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Abstract: The serum low density lipoprotein cholesterol (LDL-C) concentration is the dominant
clinical parameter to judge a patient’s risk of developing cardiovascular disease (CVD). Recent evi-
dence supports the theory that cholesterol in serum triglyceride-rich lipoproteins (TRLs) contributes
significantly to the atherogenic risk, independent of LDL-C. Therefore, combined analysis of both
targets and adequate treatment may improve prevention of CVD. The validity of TRL-C calculation
is solely dependent on the accuracy of the LDL-C measurement. Direct measurement of serum
LDL- C is more accurate than established estimation procedures based upon Friedewald, Martin–
Hopkins, or Sampson equations. TRL-C can be easily calculated as total C minus high density
lipoprotein C (HDL-C) minus LDL-C. Enhanced serum LDL-C or TRL-C concentrations require
different therapeutic approaches to lower the atherogenic lipoprotein C. This review describes the
different atherogenic lipoproteins and their possible analytical properties and limitations.

Keywords: chylomicrons; remnants; cholesterol; Friedewald equation; Martin–Hopkins equation;
Sampson equation

1. Introduction

Increased serum total cholesterol (TC) is associated with an increased risk of devel-
oping atherosclerotic cardiovascular disease (ASCVD) [1–3]. High serum low density
lipoprotein C (LDL-C) is generally considered as the predominant cause of ASCVD pro-
gression [4–6]. For decades, serum LDL-C has been the main target to be lowered with
statins, either alone or in combination with ezetimibe [7]. Recently, bempedoic acid has
been introduced as a possible replacement for statins when these cannot be tolerated by
the patient [8]. In a considerable number of patients, LDL-C lowering targets are not
reached [9–11]. Additional LDL-C lowering therapies have been developed, such as in-
hibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which intercellularly
degrades the LDL-receptor (LDLR) [12,13]. LDLR is the carrier protein that enables LDL to
enter the cell. LDL is formed by very low density lipoprotein (VLDL) through intermediate
density lipoprotein (IDL) after progressive removal of triglyceride (TG) by lipoprotein
lipase (LPL) and hepatic lipase (HL) [14] (Figure 1). VLDL, IDL, and LDL differ in particle
size and density [15].

It is important to realize that VLDL, IDL, and LDL are density classes only composed
of differently sized particles. Since VLDL secretion and LPL activity may vary over time, a
large variety of lipoprotein particles with a range of TG and C contents is simultaneously
present in serum [13,16–18]. These particles, which are larger and more TG-rich than
LDL, are called TG-rich lipoproteins (TRLs). Additionally, highly TG-rich chylomicrons
(CM) are continuously released from the intestine two and four hours after a fat-rich
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meal [19–22]. CMs are gradually converted to chylomicron remnants (CMR) via loss of TG
by LPL. The sum of C in VLDL derived TRLs and CMs plus CMRs may be called total TRL-
C. Recently, the measurement of remnant cholesterol (remnant C) has attracted considerable
attention and its abundance has been proven to be associated with the development of
various types of atherosclerotic events independent of LDL-C [23]. However, the definition
of remnant-C and the determination of serum remnant-C concentration are subjects of
discussion. According to the generally applied calculation, remnant C equals TRL-C. TRLs
contain lipoprotein particles in between VLDL and LDL including IDL in combination
with CMR [24]. All of these remnants and LDL are supposedly atherogenic. Graduation
in atherogenicity cannot be clearly defined, despite the fact that small, highly dense LDL
particles (“small-dense LDL”) are more atherogenic than larger ones [25]. In addition, while
no clear general description of atherogenic lipoproteins can be provided, the presence of
apolipoprotein B (ApoB) as carrier protein is at least characteristic. ApoB is represented
as ApoB100 in VLDL-derived particles and ApoB48 for chylomicron-derived particles.
This separates atherogenic particles from high density lipoprotein (HDL) which carries
apolipoprotein A1 (ApoA1) as the unifying apolipoprotein. Additionally, the cholesterol
ester (CE) content adds further to the atherogenicity [26–28]. Different risk indicators
have been introduced to predict atherosclerotic risk. Apart from clinical indicators, such
as obesity, smoking and/or diabetes, these include the serum concentrations of LDL-C,
VLDL-remnant C (TRL-C), non-HDL-C and ApoB. ApoB has been introduced as a risk
indicator based on the knowledge that CMs, CMRs, TRLs, and LDLs contain one ApoB
molecule per particle and that the number of particles may be more conclusive than the
concentration of lipoprotein C [29,30]. To date, clinicians tend to rely on LDL-C as the best
marker for pro-atherogenic lipoproteins and HDL-C as the marker for anti-atherogenic
lipoproteins [31–33]. It should be realized that HDL particles exchange CE with ApoB-
containing particles in exchange for TG [34] mediated by cholesterol ester transfer protein
(CETP). Reduction of CETP activity is considered a potential target for increased reversed
cholesterol transport [35]. Thus, depending on CETP activity the TG and CE proportions in
HDL and ApoB lipoproteins may vary. HDL mainly delivers phospholipids and CE to the
liver, whereas ApoB remnants and LDL are taken up to some extent by extrahepatic tissues,
but predominantly by the liver via the LDL-receptor (LDLR) and the LDL-receptor related
protein (LRP) [36]. One particular lipoprotein is the lipoprotein (a) (Lp(a)). It represents
the densest ApoB-100-containing particle with a density higher than LDL. The measured
LDL-C contains C originating from Lp(a). The lipoprotein lipid metabolism is presented in
Figure 2.

