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Abstract: Breast cancer (BC) is the most widespread tumor in women and the second type of most
common cancer worldwide. Despite all the technical and medical advances in existing therapies,
between 30 and 50% of patients with BC will develop metastasis, which contributes to the failure of
existing treatments. This situation urges the need to find more effective prevention and treatment
strategies like the use of plant-based nutraceutical compounds. In this context, we purified three
Narrow Leafed Lupin (NLL) β-conglutins isoforms using affinity-chromatography and evaluated
their effectiveness in terms of viability, proliferation, apoptosis, stemness properties, and mechanism
of action on both BC cell lines and a healthy one. NLL β-conglutins proteins have very promising
effects at the molecular level on BC cells at very low concentrations, emerging as a potential natural
cytotoxic agent and preserving the viability of healthy cells. These proteins could act through a dual
mechanism involving tumorigenic and stemness-related genes such as SIRT1 and FoxO1, depending
on the state of p53. More studies must be carried out to completely understand the underlying
mechanisms of action of these nutraceutical compounds in BC in vitro and in vivo, and their potential
use for the inhibition of other cancer cell types.

Keywords: breast cancer; nutraceutics; cancer stem cells; natural compounds; chemotherapy; apoptosis;
viability; oxidative stress; metastasis; resistance

1. Introduction

Breast cancer (BC) is the most widespread tumor in women and the second type
of most common cancer worldwide [1]. BC also represents the second leading cause
of cancer-related mortality in developed countries, and the fifth cause of general death
worldwide [2]. BC is characterized by an intra and inter-tumoral heterogeneity which is
extremely relevant regarding the prognosis, treatment, and perspectives of success of this
disease [3]. Tumor location, type of BC, differentiation grade, size, patient age, response or
resistance to treatment, and presence of different proteins, such as p53, are also relevant to
ensure a better prognosis and personalized treatment for the patient [4].
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One of the most common classifications of BC is based on the presence or absence
of progesterone receptors (PR), oestrogen receptors (ER), and human epithelial growth
factor receptor-2 (HER-2) [5]. This classification divides tumors into luminal A (ER positive)
and luminal B (PR positive), basal or triple negative (abbreviated as TNBC, with triple-
negative receptors), and HER-2 enriched only subtypes [5]. TNBC is known to be extremely
metastatic and resistant to different treatments such as chemo and radiotherapy: in fact,
the rates of death and metastasis issues are higher in women with this type of BC [6].
Despite all the technical and medical advances in the existing treatments and prevention
strategies [7,8], between 30 and 50% of patients with BC will develop metastasis [9], which
contributes to the failure of existing treatments and the poor cure rates worldwide. This
can be explained by the intrinsic chemo and radioresistance of some tumors, which is
partially caused by the existence of a subpopulation of malignant cancer cells, known
as cancer stem cells (CSCs), and their main role in tumor regrowth and spread after the
initial treatment [10]. This situation urges the need to find more effective prevention and
treatment strategies, focusing not only on better clinical results and survival, but also on
preventing side effects and cancer recurrence [11].

According to recent evidence, natural products with nutraceutical properties may be a
potentially promising therapeutic strategy for diseases prevention and treatment. In this
regard, more resources and research is required to obtain more scientific knowledge and fast
advance in this field [12–14]. Nowadays, considerable interest is focused on legume seed
proteins, particularly those from lupins, a legume of the Fabaceae family [15]. Particularly,
the seeds of Narrow-leafed lupin (NLL) Lupinus angostifolius L. or blue lupin are attracting
attention because of their potential for disease prevention and improvement [16]. These
properties are mainly due to their high protein and dietary fiber content [17,18], specifically,
the β-conglutin proteins that are the most highly expressed conglutin family in NLL [19].
Seven genes coding for individual β-conglutin proteins, named conglutin β1 to β7, have
been described [20].

Recently, the anti-diabetic, antioxidant, and anti-inflammatory action of these
β-conglutin proteins was described. These characteristics arise since β1, β3, and β6 cong-
lutins act at different levels, exerting pleiotropic effects on the cells. They are capable of
reducing the expression of mRNA of pro-inflammatory mediators, as well as reducing the
chemotactic capacity of cells by decreasing the chemokines levels and cell adhesion fac-
tors [21,22]. Due to their multiple effects at the molecular level leading to the improvement
of inflammatory-based diseases, β-conglutin proteins could be used in the prevention and
treatment of inflammatory-related diseases such as obesity, diabetes [21,22] or cancer [23].

Regarding molecular mechanisms of BC progression, SIRT1, as a crucial regulator
of cellular targets, is the most studied sirtuin with a promising therapeutic potential for
many diseases like cancer, concretely BC [24]. The physiological functions of SIRT1, and
particularly in relation with processes like apoptosis or resistance to cancer treatments, are
mediated by deacetylation of histones, transcription factors, or co-activators such as p53 or
forkhead box O (FOXO) [24]. The SIRT1/FoxO1 regulatory axis is an important pathway
implicated in BC progression and aggression [24–27]. One of the processes regulated by
this SIRT1/FoxO1 pathway is autophagy, which has emerged as a crucial and controver-
sial mechanism that can play a dynamic tumor-suppressive or promoting role depending
on the cancer context and cellular type [28–30]. Recent studies showed that activation
of autophagy mechanisms could suppress BC metastasis [29]. The expression of LC3B
(microtubule-associated protein 1 light chain 3, MAP1LC3) [31] is of high importance in
the autophagy process, and sequesteome 1 (SQSTM1/p62) protein, a classic receptor of au-
tophagy, is usually used as marker for autophagy. p62 degrades itself during the autophagy
process [32] and LC3B is incorporated into the membranes of autophagosomes [33]. The
interaction between p62 reduced levels and LC3B higher detection can be used to assess
autophagy [32].
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In this work, we over-expressed and purified β-conglutin proteins and assay them as
potential treatments for three BC cell lines a non-tumorigenic one in a 2D breast cell model
in vitro. We evaluated the antitumoral properties of these β-conglutins, their potential
mechanism of action, and their relationship with the regulation of CSCs phenotype through
a different axis that could depend on important BC-related pathways.

