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Abstract: Food classification serves as the basic step of image-based dietary assessment to predict the
types of foods in each input image. However, foods in real-world scenarios are typically long-tail
distributed, where a small number of food types are consumed more frequently than others, which
causes a severe class imbalance issue and hinders the overall performance. In addition, none of the
existing long-tailed classification methods focus on food data, which can be more challenging due
to the inter-class similarity and intra-class diversity between food images. In this work, two new
benchmark datasets for long-tailed food classification are introduced , including Food101-LT and
VFN-LT, where the number of samples in VFN-LT exhibits real-world long-tailed food distribution.
Then, a novel two-phase framework is proposed to address the problem of class imbalance by
(1) undersampling the head classes to remove redundant samples along with maintaining the learned
information through knowledge distillation and (2) oversampling the tail classes by performing
visually aware data augmentation. By comparing our method with existing state-of-the-art long-tailed
classification methods, we show the effectiveness of the proposed framework, which obtains the best
performance on both Food101-LT and VFN-LT datasets. The results demonstrate the potential to
apply the proposed method to related real-life applications.

Keywords: food classification; long-tail distribution; image-based dietary assessment; benchmark
datasets; food consumption frequency; neural networks

1. Introduction

Accurate identification of food is critical to image-based dietary assessment [1,2],
which facilitates matching the food to the proper identification of that food in a nutrient
database with the corresponding nutrient composition [3]. Such linkage makes it possible
to determine dietary links to health and diseases such as diabetes [4]. Dietary assessment,
therefore, is very important to healthcare-related applications [5,6] due to recent advances
in novel computation approaches and new sensor devices. In addition, the application of
image-based dietary assessments on mobile devices has received increasing attention in
recent years [7–10], which can serve as a more efficient platform to alleviate the burden
on participants and enhance the adaptability to diverse real-world situations. The perfor-
mance of image-based dietary assessment relies on the accurate prediction of foods in the
captured eating scene images. However, most current food classification systems [11–13]
are developed based on class-balanced food image datasets such as Food-101 [14], where
each food class contains the same number of training data. However, this rarely happens
in the real world since food images usually have a long-tailed distribution, where a small
portion of food classes (i.e., the head class) contain abundant samples for training, while
most food classes (i.e., the tail class) have only a few samples, as shown in Figure 1. Thus,
long-tailed classification, defined as the extreme class imbalance problem, leads to clas-
sification bias towards head classes and poor generalization ability for recognizing tail
food classes. Therefore, the food classification performance in the real world may drop
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significantly without considering the class imbalance issue, which would in turn constrain
the applications of image-based dietary assessments. In this work, we analyze the long-
tailed class distribution problem for food image classification and develop a framework to
address the issue with the objective of minimizing the performance gap when applied in
real-life food-related applications.

As few existing long-tailed image classification methods target food images, two bench-
mark Long-Tailed food datasets are introduced at first in this work, including Food101-
LT and VFN-LT. Similar to [15], Food101-LT is constructed as a long-tailed version of
the original balanced Food101 [14] dataset by following the Pareto distribution. In ad-
dition, as shown in Figure 1, VFN-LT is also used and provides a new and valuable
long-tailed distributed food dataset where the number of samples for each food class
exhibits the distribution of consumption frequency [16], defined as how often a food is
consumed in one day according to the National Health and Nutrition Examination Survey
(https://www.cdc.gov/nchs/nhanes/index.html, accessed on 21 April 2023) (NHANES)
from 2009 to 2016 among 17,796 U.S. healthy adults aged 20 to 65, i.e., the head classes of
VFN-LT are the most frequently consumed foods in the real world for the population repre-
sented. It is also worth noting that both Food101-LT and VFN-LT are of a heavier-tailed
distribution than most existing benchmarks such as CIFAR100-LT [17], which is simulated
by following a general exponential distribution.

Figure 1. An overview of the VFN-LT that exhibits a real-world long-tailed food distribution.
The number of training samples is assigned based on the consumption frequency, which is matched
through NHANES from 2009 to 2016 among 17,796 healthy U.S. adults.

An intuitive way to address the class imbalance issue is to undersample the head
classes and oversample the tail classes to obtain a balanced training set containing a
similar number of samples for all classes. However, there are two major challenges:
(1) How to undersample the head classes to remove the redundant samples without
compromising the original performance. (2) How to oversample the tail classes to increase
the model generalization ability as naive repeated random oversampling can further
intensify the overfitting problem, resulting in a worse performance especially in heavy-
tailed distributions. In addition, food images are known to be more complicated than

https://www.cdc.gov/nchs/nhanes/index.html
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general objects for various downstream tasks such as classification, segmentation and
image generation due to their inter-class similarity and intra-class diversity, which becomes
more challenging in long-tailed data distributions with a severe class imbalance issue.

