAT1 (HR = 1.88, log-rank p = 1.1 × 10−13), and SHMT2 (HR = 1.51,
log-rank p = 1.5 × 10−10), predicted poorer prognoses and lower diseases-free survival
rates in LC patients. Higher expression of folate transporters, including FOLR1 (HR = 0.7,
log-rank p = 2.4 × 10−8), RFC2 (HR = 0.72, log-rank p = 5.5 × 10−7), and PCFT (HR = 0.43,
log-rank p < 1 × 10−16), predicted better prognoses and higher diseases-free survival rates
(Figure 6).
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Figure 6. Folate-responsive aggressive tumours’ signatures predicted overall survival of patients
with lung cancers. Kaplan–Meier survival curves for ADSL and ATIC genetic expression (high and
low levels) was explored.

4. Discussion

This is the first LC/MS/MS-based metabolomic analysis on systematic folate-modeling
tumour metabolic perturbation in an East Asian NSCLC cohort. LF tumours vs. adjacent
lungs displayed significantly higher glycolytic index of lactate and lactate-metabolizing
intermediates in TCA, whereas tumour lactate predicted advanced stage of NSCLC patients.
The metabolomics-identified tumour lactate marker is in line with enhanced glycolytic
lactate production of human NSCLC based on in situ glucose flux analysis [22,23,39,40].
By 13C-lactate trace labelling, Faubert et al. [18] demonstrated that early-stage LC patients
with high glycolytic index of lactate/3-phosphoglycerate progressed to distant metastases
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after several years of surgery. The lactate-dependent anabolism was reported to be part of
aggressive NSCLC with the prognostic prediction in NSCLC patients [19,41–43]. Increased
lactate coupling with elevated purine metabolites in adenocarcinoma lung tissue sustains
cancer proliferation and fast progression [44–46]. As indicated in the animal study, folate
deprivation of lung carcinoma-transplanted mice promoted hyperglycolytic lactate produc-
tion in lungs to enhance lung cancer metastasis [8]. Our findings, together with results of
the other studies, unveil the aggressive NSCLC marker of lactate in response to tumour
folate depletion, which proposed a new metabolic link plausible to explain the association
of inferior folate status with LC malignancy from clinical and epidemiologic studies [14,15].

The novel finding in the present study is to identify glutamine and its intermediate
partners (glutamate, aspartate, arginine, and asparagine) as the distinctive LF-responsive
and stage-sensitive tumour signatures. Decreased tumour folate predicted the elevated
magnitude of tumour glutamine in aggressive but not in early staged-NSCLCs after multi-
ple variables adjustment (β = −0.77, p = 0.01). WGCNA revealed the clustering metabolite
module of glutamine and its intermediate partners associated with inferior RBC and tu-
mour folate of NSCLCs. When grown in folate-deprived media, the invasive and metastatic
breast cancers displayed highly elevated glutamine-associated glucogenic amino acids
(glutamate, aspartate, and asparagine) [47]. In line with the In vivo evidence, the altered
glutamine biosynthesis defined sensitivity of lung metastasis [48,49], yet the mechanistic
link of tumour LF with elevated glutamine signature as to NSCLC malignancy remains
obscure. Several hypotheses are plausible. It has been demonstrated that lung tumours
synthesize glutamine from glucose-derived carbon [50]. We have observed that LF tumours
up regulated transcript expression of glucose transporter 1 to increase glucose uptake,
which was significantly correlated with enriched tumour glutamine as shown in the partial
correlation heat map. Given that LF tumours displayed high glycolytic index of glutamine
specific to aggressive cancer stage, the data suggest that LF promoted glucose-derived
glutamine production by transcriptional regulation of targeting glucose metabolism. On
the other hand, LF tumours displayed suppressed expression of GLS and GLUD1, referring
a decreased glutaminolysis to enter into TCA cycle for mitochondria oxidative bioener-
getics. Preserved glutamine of LF tumours may favour glutamine-engaging metabolic
pathways in ammonia recycling, nucleotide synthesis, and amino-sugar metabolism [49,51].
Indeed, amino sugar metabolism ranked the top one enriched biochemical pathway in LF
tumours at advance stage rather than at early stage. Furthermore, glucose flux analysis
revealed that glutamine serves as the important precursor for glutathione synthesis, a key
cellular antioxidant, critical for redox homeostasis and lung cancers progression [52,53].
Glutamine elevation to maintain redox homeostasis could be the prioritized metabolic
choice of LF tumours under oxidative stress [54,55] for survival from oxidative signalling-
apoptosis [9] and for malignant LC progression [53]. In line with the metabolic readout for
LF-modifying glutamine-metabolizing genetic expression, glutathione metabolism ranked
in the top two enriched pathway in LF but not in HF tumours in a stage-dependent manner.
Collectively, our data suggested that LF modified transcriptomics expression to minimize
glutaminolysis and promote glucose-derived glutamine synthesis, which supports amino
sugar, nucleotide metabolism, and redox homeostasis rather than mitochondrial bioenerget-
ics metabolism [50]. The causal malignancy relationship between low folate and glutamine
marker warrants confirmation studies.