2. Materials and Methods
2.1. Overexpression and Purification of β-Conglutins

The overexpression and purification of these proteins were accomplished following a
previously published protocol [21]. Briefly, expression plasmids for each of the β-conglutin
isoforms (β1, β3, and β6) were constructed using a modified variant of a pET28a vector
(Novagen, Paris) with an N-terminal polyhistidine (6xHis) and a pUC57 vector containing a
synthetic gene encoding for each conglutin protein. The overexpression of these β-conglutin
isoforms was performed by different expression induction methods in bacteria (Escherichia
coli) and then the β-conglutin isoforms were purified by a combination of biochemical
techniques, (sonication, differential centrifugation, and tandem affinity chromatography)
following Qiagen protocol recommendations for His-tagged proteins. Finally, after the
design, production, and purification of a highly specific anti-conglutin β antibody (Agrisera,
Sweden), the identification of the three β-conglutin proteins previously obtained by means
of SDS-PAGE and immunoblotting was performed.

2.2. Cell Lines and Culture Conditions

Three human breast cancer cell lines, MDA-MB-231 (high levels of p53 mutant with
gaining functionality, triple-negative breast cancer), MCF-7 (p53 wild-type, ERα positive,
and weak for HER2), and SK-BR-3 (p53 mutant without gaining functionality, ERα negative,
and HER2-positive), and a healthy non-tumorigenic epithelial cell line (MCF-10A), were
used. They all were obtained from the ATCC.

Tumoral cell lines were grown in Gibco Dulbecco’s Modified Eagle Medium (DMEM)
High-Glucose (Gibco, Carlsbad, CA, USA). MCF-10A cells were grown in DMEM/F-12
(Nutrient Mixture) from Gibco too. Both media were supplemented with 10% fetal bovine
serum (FBS), 1% antibiotic cocktail (containing penicillin and streptomycin), 0.25 µg/mL
amphotericin B, and 2 mM L-Glutamine. DMEM/F-12 was supplemented with 0.5 µg/mL
hydrocortisone, 20 ng/mL epidermal growth factor (EGF), and 10 µg/mL insulin too. Cells
were grown at 37 ◦C in a humidified 5% CO2 environment. All cell culture reagents were
purchased from Gibco (Carlsbad, CA, USA).

The treatment of the cell lines was carried out using different serial concentrations of
β-conglutins 1, 3, and 6, diluted with culture media, from 40 ng/µL to 0.1 ng/µL for 1, 24,
48, and/or 72 h, respectively.

2.3. MTT Assay

MTT viability assay was accomplished by seeding 4 × 103 cells per well in 96-well
plates, following [34]. Cells were allowed to grow overnight and treated with different
concentrations of β-conglutins 1, 3, and 6 for 24, 48, and 72 h.
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After conglutin treatment, 10 µL of 5 mg/mL MTT were added to each well and the
cells were incubated at 37 ◦C and 5% of CO2 for 4 h. Then, 100 µL of lysis buffer (20%
SDS in 50% formamide at pH 4.7) were added to each well. Optical density was measured
using the Triad Multimode reader (Dynex Technologies, Chantilly, VA, USA) at 570 nm.
Non-treated cells were used as a control. The MTT assay was performed at two different
times (24 and 72 h) and concentrations (0–10 µg/mL) of each β-conglutin: β-conglutin 1
(β1), β-conglutin (β3), and β-conglutin (β6). The viability percentage was calculated in
comparison with the non-treated (NT) control, assuming a 100% viability for the NT cells.

2.4. Trypan Blue Assay

Cells were seeded in 24 well plates (3 × 104 cells/well) and then treated with the β-
conglutins for 24 h. After the treatment, cells were trypsinized and resuspended in PBS before
staining with Trypan Blue Dye 0.4% from BioRad Laboratories (10 µL cell solution + 10 µL
Trypan Blue 0.4%). This assay was performed following the manufacturer’s protocol.
After 5 min of incubation, the stained and non-stained cells were counted. Viability was
calculated for each condition as (total live cells/total cells) × 100 and the mean percent
viability for each cell line and condition was determined by comparing live cells in each
condition to the live cells in the non-treated control.

2.5. Apoptotic and Ferroptotic Cell Identification

Apoptosis was analyzed using the IP-Annexin V kit (BD Biosciences, Franklin Lakes,
NJ, USA). Briefly, 2 × 105 cells were seeded in 6-well plates for each cell line, and after
the treatment with β-conglutins, they were trypsinized, washed, and incubated with both
AnnexinV-FITC and Propidium Iodide following the manufacturer protocol. Samples were
immediately analyzed using the BD FACS Aria IIIu Flow Cytometer (Becton Dickinson,
BD Bioscience) from the Cytometry and Microscopy Research Service of the Biosanitary
Research Institute of Granada (ibs.GRANADA).

For the ferroptosis assay, cells were incubated for 24 h with Ferrostatin-1, an inhibitor
of ferroptosis, diluted 1:1000, and the same protocol was then performed. Ferroptosis
percentage was calculated with the difference between the percentage of AnnexinV nega-
tive/Propidium Iodide positive cells (necrotic cells) in the non-treated with Ferrostatin-1
condition and the treated ones.

For both apoptosis and ferroptosis, AnnexinV-FITC was detected by a Blue Laser
(488 nm) FSC, with a 502 LP (Long Pass) and a 530/30 filter. Propidium Iodide-PI was de-
tected by 561 YGL Laser (561 nm), with a 600 LP and 610/20 filter. Apoptosis was calculated
by adding both apoptotic cells (AnnexinV positive/Propidium Iodide negative population)
and late apoptotic cells (AnnexinV positive/Propidium Iodide positive population).