This work aims to fill the gap for long-tailed food classification. A novel two-phase
framework is proposed, which efficiently addresses both aforementioned problems. Specif-
ically, standard training is performed in phase I using all images from all food classes.
In phase II, the most representative data of the head classes are selected by leveraging the
model trained in phase I as the feature extractor and then applying knowledge distillation
to maintain the learned information to address issue (1). Inspired by the most recent
work [18], a new visual-aware oversampling strategy for the tail classes is proposed, which
allows multi-image mixing instead of only one image as in [18] to address issue (2), and
also considers the visual similarity to increase the inter-class discrepancy and intra-class
compactness. The contributions of this work are summarized in the following.

• Two new benchmark datasets are introduced including Food101-LT and VFN-LT,
where the long-tailed distribution of VFN-LT exhibits a real world food distribution.

• A novel two-phase framework is proposed to address the class imbalance problem by
undersampling redundant head class samples and oversampling tail classes through
visual-aware multi-image mixing.

• The performance of existing state-of-the-art long-tailed classification methods has
been evaluated on newly introduced benchmark food datasets and the proposed
framework obtains the best classification accuracy on both Food101-LT and VFN-LT.

2. Related Work

This section reviews and summarizes the existing methods that are most related to
this work, including food classification and long-tailed image recognition.

2.1. Food Classification

The most common deep-learning-based methods [19] for food classification apply
off-the-shelf models such as ResNet [20] with pre-training on ImageNet [21] to fine tune [22]
food image datasets [23–25] such as Food-101 [14]. To achieve a higher performance and
address the issue of inter-class similarity and intra-class diversity, the most recent work
proposed the construction of a semantic hierarchy based on both visual similarity [11]
and nutrition information [26] to perform optimization on each level. In addition, food
classification has also been studied under different scenarios such as large-scale recog-
nition [12], few-shot learning [27] and continual learning [28,29]. However, none of the
existing methods study long-tailed food classification where the severe class imbalance
issue in real life may significantly degrade the performance. Finally, though the most recent
work targets the multi-labeled ingredient recognition [30], the focus of this work is on
long-tailed single food classification, where each image contains only one food class and
the training samples for each class are heavily imbalanced.

2.2. Long-Tailed Classification

Existing long-tailed classification methods can be categorized into two main groups in-
cluding: (i) re-weighting and (ii) re-sampling. Re-weighting-based methods aim to mitigate
the class imbalance problem by assigning tail classes or samples with higher weights than
the head classes. The inverse of class frequency is widely used to generate the weights for
each class, as in [31,32]. In addition, a variety of loss functions have been proposed to adjust
weights during training, including label-distribution-aware margin loss [17], balanced Soft-
max [33] and instance-based focal loss [34]. Alternatively, re-sampling-based methods aim
to generate a balanced training distribution by undersampling the head classes as described
in [35] and oversampling the tail classes as shown in [35,36], in which all tail classes were
oversampled until class balance was achieved. However, a drawback to undersampling
is that valuable information of the head classes can be lost and naive oversampling can
further intensify the overfitting problem due to the lack of diversity of repeated samples.
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A recent work [18] proposed performing oversampling by leveraging CutMix [37] to cut
a randomly generated region in tail class samples and mix it with head class samples.
However, the performance of existing methods on food data still remain under-explored,
presenting additional challenges to other object recognition. The proposed method in this
work falls in the re-sampling category, which undersamples the head classes by selecting
the most representative data while maintaining generalization ability through knowledge
distillation [38]. In addition, a novel oversampling strategy is introduced, which further
considers the visual similarity and allows multi-image CutMix compared with [18].

3. Datasets

In this work, two new benchmark datasets are introduced for long-tailed food classifi-
cation task, including the Food101-LT and VFN-LT.

Food101-LT is the long-tailed version of Food101 [14], a large-scale balanced dataset
containing 101 food classes with 1000 images for each class, where 750 images are for
training and 250 images are for testing. Similar to the process of constructing ImageNet-
LT [15] based on ImageNet dataset 2015 [21], Food101-LT is generated by following the
Pareto distribution [39] with the power value α = 6. Overall, the training set of Food101-LT
had over 11K images from 101 categories, with a maximum of 750 images per class and
minimum of five images per class. The imbalance ratio, defined as the maximum over
the minimum number of training samples, is calculated as 150. Overviews of the training
data distribution for Food-101 and Food101-LT are shown in Figure 2. The test set is kept
balanced with 250 images per class.
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Figure 2. The training data distribution for Food-101 and Food101-LT (shown in descending order
based on the number of training samples).