VLDL is formed in the liver and transports TG and CE into the blood. It is gradually
converted into LDL via intermediate formation of IDL. VLDL remnants and IDL may partly
return to the liver before being converted to LDL. LDL is extracted into extrahepatic cells,
but predominantly into the liver. CMs are produced in the enterocyte, transporting TG and
CE from absorbed fatty acids from the diet and FC from the diet and from bile. They are
converted to CMRs by the action of LPL and then delivered to the liver. The TG content of
VLDL is provided by TG derived from CMR, fatty acids (FA) synthesized in the liver and
FA taken up from blood (Figures 2 and 3). The hepatic C pool is composed of C derived
from extracted HDL, LDL, VLDL remnants, IDL and CMR as well as from synthesized C.
Hepatic TG is secreted into the blood in VLDL particles. Hepatic C is secreted in VLDL
as CE, secreted into bile as FC, and as bile acids. The distribution of C divided over these
three fluxes is largely unknown. HDL-C appears to be dominantly secreted into bile [37,38]
and converted to bile acids [39]. The flux distribution may be dependent on the hepatic
C concentration. In this review we critically evaluate the proposed predictive markers
according to the characteristics of various lipoproteins, their metabolism, and their analysis
or calculation procedures.
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Figure 1. Lipoprotein distribution originating from the liver, i.e., very low density lipoprotein (VLDL),
intermediate density lipoprotein (IDL), low density lipoprotein (LDL), lipoprotein (a) [Lp(a)], high
density lipoprotein (HDL), and the intestine, i.e., chylomicron(CM) and CM remnants (R). The
characteristics related to density (D; g/mL), size (S; nm) and lipoprotein composition are presented.
Apolipoprotein (Apo) [15].

Figure 2. Formation of very low density lipoproteins (VLDL) and chylomicron (CM) lipid cores,
secretion of VLDL and CM particles into blood and the blood metabolism of lipoproteins. Cholesterol,
C; cholesterol ester, CE; triglyceride (TG); fatty acid (FA); intermediate density lipoproteins (IDL);
chylomicron remnants (CMR); high density lipoproteins (HDL).
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Figure 3. Hepatic TG and C metabolism. High density lipoprotein, HDL; very low density lipoprotein,
VLDL; low density lipoprotein, LDL; scavenger receptor, class B type 1, SR-B1; LDL receptor, LDL-R;
cholesterol, C; bile acids, BA; chylomicron remnants, CMR; fatty acid, FA.

2. Atherogenic Lipoprotein C Concentrations as Indicators of Enhanced Risk for
Atherosclerosis Development

The pro-atherogenic character of lipoproteins is not yet fully understood. In principle,
HDL particles are considered anti-atherogenic. Accepted atherogenic characteristics are
the presence of ApoBs (ApoB100 and ApoB48), reduced size and increased density beyond
undefined limits, and a high load of CE. To actually cause atherosclerosis, the turnover
of lipoproteins must be delayed. This increases the exposure of the arterial wall to the
toxic lipoproteins, thus enhancing the atherosclerotic process. A delay of turnover may
be caused by reduced activity of LPL, HL, and/or LDLR. During the day, the presence of
intestinal-derived CMs and CMRs is maximized with fat-rich meals. Therefore, lipoprotein
analysis in fasting blood will not represent the daily exposure to atherogenic lipoproteins.
The time to transport CMs, convert CM to CMR, and transport CMR to the liver affect
the time-dependent contribution of CM-derived lipoproteins in the postprandial phase.
Thus, the residence time of TRLs in plasma determines an individual’s atherosclerotic risk.
Patients with obesity, diabetes mellitus, kidney disease, and/or familial history of cardio-
vascular disease have an increased risk of developing ASCVD. This risk must be conveyed
to the patient and followed by treatments for risk reduction. After cardiovascular events
have been treated, the residual risk for repeated events must be considered. Continuous
treatment is required to reduce any residual risk. The degree of atherogenicity is associated
with the level of circulating C-rich lipoproteins (LDLs, remnants, Lp(a)). Initially, serum
TC was used as a predictive marker and serum C lowering therapies were developed
as the treatment of choice. Thereafter, the target became the lowering of serum LDL-C
concentration. In the last decade, initiatives were undertaken to extend the focus to the
other potentially atherogenic lipoprotein C, by applying non-HDL-C as the predictive
marker [40]. Non-HDL-C is calculated as TC minus HDL-C and contains C present in all
potentially atherogenic lipoproteins, including LDLs, remnants and Lp(a). Additional evi-
dence identified the C content of the TRLs, i.e., all ApoB containing lipoproteins, excluding
LDL-C, were an additional risk marker in patients with normal LDL-C levels or those with
a sufficiently reduced LDL-C level following C-lowering treatment [41]. A third suggestion
has been to measure total ApoB, i.e., ApoB-100 plus ApoB-48 as a risk marker [42,43]. Lp (a)
is an independent risk marker in specific patients and should always be measured during
the original diagnosis. Next, the validity of various markers is discussed.