2.6. ROS Measurement

Intracellular reactive oxidative species (ROS) were monitored seeding 3× 103 cells/well
in a 96-well plate and treating them with β-conglutins (for 24 h) as previously described.
Then, intracellular ROS level detection protocol was performed using DCFH-DA
(2′7′-Dichlorofluorescein diacetate BioReagent, suitable for fluorescence) for ROS detection
(Sigma-Aldrich, St. Louis, MO, USA), following the manufacturer protocol. Briefly, culture
medium was removed, cells were washed twice with PBS and then incubated with 100 µL
of a 10µM DCFH-DA concentration in serum-free medium for 30 min in the dark. Finally,
fluorescence was measured in a Triad Multimode reader using a wavelength of excitation
of 485 nm and a wavelength of emission of 525 nm.
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2.7. DNA Damage Assay

DNA damage was quantified using the γH2Ax detection kit BD Cytofix/Cytoperm
(BD Biosciences, Cat. 554714) and PE-CF594 Mouse anti-H2Ax (pS139) antibody (BD
Biosciences, Cat. 564719). Briefly, 2× 105 cells were seeded in 6-well plates and then treated
with the β-conglutins (for 24 h) as described above. Cells were then trypsinized, fixed,
and permeabilized following the manufacturer protocol, and finally incubated with the
anti-H2Ax antibody for 30 min in the dark. Samples were immediately analyzed by flow
cytometry using the BD FACS Aria IIIu Flow Cytometer (Becton Dickinson, BD Bioscience)
from the Cytometry and Microscopy Research Service of the Biosanitary Research Institute
of Granada (ibs.GRANADA).

For the detection of the γH2Ax population, the PE-Texas Red fluorochrome was
detected by a 561 Yellow Green Lase (561 nm), with a 600 LP and 610/20 filter.

2.8. Quantification and Characterization of CSCs

To detect aldehyde dehydrogenase 1 (ALDH1) activity (directly related to the number
of CSCs) in cell culture with and without treatments, the Aldefluor kit (Stem Cell Tech-
nologies) was used according to the protocol proposed by the manufacturer [34]. After the
treatments, cells were incubated with BODIPY-amino acetaldehyde (BAAA), a fluorescent
non-toxic substrate for ALDH, which was converted into BODIPY-aminoacate (BAA) and
retained inside the cells. Viable ALDH1+ cells were quantified by flow cytometry on a
BD FACS Aria IIIu Flow Cytometer (Becton Dickinson, BD Bioscience) from the Cytom-
etry and Microscopy Research Service of the Biosanitary Research Institute of Granada
(ibs.GRANADA). The specific inhibitor of ALDH, diethylaminobenzaldehyde (DEAB), was
used to control for background fluorescence. ALDH1 positive cells were quantified with a
FITC fluorochrome that was detected by a Blue Laser (488 nm) FSC, with a 502 LP (Long
Pass) and a 530/30 filter.

The characterization of CSCs was performed according to cell surface markers using
CD44-PE and CD24-FITC antibodies (Biolegend, San Diego, CA, USA) [34]. After 30 min of
incubation in darkness and at 4 ◦C, the samples were analyzed using a BD FACSAria IIIu
flow cytometry (Becton Dickinson, BD Biosciences) from the Cytometry and Microscopy
Research Service of the Biosanitary Research Institute of Granada (ibs.GRANADA). CD24-
FITC antibody was detected by a Blue Laser (488 nm) FSC, with a 502 LP (Long Pass) and a
530/30 filter. CD44-PE was detected by 561 YGL Laser (561 nm), with a 582/15 filter.

2.9. Sphere Formation Assay

Cells were seeded with culture medium in 6 well-plate 2 days before starting the
sphere formation assay and then treated for 24 h with the β-conglutins 1, 3, and 6 as
previously described. Then, cells were trypsinized and, from each condition, a 12-well
triplicate with 1 × 102 cells/well was seeded in ultra-low attachment plates (Corning)
in sphere culture medium prepared following [34]: DMEM/F12 supplemented with
1% penicillin/streptomycin, B27 10 µg/mL, 1 µg/mL Hydrocortisone, 4 ng/mL Hep-
arin, 10 ng/mL EGF, and 20 ng/mL FGF, and let grow for 5–8 days. All reagents were
purchased from Gibco (Carlsbad, CA, USA). Spheres > 50 µm diameter were counted with
Leica DM500 binocular microscope from the Cytometry and Microscopy Research Service
of the Biosanitary Research Institute of Granada (ibs.GRANADA).

2.10. Western Blot

Trypsinized DPBS cells which were double washed with ice-cold (after the 24 h treat-
ment) and incubated with RIPA lysis and extraction buffer supplemented with protease
inhibitors (Santa Cruz Biotechnology). Proteins were quantified using the Bradford assay,
denatured, and subsequently separated on SDS-polyacrylamide gels. After the electrophore-
sis, gels were transferred to PVDF membranes using the Bio-Rad Trans Blot Turbo transfer
system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Membranes were then incubated
with the appropriate primary antibodies against SIRT-1, FoxO1, Cleaved and Total Caspase
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3, and β-Actin (Abcam, Cambridge, UK) overnight and then secondary antibodies from
Santa Cruz Biotechnology, Inc., Dallas, TX, USA, for 1 h. Finally, the proteins were detected
using Amersham ECL Select Western Blotting Detection reagent (GE Healthcare, Hatfield,
UK) on the membrane and acquiring the images with ChemiDoc MP Imaging System
(Bio-Rad Laboratories, Inc., USA). Western Blot images were analyzed and quantified using
FiJi software. Densitometry was performed for each membrane and the area and mean
intensity of each condition were calculated. Finally, the ratio between the β-actin control
and the protein of interest was calculated and compared with the non-treated control ratio
in each case.