VFN-LT is the long-tailed version of the Viper FoodNet (VFN) Dataset [11], which has
74 common food classes consumed in the U.S., selected based on What We Eat In America
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(WWEIA) (https://data.nal.usda.gov/dataset/what-we-eat-america-wweia-database,
accessed on 21 April 2023). However, instead of simulating the long-tail distribution as
in Food101-LT and existing long-tailed datasets such as CIFAR100-LT [17] by removing
training samples from randomly selected classes, we first manually matched each food
type in VFN with a general food code from the 2017–2018 Food and Nutrient Database
for Dietary Studies (FNDDS) (https://www.ars.usda.gov/northeast-area/beltsville-
md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/
docs/fndds-download-databases/, accessed on 21 April 2023) and then assign it with
the corresponding consumption frequency [16], which was collected through the Na-
tional Health and Nutrition Examination Survey (NHANES) from 2009 to 2016 among
17,796 healthy U.S. adults aged 20 to 65. The consumption frequency exhibits the most
frequent and the least frequent consumed foods in the U.S. Table 1 summarizes the 74 food
types in VFN with the matched food code and consumption frequency. Finally, images
are sampled within each food class i based on the matched consumption frequency fi

as si = ni ×
fi

fmax
, where si and ni refer to the number of selected and original data and

fmax denotes the maximum matched consumption frequency in VFN. Overall, the training
set of VFN-LT has 2.5K images from 74 categories, with a maximum of 288 images per
class and a minimum of 1 image per class. The overview of training data distribution for
VFN and VFN-LT are shown in Figure 3. Though the original VFN does not have equal
training samples as in Food-101, each food type has over 70 images for training, while in
the long-tailed case, the majority of foods have less than 20 training images and exhibit a
significant class imbalance issue. The imbalance ratio is 288 and the test set is kept balanced
with 25 images per class.
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Figure 3. The training data distribution for VFN and VFN-LT (shown in descending order based on
number of training samples).

https://data.nal.usda.gov/dataset/what-we-eat-america-wweia-database
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/
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Table 1. The list of 74 food types in VFN-LT with the matched food code and corresponding
consumption frequency.

Index Food Type Food
Code

Consumption
Frequency Index Food Type Food

Code
Consumption

Frequency

1 Yeast breads 51000100 8275 38 Fried rice 58150310 465
2 Cookies 53201000 3591 39 Boiled egg 31103010 454

3 Tomatoes 74101000 3468 40 Frankfurter
sandwich 27564000 429

4 Sandwich 27500050 3297 41 Burrito 58100160 413
5 French fries 71400990 3111 42 Shrimp 26319110 409
6 Soup 58400000 3002 43 Fried egg 31105005 408
7 Bananas 63107010 2737 44 Cinnamon buns 51160110 405
8 Tortilla and Corn Chips 54401075 2504 45 Blueberries 63203010 393
9 Pizza 58106230 2325 46 Muffins 52301000 342
10 Tortillas 52215000 1923 47 Hash browns 71404000 317
11 Apple 63101000 1912 48 Meat loaf 27214100 316
12 Ice cream 13110000 1909 49 Pork rib 22701000 315
13 White and Brown Rice 56205000 1812 50 Bagels 51180010 313
14 Pasta mixed dishes 58146210 1794 51 Brownies 53204000 308
15 Mashed potatoes 71501000 1730 52 Chicken thigh 24150210 302
16 Breaded fish 26100140 1694 53 Guacamole 63409010 284
17 Steak 21001000 1693 54 Quick breads 52403000 251
18 Yogurt 11400000 1326 55 Chicken tender 24198739 230
19 Cakes or cupcakes 53100100 1173 56 Tuna salad 27450060 223
20 Burgers 27510155 1082 57 Baked potato 71100100 219
21 Chicken breast 24120120 1030 58 Almonds 42100100 213
22 Carrots 73101010 1026 59 Waffles 55200010 205
23 Melons 63109010 962 60 Chicken nugget 24198729 199
24 Pancakes 55100005 854 61 Broccoli 72201100 183
25 Corn 75216120 802 62 Quesadilla 58104710 182
26 Strawberries 63223020 771 63 Croissants 51166000 178
27 Bacon 22600200 742 64 Lasagna 58130011 175

28 Macaroni or noodles with
cheese 58145110 718 65 Nachos 58104180 157

29 Whole chicken 24100000 681 66 Coleslaw 75141000 143
30 Doughnuts 53520000 634 67 Beans 41100990 135
31 Avocado 63105010 589 68 Stew beef 27211200 133
32 Green beans 75205030 575 69 French toast 55300010 113
33 Chicken wing 24160110 562 70 Sushi 58151100 95
34 Omelet 32129990 555 71 Apple sauce 63101110 93
35 Pies 53300100 487 72 Cabbage 75105000 82
36 Pork chop 22101000 470 73 Biscuits 52101000 54
37 Taco or tostada 58101320 470 74 Grilled salmon 26137110 39

food types are shown in descending order based on the consumption frequency.