Another key finding in the present study is that serine—a proteinogenic amino acid
and the source of folate 1C units [1]—acts as a hub metabolite navigating the metabolic
network of glutamine and its intermediate amino acids identified by WGCNA. In our
cohort, decreased tumour folate levels were associated with increased serine levels in an
advance stage-dependent manner. This is the first human NSCLC-derived data revealing a
stage-sensitive relationship between low tumour folate and high serine—the oncometabo-
lite of the therapeutic target for cancers [56–58]. How altered tumour folate reprogramed
serine metabolism to support malignancy transformation remains unclear. It is well docu-
mented that cancers regulated three metabolic pathways to augment cancer serine content:
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(1) the glycolysis and glutaminolysis to provide 3-phosphoglycerate (3-PG) and glutamate,
respectively, to fuel do novo serine synthesis pathways (SSP) through metabolic enzymes
of PHGDH, PSAT1, and PSPH [5,59]; (2) increased take up of extracellular serine to aug-
ment intracellular serine through L-type amino acid transporter 1 (SLC7A5) [60,61]; and
(3) production of serine from glycine through methyltransferases SHMT1 (cytoplasmic)
and SHMT2 (mitochondrial) [62–64]. The WGCNA on DEFs of paired NSCLCs revealed
association of low tumour folate with increased transcripts of GLUT1/4, PHGDH, PSPH,
and PSAT1 in NSCLCs, suggesting increased glucose uptake and enhanced glycolytic SSP
pathways to contribute cancer serine levels under folate-deficit condition. In parallel, LF
tumours expressed 2-fold higher SHMT1 and SHMT2 levels than did the paired adjacent
lung tissue. Mitochondrial serine metabolism by SHMT2 enables cytosolic folate coen-
zymes for nucleotide synthesis and serine regeneration by SHMT1 [64,65]. The protective
effect of SHMT1/2 overexpression includes cancer cell survival through redox maintenance
and hypoxic stress reduction [1]. Without modifying transcript level of SLC7A5 for ser-
ine import, LF tumours increased transcript levels of proton-coupling folate transporter
(PCFT) to enhance exogenous folate uptake under lactate-acidified microenvironment [66]
and to compensate folate-deficit condition. After multivariable adjustment, decreased
tumour folate predicted elevated tumour serine, independent of MTHFR genotypes and
DNA methylation effect. The data suggest the additional mechanism by which LF me-
diated increased serine metabolism. Our WGCNA revealed that SIRT3 was inversely
associated with MEBrown module for serine/glutamine-derived amino acid signatures
(r = −0.047, p = 0.012). Low folate was associated with repressed transcript of SIRT3 in
advance NSCLCs, suggesting the critical role of deacetylation on serine metabolism in
low-folate NSCLCs, which warranted studies.