2.11. Autophagy Detection

Autophagy was studied by performing Western Blot (Section 2.10) and incubating
for 24 h with both anti-SQSTM1/p62 antibody and anti-LC3B antibody from Abcam,
Cambridge, UK. Then, membranes were incubated for 1 h with anti-rabbit and anti-mouse
secondary antibodies, respectively, from Santa Cruz Biotechnology, Inc., Dallas, TX, USA.
Proteins were detected and images were quantified using the 2.10 protocol. For this concrete
experiment, the activation of autophagy was detected if a decreased protein level of p62
was accompanied by an increased protein level of LC3B. The opposite situation describes
the downregulation of the autophagy process [32].

2.12. Statistical Analysis

All experiments were performed at least in triplicates and the results were expressed as
mean ± standard deviation unless otherwise indicated. Statistical analyzes were performed
using the Shapiro-Wilk test to analyze the normality of the data set and the One or Two-Way
Anova analysis, with Dunnett or Tukey correction, depending on the number of groups and data
of each experiment, using Graphad Prism 9.3.0 software. Statistical differences between samples
were considered significant when p values were p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***).
Similarity matrices were performed in Microsoft Excel and XLSTAT programs [35] considering
a dissimilarity threshold of 0.95.

3. Results
3.1. β-Conglutins Inhibit Breast Cancer Cell Lines Growth in a 2D In Vitro Model

Once the overexpression, quantification, and purification of the β-conglutins were
performed, the first objective was to test their potential effect in terms of cell growth in
three different BC cell lines (MCF-7, SK-BR-3, and MDA-MB-231) and in a non-tumoral
one (MCF-10A). To achieve this, the MTT assay was performed treating cells with serial
concentrations of each β-conglutin (0–10 ng/mL) during 24 h (Supplementary Figure S1)
and 72 h (Figure 1a–c). After 72 h of treatment, the three β-conglutins had a dose-dependent
effect on the BC cell lines treated, with very significant differences in comparison with the
healthy cell line MCF-10A, which was more resistant to those treatments. The β1-conglutin
induced a very significant effect specially for SK-BR-3 and MDA-MD-231 from very low
doses, maintaining the viability of MCF-10A above 85%. Instead, the β3-conglutin was
less effective than β1-conglutin in all cell lines, including the non-tumoral one. Finally,
β6-conglutin was the least effective in comparison with β1 and β3-conglutins, although
it showed a significant effect, especially at higher doses for MCF-7. Therefore, the three
β-conglutins studied induced cell growth inhibition more efficiently in the tumor cell lines
compared to the non-tumoral one and they also were cytotoxic for BC cells as assayed
with the vital dye trypan blue (Figure 1d–f). The effect of these β-conglutins after 24 h
of treatment was similar (Supplementary Figure S1). We used these data of viability to
construct the proximity matrix. We calculated the Pearson correlation between each pair of
β-conglutins. As shown in Table S1, no similarities were found. Similarly, we calculated
the Pearson correlation coefficients between each pair of cell line. In this case, we found
similarity in the behavior of the MCF-10A and MCF-7 cell lines after treatments (Table S2).
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treatment, 10 µL of 5mg/mL MTT was added to each well. Absorbance was determined 4 h later for 
all types of cells. In other experiments, after 72 h of (d) β1, (e) β3, and (f) β6-conglutin treatment, a 
trypan blue assay was performed to determine the cytotoxicity of treatments versus control (non-
treated cells). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. non-treated cells. 
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Since β-conglutins clearly affect the viability of BC cell lines, an apoptosis assay was 

performed for all the cell lines 24 h after treatments with these proteins. Concentrations 
were chosen based on the cell growth and viability results shown in Figure 1, so that the 
viability of MCF-10A cells was preserved to the maximum and a significant effect near to 
a 50% in reducing the viability in at least one of the other three BC cell lines was found. 

While non-statistically significant changes were found in MCF-10A cells (Figure 2a), 
β1, β3, and β6-conglutins induced apoptosis in the three BC cell lines, except in SK-BR-3 
cells. In this case (Figure 2c), only β1 and β3 induced apoptosis in comparison with the 
non-treated control. For MCF-7 and MDA-MB-231, the three treatments induce apoptosis, 
especially in MCF-7 where a 40% of apoptotic cells is reached with β1, β3, and β6 treat-
ments (Figure 2b, d). For the MDA-MB-231cell line, β1 induced the higher percentage of 
apoptosis in comparison with the other two β-conglutins. Interestingly, neither of the 
three β-conglutins showed a significant activation of caspase 3 in any of the cell lines tested 
(Supplementary Figure S2). 

Figure 1. Inhibition of cell growth by β-conglutins in a BC model in vitro. Cells were seeded in 96-well
plates at a density of 3× 103 cells per well. After 72 h of (a) β1, (b) β3, and (c) β6-conglutin treatment,
10 µL of 5mg/mL MTT was added to each well. Absorbance was determined 4 h later for all types of
cells. In other experiments, after 72 h of (d) β1, (e) β3, and (f) β6-conglutin treatment, a trypan blue
assay was performed to determine the cytotoxicity of treatments versus control (non-treated cells).
* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. non-treated cells.

3.2. β-Conglutins Induce Caspase-Independent Apoptosis in Breast Cancer Cell Lines

Since β-conglutins clearly affect the viability of BC cell lines, an apoptosis assay was
performed for all the cell lines 24 h after treatments with these proteins. Concentrations
were chosen based on the cell growth and viability results shown in Figure 1, so that the
viability of MCF-10A cells was preserved to the maximum and a significant effect near to a
50% in reducing the viability in at least one of the other three BC cell lines was found.