4. Method

In this work, a novel two-phase framework is proposed to address the class imbalance
problem for long-tailed food image classification. An overview of our proposed method
is shown in Figure 4, where phase I is standard training using all images from all classes.
The trained model in phase I is used as the feature extractor and the teacher model for
knowledge transfer in the next phase. In phase II, we select the most representative data
from the head classes and augment the tail class images through visual-aware CutMix [37]
to construct a balanced training set and apply knowledge distillation to maintain the
learned information from the head classes. Details of each component are illustrated in the
following subsections.
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Figure 4. The overview of our proposed method. The left side shows phase I of standard training with
cross-entropy loss using all the training images. The right side shows phase II, where undersampling
is performed for the head classes to select the most representative samples through herding and
oversampling is performed for tail classes through visual-aware CutMix.

4.1. Undersampling and Knowledge Transfer

The objective is to undersample the head classes, as redundant training data can
restrict the model’s generalization ability [36]. However, the naive approach of removing a
random portion of data loses much valuable information and degrades the classification per-
formance [36]. In this work, we address this problem by retaining the most representative
training samples through herding dynamic selection (herding) [40], which calculates the
Euclidean distance and selects the data that are closest to the class mean vector. In addition,
we propose to further minimize the information lost from removed data samples by apply-
ing knowledge distillation [38], which applies a teacher model (obtained in phase I that
trained on all training data) to transfer the knowledge to the student model (phase II model
with only herding-selected head class training data available). Specifically, F1 denotes the
model trained after phase I by using all the training samples D, then the parameters of
F1 are frozen in phase II and the feature embeddings are fist extracted using the lower
layers of F1 and then the herding algorithm is applied to select the most representative
samples for each head class based on the class mean Ds, Dr = Herding(F1(D)), where Ds
and Dr denote the selected and removed samples. Then, during phase II training , only
selected samples from the head classes are used for training and knowledge distillation [38]
is applied to maintain the original learned knowledge, as described in Equation (1):

LKD(x)
x∈Ds

=
n

∑
i=1
−FT

1 (x)(i)log[FT
2 (x)(i)] (1)

where n denotes the total number of classes and F2 refers to the training model in phase II.
Therefore, by minimizing Equation (1), we force the training model in phase II to have a
similar output distribution to the model learned in phase I to minimize the knowledge lost
caused by undersampling. T > 0 is the temperature scalar in distillation, where

FT(x) =
exp (F(x)(i)/T)

∑n
j=1 exp (F(x)(j)/T)

(2)

and a larger T results in a softer output distribution to learn hidden information, while
a smaller T enables efficient knowledge transfer by sharpening the output distribution.
In this work, we empirically set T = 0.5 to efficiently transfer and maintain the knowledge
learned in phase I for the removed samples Dr.

4.2. Oversampling of Tail Classes

For the tail classes, the objective is to oversample for better generalization. Naive
random oversampling [35] results in a severe overfitting problem as the identical images
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are repeatedly used to update the model. The most recent work addresses this problem by
leveraging context-rich information from head classes and mixing this with samples from
the tail classes through CutMix [37]. However, the performance is limited when applied on
food images, as the selection of the head class sample is random so the mixing with visually
dissimilar images can lose the important semantic meaning of the original class. We address
this problem by considering the visual similarity of the head class image selection and
allow for up to k multi-image CutMix. Specifically, during phase II training, we randomly
sample a head class batch Br ⊆ Dr and augment each tail class datum x ∈ RW×H×C as in
Equation (4), where � is element-wise multiplication.

x̃ = (1−Ms)� xh + Ms � x (3)

Ms ∈ {0, 1}sW×sH refers to the binary mask with the value 1 indicating where to cut the tail
image x and paste for the head image xh, and 0 < s < 1 is the randomly sampled mixing
ratio. Therefore, the generated synthetic image x̃ contains a mix of cut-out blocks from
the tail class image x and the head class image xh. For multi-image mixing, we iteratively
perform Equation (4) for the top-k selected head samples as

x̃ =
k

∑
i
{(1−Ms)� xi

h + Ms � x̃} (4)

where x1
h, x2

h, . . . xk
h denote the top-k most similar head class images with the highest cosine

similarity calculated by Equation (5), which selects the most visually similar food images
to perform CutMix.

x1
h, x2

h, . . . , xk
h = argmax

xr∈Br

cos(F1(x), F1(xr)) (5)

We fix k = 1 in this work and observed an improved performance by slightly increasing
k. However, a very large k can harm the overall performance, since the content of head
class samples will become dominant in the augmented tail class image, as illustrated in
Section 5.3.