3. LDL-C

For many years, a high serum LDL-C concentration has been considered the central
factor associated with an increased risk for development of atherosclerosis and cardiovas-
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cular events [1,3,5]. The definition of LDL-C is the lipoprotein consisting of Apo B-100 as
the associated apolipoprotein (20% of total content), with a density of 1.019 to 1.063 g/mL
and a diameter of 20 to 25 nm. The lipid core contains 12% TG and 59% cholesteryl esters.
Small LDL particles are more atherogenic than larger ones [44]. The LDL-C concentra-
tion is determined in every hospital all over the world. For the most accurate analysis of
LDL-C, serum must be treated with ultracentrifugation [45,46] in order to isolate the LDL
density fraction for C analysis. This is the official reference method, which is considered
optimally selective. A second approach to separate lipoproteins is via electrophoresis [47]
and a third approach is via nuclear magnetic resonance (NMR) [48]. In addition, liquid
mass spectrometry methods are now being developed [49]. However, for routine clinical
laboratories, these techniques are time consuming, laborious, and expensive. In 1972,
Friedewald established a simple estimation procedure [50]. In fasting serum, total C is
predominantly composed of HDL-C, LDL-C, and VLDL-C (plus IDL-C). From measure-
ment of VLDL-C and VLDL-TG after isolation with ultracentrifugation, Friedewald found
that the mean TG/C ratio in fasting serum was 5.0 and considered this number to re-
flect the ratio in the healthy population. Thus, he expressed the LDL-C calculation as:
LDL-C = TC minus HDL-C minus TG/5. Obviously, the Friedewald formula means that
the calculated LDL-C strongly depends on the TG concentration. TG is bound to the above-
mentioned lipoproteins and is not limited to VLDL. VLDL contains about 55% TG. CMs
carry 88% TG, which decreases during conversion to CMR. The TG content of lipoproteins
is dependent on VLDL and chylomicron production and release as well as LPL activity.
Furthermore, CE is transferred from HDL into LDL in exchange for TG. From VLDL, CM,
and CMR, low LPL activity leads to high TRLs. It has been observed that the Friede-
wald equation starts to lose accuracy when the LDL-C concentration is low (<1.8 mmol/L,
<70 mg/dL) and the TG concentration is high (>1.69 mmol/L, >150 mg/dL). Generally, it is
acceptable to use the Friedewald equation when LDL-C > 1.4 mmol/L (>54 mg/dL) and the
TG concentration < 4.5 mmol/L (<400 mg/dL) and Lp(a) is within the reference range [51].
This makes the equation unsuitable in patients with hypertriglyceridemia and mixed hyper-
lipidemia and increased Lp(a) levels. Furthermore, recent literature advocates lipoprotein
profiling to be performed in the postprandial phase, when TG is at higher levels and CMs
and CMRs are present at variable higher concentrations [52–55]. Recent evidence has been
provided indicating that production and release of chylomicron particles are slow processes.
Fat is temporarily stored as liquid droplets in the intestinal cells [56]. The supply of chylomi-
crons and as a consequence chylomicron remnants are spread out over time. This way, the
body is protected against an excessive load of fat after meal consumption. Depending on
the dietary fat intake, the time point of the last meal, and the delay of CM secretion, the pres-
ence of CMs and CMRs in fasting serum may become relevant. Approaches have been made
to improve the weakness of the Friedewald equation. The most accepted improvements are
the approaches of Martin [57] and Sampson [58]. They correct the LDL-C value according to
the combination of TG and HDL-C in the sample. Both approaches extend the range of TG
concentrations at least up to 9 mmol/L (800 mg/dL). The Martin–Hopkins approach also
provides more accuracy at low LDL-C concentrations. However, direct measurement of
LDL-C is highly recommended. Many commercially available direct homogeneous LDL-C
assays are on the market [59], enabling a rapid and selective analysis. These assays are
based on the fact that they exclude HDL, VLDL, and CMs from the C measurement. How-
ever, CM- and VLDL remnants with reduced TG content—if present in fasting serum—may
potentially interfere with the measurement. Another potentially interfering factor is LP(a).
LP(a) equals LDL in size and density and may be included in the measurement of LDL-C
if present.