While non-statistically significant changes were found in MCF-10A cells (Figure 2a),
β1, β3, and β6-conglutins induced apoptosis in the three BC cell lines, except in SK-
BR-3 cells. In this case (Figure 2c), only β1 and β3 induced apoptosis in comparison
with the non-treated control. For MCF-7 and MDA-MB-231, the three treatments induce
apoptosis, especially in MCF-7 where a 40% of apoptotic cells is reached with β1, β3, and β6
treatments (Figure 2b,d). For the MDA-MB-231cell line, β1 induced the higher percentage
of apoptosis in comparison with the other two β-conglutins. Interestingly, neither of the
three β-conglutins showed a significant activation of caspase 3 in any of the cell lines tested
(Supplementary Figure S2).
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Figure 2. Percentage of apoptotic cells after treatment with β1-conglutin (2.5 ng/µL) β3-conglutin
(5 ng/µL) or β6-conglutin (10 ng/µL) for 24 h in (a) MCF-10A, (b) MCF-7, (c) SK-BR-3, and (d) MDA-
MB-321. After 24 h of (a) β1, (b) β3, and (c) β6-conglutin treatment, cells were trypsinized, washed,
and incubated for 15 min with both AnnexinV-FITC and Propidium Iodide from the IP-Annexin V kit
(BD Biosciences, UK). Apoptosis was calculated with both early and late apoptotic cells. Samples
were immediately analyzed using the BD FACS Aria IIIu Flow Cytometer (Becton Dickinson, BD
Bioscience). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. non-treated cells, and # p < 0.05, ## p < 0.01,
and ### p < 0.001 vs. other treatments.

To elucidate if other caspase-independent death mechanisms activated by β-conglutins
could be ferroptosis, the same experiment was performed by adding Ferrostatin-1 (1 µM),
an inhibitor of ferroptosis, to each condition during 24 h (Figure 3). MCF-10A cells were
not considered for this experiment as they show no activation of apoptosis under those
conditions. In general, β-conglutins did not exert any effect on the percentage of ferroptosis,
except for β1-conglutin which inhibits this process of cell death in MCF-7 cells (Figure 3a–c).
These results are in concordance with the level of ROS and the DNA damage measured
after the treatment of cells with these proteins (Figure 4). Representative dot plots for
apoptosis and ferroptosis detection by flow cytometry are shown in Figures S3 and S4 of
the Supplementary data, respectively.
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Figure 3. Percentage of ferroptotic cells after treatment with β1-conglutin (2.5 ng/µL), β3-conglutin
(5 ng/µL), or β6-conglutin (10 ng/µL) for 24 h in (a) MCF-7, (b) SK-BR-3, and (c) MDA-MB-321.
After 24 h of (a) β1, (b) β3, and (c) β6-conglutin treatment +/- Ferrostatin 1 (1 µM) cells were
trypsinized, washed, and incubated for 15 min with both AnnexinV-FITC and Propidium Iodide from
the IP-Annexin V kit (BD Biosciences, UK). Samples were immediately analyzed using the BD FACS
Aria IIIu Flow Cytometer (Becton Dickinson, BD Bioscience). ** p < 0.01 vs. non-treated cells, and
# p < 0.05, ## p < 0.01, and ### p < 0.001 vs. other treatments.

Treatment of all BC cell lines for 24 h induces an inhibition of ROS levels accompanied
by an inhibition of DNA damage. β1 and β3-conlgutins are the most effective treatments
for both MCF-7 and SK-BR-3, but β6 has no significant effect on SK-BR-3. Interestingly,
no significant changes in ROS levels or DNA damage were found in the healthy cells,
MCF-10A. Representative dot plots for DNA damage detection by flow cytometry are
shown in Supplementary Figure S5 of the supplementary data.
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Figure 4. ROS levels and DNA damage percentage after treatment with β1-conglutin (2.5 ng/µL),
β3-conglutin (5 ng/µL), or β6-conglutin (10 ng/µL) for 24 h in (a) MCF-10A, (b) MCF-7, (c) SK-
BR-3, and (d) MDA-MB-321. For intracellular ROS level detection, after 24 h of (a) β1, (b) β3,
and (c) β6-conglutin treatment, the culture medium was removed, cells were washed twice with PBS
and then incubated with 100 µL of a 10µM DCFH-DA concentration in serum-free medium for 30 min
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in the dark. Finally, fluorescence was measured in a Triad multimode reader using a length of
excitation of 485 nm and a length of emission of 525 nm. For DNA damage detection, after 24 h
of (a) β1, (b) β3, and (c) β6-conglutin treatment, cells were trypsinized, fixed, and permeabilized
following the γH2Ax detection kit BD Cytofix/Cytoperm protocol, and finally incubated with the
PE-CF594 Mouse anti-H2Ax (pS139) antibody (BD Biosciences) for 30 min in the dark. Samples
were immediately analyzed using the BD FACS Aria IIIu Flow Cytometer (Becton Dickinson, BD
Bioscience). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. non-treated cells, and # p < 0.05, ## p < 0.01 vs.
other treatments.

3.3. Implication of SIRT1/FoxO1 Pathway in β-Conglutins Effect on In Vitro Cultured Breast
Cancer Cells

In order to elucidate the potential mechanism of action of the β-conglutins, we
analyzed changes in SIRT1 expression, implicated in BC growth and progression [26]
that is sensible to cellular stress induced by ROS [36–38] acting through the activation
of FoxO1 transcription factor, among others [39,40]. As shown in Figure 5, treatments with
β-conglutins induce a decrease in the expression of SIRT1 in MCF-7 and SK-BR-3 cells. On the
contrary, these proteins induce an increase in SIRT1 expression in MDA-MB-231 cells. These
changes in SIRT1 expression are accompanied by similar changes in FoxO1 expression.