5. Experiments
5.1. Experimental Setup

Datasets and evaluation metrics. We validate our method on two benchmark datasets
introduced in Section 3 including Food101-LT and VFN-LT. For each dataset, we calculate
the mean number of samples by m = D

n , where D and n denote the total number of samples
and classes, respectively. We perform undersampling of head classes (containing more than
m samples) and oversampling of tail classes (lower than m) to achieve balanced m samples
per class. Overall, Food101-LT has 101 classes including 28 head classes and 73 tail classes.
VFN-FT has 74 classes including 22 head classes and 52 tail classes. The top-1 classification
accuracy is reported along with the accuracy for head classes and tail classes, respectively.

Comparison methods. We compare our method with existing approaches for food
classification and long-tailed classification, including (1) vanilla training as Baseline,
(2) hierarchy-based food classification (HFR) [11], (3) random oversampling (ROS) [35],
(4) random undersampling (RUS) [36], (5) context-rich oversampling (CMO) [18],
(6) label-distribution-aware margin (LDAM) [17], (7) balanced Softmax (BS) [33],
(8) influence-balanced loss (IB) [41] and (9) Focal loss [34].

Implementation details. Our implementation of neural networks is based on a Py-
torch [42] framework. All experiments were run locally on a GPU server containing an
Nvidia A40 graphic card with 48 GB memory. For both Food101-LT and VFN-LT datasets,
we used ResNet-18 [20] with the parameters initialized on ImageNet [21] as suggested
in [11]. We apply the Stochastic Gradient Descent (SGD) optimizer with a momentum of
0.9 and an initial learning rate of 0.1 with a cosine decay scheduler. The total training epoch
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is set as 150 for all methods to ensure fair comparisons, and we used 50 epochs for phase I
and 100 epochs for phase II. We ran all experiments five times and report the average top-1
classification accuracy.

5.2. Experimental Results

The results on Food101-LT and VFN-LT are summarized in Table 2. We observed a
poor generalization ability for tail classes with a very low tail accuracy in the baseline and
HFR [11] due to the limited number of training samples. Although naive random under-
sampling [35,36] increases the tail accuracy due to a decrease in the class imbalance level,
the performance on the head classes drops significantly and the overall accuracy remains al-
most unchanged. In addition, all existing long-tailed classification methods [17,18,33,34,41]
show improvements compared with naive random sampling [35,36], but the performance
is still limited as food image classification is more challenging. Our proposed method
achieves the best performance on both datasets with a competitive head class accuracy
using only part of the training samples and achieving a much higher accuracy for the tail
classes. The results show the effectiveness of our undersampling strategy in the heavier-tail
distribution along with knowledge distillation to maintain the learned information for
head classes and the use of visually aware augmentation for better generalization on the
tail classes.

Table 2. Top-1 accuracy on Food101-LT and VFN-LT with tail class (Tail) and head class (Head)
accuracy. Best results are marked in bold.

Datasets Food101-LT VFN-LT

Accuracy (%) Head Tail Overall Head Tail Overall

Baseline 65.8 20.9 33.4 62.3 24.4 35.8
HFR [11] 65.9 21.2 33.7 62.2 25.1 36.4
ROS [35] 65.3 20.6 33.2 61.7 24.9 35.9
RUS [36] 57.8 23.5 33.1 54.6 26.3 34.8
CMO [18] 64.2 31.8 40.9 60.8 33.6 42.1

LDAM [17] 63.7 29.6 39.2 60.4 29.7 38.9
BS [33] 63.9 32.2 41.1 61.3 32.9 41.9
IB [41] 64.1 30.2 39.7 60.2 30.8 39.6

Focal [34] 63.9 25.8 36.5 60.1 28.3 37.8

Ours 65.2 33.9 42.6 61.9 37.8 45.1

5.3. Ablation Study

In this section, we first evaluate our head class undersampling by comparing RUS [36]
with (i) replacing with Herding selection (HUS) and (ii) applying knowledge distillation
(HUS+KD). Then, we evaluate tail class oversampling by comparing CMO [18] with
(i) considering visual similarity (CMO+Visual) and (ii) increasing the number of mixed
images k as described in Section 4.2.

The results are summarized in Table 3. Herding selection shows better performance
compared with random sampling as we maintain the most representative data for the
head classes. Applying knowledge distillation further improves the performance without
compromising the performance for the head classes. In addition, we observe improvements
on the tail classes when performing CutMix on visually similar food images, which avoids
losing important semantic information while maintaining discriminative ability. Finally,
we show a better generalization ability on the tail classes by slightly increasing k, while
the performance drops a little for very large k values due to the distribution drift of the
augmented tail class images. Figures 5 and 6 show the performance difference compared to
CMO [18] by varying k ∈ [1, 10] on Food101-LT and VFN-LT, respectively.
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Table 3. Ablation study on Food101-LT and VFN-LT.