It is notable that HF tumours displayed distinctive different tumour signatures from
LF tumours. In multivariable adjusted models, up regulation of LDHA expression is associ-
ated with high tumour folate dose levels at advance NSCLC. LDHA is the key enzyme that
catalyses the NADH-dependent reduction in pyruvate to lactate, a step essential for regener-
ating the NAD+, which is required for maintaining glycolysis and other metabolic activities.
In highly glycolytic NSCLCs (accounting for >85% LCs) [67], LDHA overexpression is the
key event for the enhancement of aerobic glycolysis, which promotes tumour malignant
behaviour, and invasive ability through the activation of epithelial–mesenchymal transition
in lung adenocarcinoma [68]. Higher blood LDHA levels are strongly correlated with
shorter progression-free and overall survival in patients with advanced NSCLCs treated
with immune checkpoint inhibitors [69]. Other differentially regulated metabolic targets
by HF are MCTs, which are the 12-segment transmembrane proteins that symport protons
with monocarboxylic acids, mainly lactate, and, to a lesser extent, pyruvate, ketone bodies,
and branched-chain amino acids [42]. MCT1 (SLC16A1) is ubiquitously expressed and has
high affinity for serum lactate as the cellular lactate importer, whereas MCT4 (SLC16A3) is
strongly expressed in glycolytic cancer tissues for intracellular lactate export [70,71]. MCT1
overexpression in p53-null LC cells advances xenograft tumorigenicity and angiogenesis,
and MCT1 mRNA is enriched in LCs [72]. Human NSCLC cell lines and tissues overexpress
MCT4, which is associated with poor NSCLC prognosis [72] and decreased overall sur-
vival in a wide variety of cancers [73]. As in other studies, the HF tumours demonstrated
higher expression of MCT1 and MCT4, which serve as malignant LC prognosis predictors,
than did advanced stage LF tumours. The final metabolic target of the Warburg effect
is GLUT1, which is also known as solute carrier family 2 A1 (SLC2A1); it is a uniporter
protein encoded by SLC2A2 in humans [74]. GLUT1 functions as a rate-limiting element
critical for glucose transport to tumour cells; its overexpression predicts short disease-free
and disease-specific survival in patients with LCs [75,76]. In lung adenocarcinomas, high
GLUT1 expression is associated with poor differentiation grade and positive lymph node at
diagnosis [77]. We observed that LF but not HF tumours had significantly increased GLUT1
expression in a folate-responsive and stag-sensitive manner. The differential Warburg effect
associated ontogenetic expression in the LF and HF tumours may partly explain dual role
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of LF and HF in driving the oncometabolomic shift from the hyperglycolytic phenotype to
the aggressive oncogenetic phenotype in most NSCLCs.

Several factors affect how the results should be interpreted. First is the potential
for tissue microheterogeneity at the sub-biopsy levels. Dissected tumour–normal tissue
pairs may include stromal and vascular cells, which have diverse metabolic processes
compared with NSCLC tissues. The commonly mutated oncogenes and tumour suppressor
genes in NSCLCs include KRAS, EGFR, PIK3CA, BRAF, STK, and TP53; these common
cancer metabolic markers [18] were not assessed in our cohort. These possibly mutated
genotypes and molecular heterogeneity warrant further analysis so as to model folate-
mediated metabolites changes. In addition, the number of tumours analysed in each
group was small. This may have prevented the detection and analysis of mutation-specific
signatures in response to tumour folate changes. Another potential limitation for the
observed association of tumour folate with cancer metabolic change may be due to reverse
causation. A prospective experimental study with a larger sample size is required to analyse
the predictive power of the folate-responsive and stage-sensitive markers for early NSCLC
diagnosis and prognosis prediction.

In summary, our study identified the novel diagnostic tumour markers of malignancy
NSCLCs in responsive to biological folate change at threshold cut out levels. The integrated
metabolomics and transcriptomics data classified systematic low folate-modified metabolite
and genetic interactive network signatures to predict poor survival of LC patents. The
findings highlight new translational opportunities for dietary folate interventions, anti-
folate drug development, and diagnostic markers discovery for better prognosis of NSCLC
in folate precision medicine.
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topology network; Figure S4: The metabolites and genes interactive network was constructed for
tumour pairs as a whole and in the subgroups defined by early stage, high tumour folate, high plasma
folate, high folate intake, and genomic DNA hypermethylation; Table S1: Demographic, clinical
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