Since one of the processes regulated by the SIRT1/FoxO1 pathway is autophagy, LC3B
and p62 protein expression after treatment was studied (Figure 5). We found an increase
of LC3B levels after β1 and β3-conglutin treatment with a decrease of p62 levels in the
MDA-MB-231 cell line, which may suggest that autophagy processes are activated under
these conditions. As expected, we found decreased expression in LC3B and increased
expression of p62 in SK-BR3 cells, indicating inactivation of autophagy. Interestingly, an
increase of LC3B levels after β1 and β3 and β6-conglutin treatment with an increase of
p62 levels was found in the MCF-7 cell line, which may suggest that autophagy processes
are not triggered (up nor down regulation) in this cell line after treatments. Results for
MCF-10A showed no significant changes for SIRT1, FoxO1, or LC3B, but a subtle increase
in p62, especially after treatment with β1, that is not related to autophagy in this case as
it is not accompanied by any significant changes in LC3B expression. Autophagy is not
activated for MCF-10A cells.
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Figure 5. Western blot analysis of SIRT1, FoxO1, LC3B, and p62 proteins. B-actin was used as a
control. Cells were treated with β1-conglutin (2.5 ng/µL), β3-conglutin (5 ng/µL), or β6-conglutin
(10 ng/µL) for 24 h in MCF10-A, MCF-7, SK-BR-3, and MDA-MB-321.
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3.4. β-Conglutins Regulate Stemness Phenotype in Breast Cancer

Next, we studied whether β-conglutins regulated stemness in our in vitro model of
BC since SIRT1 was identified as a central regulator of progression and metastasis in BC
through cancer stem cells (CSCs) and the therapeutic potential of this subpopulation was
also described recently [25,34].

Breast CSCs were characterized after treatment with β-conglutins using specific char-
acteristics such as ALDH1 activity and CD44 high/CD24 low expression. The results
were compared with a control (non-treated cells). ALDH1 activity (Figure 6) decreased
significantly in all cases, except for MCF-7, in which β1 and β3 had no effect (Figure 6b).
In addition, β6 was the most effective conglutin in reducing ALDH1 activity in all cell
lines tested.
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Figure 6. ALDH1 activity after treatment with β1-conglutin (2.5 ng/µL), β3-conglutin (5 ng/µL),
or β6-conglutin (10 ng/µL) for 24 h in (a) MCF10-A, (b) MCF-7, (c) SK-BR-3, and (d) MDA-MB-321.
After 24 h of (a) β1, (b) β3, and (c) β6-conglutin treatment, cells were incubated with BODIPY-
amino acetaldehyde (BAAA), a fluorescent non-toxic substrate for ALDH, which was converted
into BODIPY-aminoacate (BAA) and retained inside the cells. The specific inhibitor of ALDH,
diethylaminobenzaldehyde (DEAB), was used to control for background fluorescence. Viable ALDH1+
cells were quantified by flow cytometry on a BD FACS Aria IIIu Flow Cytometer (Becton Dickinson, BD
Bioscience). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. non-treated cells, and ## p < 0.01, and ### p < 0.001
vs. other treatments.
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Similarly to the results obtained for ALDH1 activity, treatments with β-conglutins
decreased the expression of the surface markers CD44high/CD24low in the four cell lines
tested with comparable efficacy, except for MDA-MB-231 cells. In this case, only β3-
conglutin showed a significant decrease in the surface markers (Figure 7). Representative
dot plots for both ALDH1 and CD44/CD24 detection by flow cytometry are shown in
Figures S6 and S7 of the Supplementary data, respectively.

We also analyzed the self-renewal capacity of cells after β-conglutin treatments
through the mammosphere assay. As shown in Figure 8, β1, β3, and β6-conglutins reduced
the number of mammospheres in MCF-10A, SKBR-3, and MDA-MB-231 cells. Interestingly,
none of the β-conglutins were able to reduce the capacity to form spheres in MCF-7.
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Figure 7. Expression of CD44 high/CD24 low with β1-conglutin (2.5 ng/µL), β3-conglutin (5 ng/µL),
or β6-conglutin (10 ng/µL) for 24 h in (a) MCF10-A, (b) MCF-7, (c) SK-BR-3, and (d) MDA-MB-321.
After 24 h of (a) β1, (b) β3, and (c) β6-conglutin treatment, cells were incubated using CD44-PE and
CD24-FITC antibodies (Biolegend, San Diego, CA, USA). After 30 min of incubation in darkness and
at 4 ◦C, the samples were analyzed using a BD FACSAria IIIu flow cytometry (Becton Dickinson,
BD Biosciences). ** p < 0.01, and *** p < 0.001 vs. non-treated cells, and # p < 0.05, and ## p < 0.01 vs.
other treatments.
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Figure 8. Quantification of mammospheres after treatment with β1-conglutin (2.5 ng/µL),
β3-conglutin (5 ng/µL), and β6-conglutin (10 ng/µL). Treatment was performed 24 h before seeding
mammospheres from (a) MCF-10A, (b) MCF-7, (c) SK-BR-3, and (d) MDA-MB-231 and spheres were
characterized in (e). After 24 h of (a) β1, (b) β3, and (c) β6-conglutin treatment, cells were trypsinized
and, from each condition, a 12 well triplicate with 1 × 102 cells/well were seeded in ultra-low
attachment plates in spheres medium (described in 2.9). Spheres > 50 µm were counted and captured
using Leica DM500 binocular microscope at 10×magnification. *** p < 0.001 vs. non-treated cells.