Datasets Food101-LT VFN-LT

Accuracy (%) Head Tail Overall Head Tail Overall

RUS [36] 57.8 23.5 33.1 54.6 26.3 34.8
HUS +1.7 +0.3 +0.6 +2.1 +0.2 +0.7

HUS+KD +5.8 +0.2 +1.9 +7.1 +0.1 +2.2

CMO [18] 64.2 31.8 40.9 60.8 33.6 42.1
CMO+Visual (k = 1) +0.2 +1.3 +1.0 +0.4 +1.8 +1.2
CMO+Visual (k = 3) +0.1 +2.8 +2.1 +0.5 +2.4 +1.9

CMO+Visual (k = 10) −0.1 +0.2 +0.1 +0.2 −0.4 −0.1

Figure 5. The performance difference compared to CMO [18] versus the selection of top-k visually
similar images for augmentation.

Figure 6. The performance difference compared to CMO [18] versus the selection of top-k visually
similar images for augmentation.
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We observe performance improvements with smaller k values at the beginning which
then start decreasing when k becomes larger. Figure 7 visualizes an example of augmented
food images selected from the stewed beef food type with k = 0, 1, 3, 5, 10. k = 0 refers to
the original without any augmentation. The augmented foods are selected based on visual
similarity, which are from steak, mixed pasta dishes and burgers. We can find that the
augmented food image is able to combine the rich context from head classes with smaller k.
However, when k increases, the context from other food types occupies the majority region
of original images, resulting in concept drift and possible performance degradation.

k=0 k=1

k=3 k=5 k=10

Figure 7. Visualization of top-k CutMix food image augmentation with k = 0, 1, 3, 5, 10. The original
image is from the stewed beef food type and the augmented foods are from steak, mixed pasta dishes
and burgers, which were selected based on visual similarity.

It is also worth mentioning that we did not tune k in this work and simply used k = 1
for all experiments to compare with existing methods, as in Table 2. We regard k as a
hyper parameter and it has the potential to be tuned to achieve better performance for
real-world applications.

6. Conclusions and Future Work

This work focused on image classification for food data with a long-tailed distribution
where only a small part of head classes contains many or enough training samples, while
most tail classes only have a few samples. Two new benchmark long-tailed food datasets
are introduced first, including Food101-LT and VFN-LT, where VFN-LT is constructed
based on food consumption frequencies which exhibits a real-world food data distribution.
To address the severe class imbalance issue in long-tailed classification, a novel two-phase
framework is proposed to select the most representative training samples for head classes
while maintaining the information through knowledge distillation and augmenting the tail
classes by visually aware multi-image CutMix. The proposed method achieved the best
performance on both datasets and extensive experiments have been conducted to evaluate
the contribution of each component of the proposed framework.

The future work will focus on designing a single-phase, end-to-end long-tailed food
classification system. One of the potential solutions is to apply a post hoc technique such
as logit adjustment used in recent work [43]. Additionally, it is also worth investigating
long-tailed food classification across a broader range of populations, including both insulin-
dependent and non-insulin-dependent type-2 diabetics, with the goal of developing and
implementing a more precise food classification system for practical applications.



Nutrients 2023, 15, 2751 12 of 13

Author Contributions: Conceptualization, J.H., L.L., H.A.E.-M. and F.Z.; methodology, J.H.; software,
J.H.; validation, J.H., F.Z.; formal analysis, J.H.; investigation, J.H.; resources, F.Z.; data curation, J.H.,
L.L.; writing—original draft preparation, J.H.; writing—review and editing, L.L., H.A.E.-M. and F.Z.;
supervision, F.Z.; project administration, F.Z.; funding acquisition, F.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Eli Lilly and Company.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The data presented in this study are openly available at
references [11,14].

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. He, J.; Shao, Z.; Wright, J.; Kerr, D.; Boushey, C.; Zhu, F. Multi-task Image-Based Dietary Assessment for Food Recognition and

Portion Size Estimation. In Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval,
Shenzhen, China, 6–8 August 2020; pp. 49–54. [CrossRef]

2. He, J.; Mao, R.; Shao, Z.; Wright, J.L.; Kerr, D.A.; Boushey, C.J.; Zhu, F. An end-to-end food image analysis system. Electron.
Imaging 2021, 2021, 285-1–285-7. [CrossRef]

3. Shao, Z.; He, J.; Yu, Y.Y.; Lin, L.; Cowan, A.; Eicher-Miller, H.; Zhu, F. Towards the Creation of a Nutrition and Food Group Based
Image Database. arXiv 2022, arXiv:2206.02086.

4. Anthimopoulos, M.M.; Gianola, L.; Scarnato, L.; Diem, P.; Mougiakakou, S.G. A food recognition system for diabetic patients
based on an optimized bag-of-features model. IEEE J. Biomed. Health Inform. 2014, 18, 1261–1271. [CrossRef]

5. Allegra, D.; Battiato, S.; Ortis, A.; Urso, S.; Polosa, R. A review on food recognition technology for health applications. Health
Psychol. Res. 2020, 8, 9297. [CrossRef] [PubMed]

6. Shao, Z.; Han, Y.; He, J.; Mao, R.; Wright, J.; Kerr, D.; Boushey, C.J.; Zhu, F. An Integrated System for Mobile Image-Based Dietary
Assessment. In Proceedings of the 3rd Workshop on AIxFood, Virtual Event, 20 October 2021; pp. 19–23. [CrossRef]

7. Vasiloglou, M.F.; van der Horst, K.; Stathopoulou, T.; Jaeggi, M.P.; Tedde, G.S.; Lu, Y.; Mougiakakou, S. The human factor in
automated image-based nutrition apps: Analysis of common mistakes using the goFOOD lite app. JMIR MHealth UHealth 2021,
9, e24467. [CrossRef] [PubMed]

8. Kawano, Y.; Yanai, K. Foodcam: A real-time food recognition system on a smartphone. Multimed. Tools Appl. 2015, 74, 5263–5287.
[CrossRef]

9. Boushey, C.; Spoden, M.; Zhu, F.; Delp, E.; Kerr, D. New mobile methods for dietary assessment: Review of image-assisted and
image-based dietary assessment methods. Proc. Nutr. Soc. 2017, 76, 283–294. [CrossRef] [PubMed]

10. Zhu, F.; Bosch, M.; Woo, I.; Kim, S.; Boushey, C.J.; Ebert, D.S.; Delp, E.J. The use of mobile devices in aiding dietary assessment
and evaluation. IEEE J. Sel. Top. Signal Process. 2010, 4, 756–766. [PubMed]

11. Mao, R.; He, J.; Shao, Z.; Yarlagadda, S.K.; Zhu, F. Visual aware hierarchy based food recognition. arXiv 2020, arXiv:2012.03368.
12. Min, W.; Wang, Z.; Liu, Y.; Luo, M.; Kang, L.; Wei, X.; Wei, X.; Jiang, S. Large scale visual food recognition. IEEE Trans. Pattern

Anal. Mach. Intell. 2023, Early access. . [CrossRef] [PubMed]
13. Wu, H.; Merler, M.; Uceda-Sosa, R.; Smith, J.R. Learning to make better mistakes: Semantics-aware visual food recognition.

In Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016;
pp. 172–176.

14. Bossard, L.; Guillaumin, M.; Van Gool, L. Food-101—Mining Discriminative Components with Random Forests. In Com-
puter Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part VI 13; Springer
International Publishing: Cham, Switzerland, 2014.

15. Liu, Z.; Miao, Z.; Zhan, X.; Wang, J.; Gong, B.; Yu, S.X. Large-scale long-tailed recognition in an open world. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2537–2546.

16. Lin, L.; Zhu, F.M.; Delp, E.J.; Eicher-Miller, H.A. Differences in Dietary Intake Exist Among US Adults by Diabetic Status Using
NHANES 2009–2016. Nutrients 2022, 14, 3284. [PubMed]

17. Cao, K.; Wei, C.; Gaidon, A.; Arechiga, N.; Ma, T. Learning imbalanced datasets with label-distribution-aware margin loss. In
Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Volume 32.

18. Park, S.; Hong, Y.; Heo, B.; Yun, S.; Choi, J.Y. The Majority Can Help The Minority: Context-rich Minority Oversampling for
Long-tailed Classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New
Orleans, LA, USA, 18–24 June 2022; pp. 6887–6896.

http://doi.org/10.1109/MIPR49039.2020.00018
http://dx.doi.org/10.2352/ISSN.2470-1173.2021.8.IMAWM-285
http://dx.doi.org/10.1109/JBHI.2014.2308928
http://dx.doi.org/10.4081/hpr.2020.9297
http://www.ncbi.nlm.nih.gov/pubmed/33553793
http://dx.doi.org/10.1145/3475725.3483625
http://dx.doi.org/10.2196/24467
http://www.ncbi.nlm.nih.gov/pubmed/33439139
http://dx.doi.org/10.1007/s11042-014-2000-8
http://dx.doi.org/10.1017/S0029665116002913
http://www.ncbi.nlm.nih.gov/pubmed/27938425
http://www.ncbi.nlm.nih.gov/pubmed/20862266
http://dx.doi.org/10.1109/TPAMI.2023.3237871
http://www.ncbi.nlm.nih.gov/pubmed/37021867
http://www.ncbi.nlm.nih.gov/pubmed/36014790


Nutrients 2023, 15, 2751 13 of 13

19. Christodoulidis, S.; Anthimopoulos, M.; Mougiakakou, S. Food recognition for dietary assessment using deep convolutional
neural networks. In New Trends in Image Analysis and Processing–ICIAP 2015 Workshops: ICIAP 2015 International Workshops, BioFor,
CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, 7–8 September 2015, Proceedings 18; Springer International
Publishing: Cham, Switzerland, 2015; pp. 458–465.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

21. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. . [CrossRef]

22. Yanai, K.; Kawano, Y. Food image recognition using deep convolutional network with pre-training and fine-tuning. In
Proceedings of the IEEE International Conference on Multimedia & Expo Workshops, Turin, Italy, 29 June–3 July 2015; pp. 1–6.