4. Discussion

To the best of our knowledge, this study is the first attempt to evaluate the molecular
effects of NLL β-conglutin proteins in cancer cell lines, concretely in BC ones. Our results
showed that β1, β3, and β6-conglutins inhibited cell growth, had a cytotoxic effect, and
regulated CSCs reducing stemness properties, especially in cell lines corresponding to the
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most aggressive BC subtypes (Luminal B and TNBC), preserving the viability of healthy
cells, MCF-10A. We proposed a mechanism of action focused on the SIRT1/FoxO1 axis in a
p53-dependent manner. In fact, the four cell lines studied the present different status of p53.
First, MCF-10A, the epithelial healthy BC cell line is p53 wild-type [41], as well as BC cell
line MCF-7 [42]. On the other hand, MDA-MB-231 cells, presenting the most aggressive
phenotype type, TN, is a mutant p53-expressing cell line, concretely, the p53-R280K, a
gaining function mutation [41,42]. Finally, SK-BR-3 cells also harbored a mutated p53
without gaining functionality, as the mutation is in this case functional p53-E280K [43,44].
Recent evidence has already described different pathways of action and progression of BC
cell lines treatments and characteristics depending on p53 status [41,42,45]. Considering the
described differences, the recent evidence about the importance of this genetic mutation,
and our results for each cell line, it seems that the final effect of the β-conglutins is strongly
linked to the state of p53. In fact, a similar effect was found in MCF-7 and MCF-10A cells
after β-conglutin treatment, both harboring a wild-type p53, as previously reported [46,47].
Interestingly, the three β-conglutins used did not show similarity between them, indicating
that each β-conglutin has a specific behavior and the use of them separately was correct,
instead of using the complete β-conglutin protein extract.

NLL conglutins β1, β3, and β6 inhibited the growth and viability of the three BC
cell lines studied. This cytotoxic effect is accompanied by increased caspase-independent
apoptosis. Other recent research focusing on natural products of isoflavone nature for BC
treatment have shown similar effects. Lupiwighteone is present in the root of Glycyrrhiza
glabra, a medicinal herb [35], inhibits cell growth for MDA-MB-231 and MCF-7 cells and
triggers caspase-independent apoptosis on both of them, whereas epithelial keranocytes
were almost unaffected under the same conditions [48]. Another study shows that dioscin, a
saponin natural product extracted from Polygonatum zanlanscianense suppressed cell growth
and induced caspase-independent cell death mechanisms in BC cells [49]. Since many
cancer cells have defects in caspase signaling, they can become resistant to conventional
chemotherapy drugs that induce caspase-dependent apoptosis [50], so the induction of
caspase-independent cell death could be an alternative pathway for overcoming cancer
cell resistance.

Among other caspase-independent death cell mechanisms, ferroptosis, an iron-dependent
cell death characterized by excess ROS-induced lipid peroxidation [51], has recently
emerged as a new cell death mechanism related to the eradication of resistant cancer cells.
In fact, recent research has shown a relationship between the inhibition of ferroptosis and
the promotion of epithelial-to-mesenchymal transition (EMT), which prompts invasion and
is related to the earliest stages of cancer and resistant cells [52]. In our study, β-conglutins
reduced ferroptosis in the MCF-7 cell line and induced maintenance of ferroptosis basal
levels in SK-BR-3 and MDA-MB-231 cells, indicating that other caspase-independent cell
death could be responsible for the effects of these proteins.

Since neither inhibition nor any changes in ferroptosis are found in our study, treatment
with β-conglutins could induce similar changes in reactive oxygen species (ROS) levels, as
published before [21]. The modulation of ROS in cancer cells may represent a viable strategy
in order to overcome drug resistance [53]. Aberrant regulation of redox homeostasis is
found in cancer cells compared to normal ones [54]. In fact, other studies have shown that
tumor cell lines, especially aggressive ones, such as MDA-MB-231, show higher levels of
intracellular ROS compared to luminal or non-tumorigenic breast cells [55], which is in
concordance with our results. A recent study with patients showed that the maintenance of
chemotherapy-resistant cancer cells in TNBC is due to an increased mitochondrial oxidative
phosphorylation and ROS, which is involved in the maintenance of CSCs [56]. Despite
all these findings, the role of ROS levels in cancer including BC, remains controversial
regarding a therapeutic approach [55]. Both ROS and DNA damage decreased after the
β-conglutins treatment for BC cells and maintained their levels for MCF-10A. Increased
ROS levels induce DNA mutations that can facilitate cancer metastasis [53], so β-conglutin
proteins 1, 3, and 6 could prevent this scenario by inducing a reduction of both ROS and
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DNA damage, thus affecting viability and inducing cell death in BC cell lines, without
affecting those levels in healthy epithelial cells.

The SIRT1/FoxO1 regulatory axis is a ROS-sensitive pathway implicated in BC progres-
sion and aggression [24–27]. This pathway of action was studied using natural compounds
such as resveratrol, a dietary phenolic compound which reduced the effectiveness of pacli-
taxel, one of the usual chemotherapeutics agents in BC, and this reduction was mediated by
up-regulation of the SIRT1/FoxO1 pathway in MDA-MB-231 and SK-BR-3 cells [27]. Other
studies showed that SIRT1-mediated FoxO1 deacetylation is a key mechanism for multidrug
resistance in BC cell lines [48]. Finally, a recent study about the use of an active compound
naturally present in many vegetables and medicinal plants, isoalantolactone (IATL) and
its anticancer properties in BC showed that this product induced caspase-independent
apoptosis that could be related to a ROS-mediated downregulation of SIRT1 [57].

This dual pathway effect also appears in our study: SIRT1 and FoxO1 are up-regulated
in MDA-MB-231, and down-regulated in MCF-7 and SK-BR-3. Whereas, no significant
changes were found in the healthy epithelial cell line, MCF-10A, supporting our results
describing its resistance to this treatment, at least at the doses used in this report. Recent
studies investigated the dual effect of the SIRT1/FoxO1 axis as tumor promotor or sup-
pressor in different cancers [58], and p53 has emerged as a downstream effector of this axis
in BC [58–60]. Previous results showed that in the MCF-7 cell line, with p53 wild-type,
the activation of SIRT1 promoted invasion and migration on malignant cells by inhibiting
p53 [61]. This matches our results as, in this cell line, the β-conglutins reduced SIRT1 levels
which led to reduced cell growth and increased cytotoxicity. On the other hand, other
studies have found that high levels of SIRT1 can inhibit tumorigenesis in BRCA-1 BC, which
is usually a type of TNBC, and it is the phenotype of the MDA-MB-231 cell line, presenting
higher levels of p53 mutations [62,63]. Finally, the cooperation between SIRT1 and p53
could be at the origin of genomic integrity and stability determining its role in cancer
progression and aggressiveness [64]. One of the processes regulated by the SIRT1/FoxO1
pathway is autophagy. Recent studies have described this process as a precursor of apopto-
sis [30], and it can either inhibit or collaborate with apoptosis in tumor therapy. Our results
showed that only in TNBC phenotype-like cells, MDA-MB-231, with mutant p53 gaining
functionality, SIRT1 and FoxO1 increase is accompanied with autophagy induction. Other
natural compounds have already described this pathway of action for their anti-cancer
effects, such as Eugenol, a promising anti-cancer agent against TNBC and HER-2 positive
BC (MDA-MB-231 and SK-BR-3, respectively), that targets the caspase pathway and induce
autophagic cell-death [65]. As expected, inhibition of autophagy was observed in SKBR-
3 cells after β-conglutin treatment since it induced downregulation of the SIRT/FoxO1
pathway in these cells. However, in the MCF-7 cells, the treatment induced inhibition
of SIRT/FoxO1 but not changes in autophagy. It was previously reported that the genic
knock-out of SIRT1 reduced the proliferation, migration, and invasion of MCF-7 breast
cancer cells [61]. In addition, a recent report showed that, for this specific cell line, MCF-7,
the up-regulation of the SIRT1/FoxO1 pathway causes the induction of ferroptosis in a
p53-dependent manner [66]. Those results suggest that, at least after the β1-conglutin
treatment, the mechanism of action in MCF-7 could be induced by the regulation of the
ferroptotic process instead of the regulation of autophagy observed for the other two BC
cell lines. Ultimately, it seems that the effect of the β-conglutin treatment is strongly linked
to the status of p53. These proteins could modulate the duality of SIRT1/FoxO1 pathway,
leading to an up or down-regulation of autophagy with different mutant p53 statuses or a
ferroptosis down-regulation for p53 wt. However, more experiments with different cell
lines are necessary to corroborate these results.

The SIRT1 signaling pathway plays a key role in the regulation of genes related to
metastasis and stemness in BC [58]. In fact, Shi et al. demonstrated that SIRT1-centered
circuitry regulates CSCs origination, related to distant-metastasis and drug-resistance in
BC [26]. Other recent investigations suggest that autophagy, regulated by SIRT1/FoxO1
axis, plays a dual role in maintaining the activity of breast CSCs and could emerge as a
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therapeutic target in association with apoptosis [67]. All this evidence supports the relation
between SIRT1 pathway and regulation of CSCs, resistance, and metastasis. Our results
showed that β1, β3, and β6 have anti-stemness properties, reducing the number of CSCs
and their phenotype in the three BC cell lines. Interestingly, the mammosphere characteriza-
tion showed that the capacity of self-renewal was only reduced in the TNBC phenotype-like
cell line (MDA-MB-231) and the HER-2 positive cell line (SKBR-3), that are representative of
BC tumors with worst prognosis and more aggressivity than the luminal A cell line, MCF-
7 [5,6,8,11], in which the β-conglutins treatment had no significant effect. This could suggest
that β-conglutins are only effective in terms of stemness regulation when autophagy is
regulated in BC cell lines, being an effective CSCs targeted treatment for Luminal B and
TNBC phenotype-like cell lines. Finally, β-conglutins reduced stem-cell like properties
in the healthy epithelial cell line too. This could be a preventive strategy against cell
malignant transformation. As described in recent studies, the epithelial-to-mesenchymal
transition (EMT) induction in healthy MCF-10A cells contributed to acquisition of stem-like
character, increasing CD44+ /CD24− percentage and mammosphere forming capacity [68].
Our treatment seems to generate the opposite effect, that could potentially be related to
a prevention from EMT, directly related to malignant invasion and the earliest stages of
cancer [68]. Figure 9 summarizes both the process of obtention and purification of the NLL
β-conglutins and the results obtained after the treatments of different breast cell lines.
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5. Conclusions and Perspectives

The main finding of this study is the fact that NLL β-conglutins, which had never been
studied in cancer cell lines, can become a cytotoxic agent of great interest, particularly in
BC cell lines. They could also be sensitizers for other existing drugs and treatments due to
their effect on the stem cells, and even prevention targets for healthy cells, regulating EMT
and malignant transformation, and reducing the probability of metastasis and recurrence in
tumoral BC cell lines. β-conglutins modulate the effect of SIRT1/FoxO1 pathway, depend-
ing on both the status of p53 and the tumor phenotype (luminal, HER-2 positive, or TNBC),
a mechanism that could trigger cancer resistance and metastasis. The mechanism of cell
death ligated to the status of p53 after β-conglutin treatment seems to be crucial for the final
regulation of the phenotype and auto-renovation ability of CSCs in BC in vitro. However,
more studies after this initial approach must be carried out to completely understand
the therapeutic potential and mechanism of action of these nutraceutical compounds in
breast cancer in vitro and in vivo, and their potential use in treatment and prevention for
other cancers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15030523/s1, Figure S1: Inhibition of cell growth by β-conglutins
in a BC model in vitro 24 h post treatments; Figure S2: Western Blot analysis of Cleaved caspase 3 and
total Caspase 3; Figure S3: Representative dot plots for apoptosis results; Figure S4: Representative
dot plots for ferroptosis results; Figure S5: Representative dot plots for DNA Damage results; Figure
S6: Representative dot plots for ALDH1 results; Figure S7: Representative dot plots for CD24/CD44
surface markers results; Table S1: Similarity matrix for paired β-conglutins treatments and Table S2:
Similarity matrix for paired cell lines treated.
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