23. Farinella, G.M.; Allegra, D.; Moltisanti, M.; Stanco, F.; Battiato, S. Retrieval and classification of food images. Comput. Biol. Med.
2016, 77, 23–39. [CrossRef] [PubMed]

24. Kawano, Y.; Yanai, K. Automatic Expansion of a Food Image Dataset Leveraging Existing Categories with Domain Adaptation.
In Proceedings of the ECCV Workshop on Transferring and Adapting Source Knowledge in Computer Vision (TASK-CV), Zurich,
Switzerland, 6–7 September 2014.

25. Farinella, G.M.; Allegra, D.; Stanco, F. A Benchmark Dataset to Study the Representation of Food Images. In Proceedings of the
Europen Conference of Computer Vision, Workshops, Zurich, Switzerland, 6–12 September 2014; pp. 584–599.

26. Mao, R.; He, J.; Lin, L.; Shao, Z.; Eicher-Miller, H.A.; Zhu, F. Improving Dietary Assessment Via Integrated Hierarchy Food
Classification. In Proceedings of the 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), Tampere,
Finland, 6–8 October 2021; pp. 1–6. [CrossRef]

27. Jiang, S.; Min, W.; Lyu, Y.; Liu, L. Few-shot food recognition via multi-view representation learning. ACM Trans. Multimed.
Comput. Commun. Appl. (TOMM) 2020, 16, 1–20. [CrossRef]

28. He, J.; Zhu, F. Online Continual Learning for Visual Food Classification. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, Montreal, BC, Canada, 11–17 October 2021; pp. 2337–2346.

29. He, J.; Mao, R.; Shao, Z.; Zhu, F. Incremental Learning In Online Scenario. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13926–13935.

30. Gao, J.; Chen, J.; Fu, H.; Jiang, Y.G. Dynamic Mixup for Multi-Label Long-Tailed Food Ingredient Recognition. IEEE Trans.
Multimed. 2022.

31. Huang, C.; Li, Y.; Loy, C.C.; Tang, X. Learning deep representation for imbalanced classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5375–5384.

32. Wang, Y.X.; Ramanan, D.; Hebert, M. Learning to model the tail. In Proceedings of the Advances in Neural Information
Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.

33. Ren, J.; Yu, C.; Ma, X.; Zhao, H.; Yi, S.; et al. Balanced meta-softmax for long-tailed visual recognition. Adv. Neural Inf. Process.
Syst. 2020, 33, 4175–4186.

34. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

35. Van Hulse, J.; Khoshgoftaar, T.M.; Napolitano, A. Experimental perspectives on learning from imbalanced data. In Proceedings
of the 24th International Conference on Machine Learning, Corvallis, OR, USA, 21–24 March 2007; pp. 935–942.

36. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.
Neural Netw. 2018, 106, 249–259. [CrossRef] [PubMed]

37. Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Repblic of Korea, 27–28 October
2019; pp. 6023–6032.

38. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. In Proceedings of the NIPS Deep Learning and
Representation Learning Workshop, Montréal, Canada, 12 December 2014.

39. Reed, W.J. The Pareto, Zipf and other power laws. Econ. Lett. 2001, 74, 15–19. [CrossRef]
40. Welling, M. Herding Dynamical Weights to Learn. In Proceedings of the International Conference on Machine Learning, Montreal,

QC, Canada, 14–18 June 2009; pp. 1121–1128.
41. Park, S.; Lim, J.; Jeon, Y.; Choi, J.Y. Influence-balanced loss for imbalanced visual classification. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 735–744.
42. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

Differentiation in PyTorch. In Proceedings of the Advances Neural Information Processing Systems Workshop, Long Beach, CA,
USA, 4–9 December 2017.

43. Menon, A.K.; Jayasumana, S.; Rawat, A.S.; Jain, H.; Veit, A.; Kumar, S. Long-tail learning via logit adjustment. In Proceedings of
the International Conference on Learning Representations, Virtual Event, 3–7 May 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1016/j.compbiomed.2016.07.006
http://www.ncbi.nlm.nih.gov/pubmed/27498058
http://dx.doi.org/10.1109/MMSP53017.2021.9733586
http://dx.doi.org/10.1145/3391624
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30092410
http://dx.doi.org/10.1016/S0165-1765(01)00524-9

	Introduction
	Related Work
	Food Classification
	Long-Tailed Classification

	Datasets
	Method
	Undersampling and Knowledge Transfer
	Oversampling of Tail Classes

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Study

	Conclusions and Future Work
	References