4. TG Rich Lipoprotein C (TRL-C) or Remnant C

Almost three decades ago it was indicated that TG enriched lipoproteins (TRL-C)
in serum correlate with the severity of coronary artery disease [60]. Serum TRL-C, also
called remnant C, received much attention as an atherogenic component associated with
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cardiovascular events and independent of serum LDL-C. In 2022, over 2000 hits were
obtained when searching the Pubmed data base for “remnant cholesterol”. A small ex-
tract is shown here [61–63]. It has frequently been proposed that “remnant C” should
be determined in the individual patient at risk and that remnant-C lowering therapies
need to be established. Interestingly, according to the calculation procedure, remnant-C
equals TRL-C in fasting serum. Therefore, we will continue using the term TRL. Ele-
vated serum TRL concentrations may be caused by various factors, such as excess dietary
TG intake, high secretion rates of CMs, high hepatic VLDL secretion, and most impor-
tantly, by reduced efficiency of LPL [14,64,65]. A high serum TRL concentration is most
likely the result of the combination of enhanced secretion and reduced lipolysis. This
will initially result in relatively large TG rich particles that may be less atherogenic. In
the extreme situation of genetically caused inhibition of LPL, hyperlipidemic pancreati-
tis is more common than ASVD [66,67]. As indicated before, TRL-C is calculated as
TC minus HDL-C minus LDL- C. When the Friedewald formula is used for the LDL-C
calculation, the inaccuracy in the determination of LDL-C affects the TRL-C calculation. As
a matter of fact, the equation can then be rewritten as TRL-C = TG/5. In a healthy situation,
the TRL-C concentration calculated via the Friedewald equation is on average about 10% of
the LDL-C concentration. The LDL-C concentration calculated by the Friedewald equation
tends to underestimate LDL-C by about 10% when compared to LDL-C measurement after
LDL isolation using ultracentrifugation [68]. Correcting LDL-C for a potential 10% under-
estimation leads to about 50% reduction in TRL-C. This suggests using direct measurement
of LDL- C to calculate a reliable TRL-C concentration. Recently Varbo et al. [69] described
an alternative technique to measure TRL-C independent of LDL-C and HDL-C. Using
a commercial assay (Denka, TRL-C, Denka Company Limited, Tokyo, Japan), LDL and
HDL are degraded and removed. Thereafter C is measured. It was found that directly
measured TRL-C identified 5% more patients with increased risk of cardiovascular disease
than calculated TRL-C applying the Martin–Hopkins equation. The question arises as to
how the patients involved should be treated. Probably, their clinical and nutritional status
must be closely studied. An obese patient with a high fat intake may be successfully treated
by reduction of dietary fat intake. This may be achieved with a low fat, fiber rich diet,
eventually combined with orlistat, which binds to pancreatic lipase reducing fat digestion
and promotes weight loss [70–72]. A patient with high sugar intake may limit sugar intake
and thereby potential endogenous fat synthesis. New therapies are under development
such as pemafibrate [73] and the omega-3 fatty acid icosapent ethyl [74]. Decreased serum
TG was observed under statin treatment and more pronounced under combination of
statin with ezetimibe [75,76]. The mechanism for this serum TG reduction during LDL-C
reduction therapy is unclear.

5. Non HDL-C and ApoB

Interestingly, discussion has focused serum LDL-C and TRL-C as determinants of
increased cardiovascular risk. Apparently, a subgroup of patients develops cardiovascular
disease despite a normal LDL-C concentration [1]. Other research groups promote non-
HDL-C as the ultimate marker of atherogenic cardiovascular disease risk. Non-HDL-C
is a calculated parameter obtained as non-HDL-C = TC − HDL-C. TC as well as HDL-C
are measured directly with generally accepted methods. The difference is well defined
and without discussion. It reflects LDL-C plus TRL-C. Thus, non-HDL-C contains all
atherogenic components. However, large and potentially less atherogenic TRL compo-
nents may be included, particularly when LPL activity is low. This may decrease the
prognostic efficiency. Furthermore, at TG > 400 mg/dL, HDL-C measurement is inaccu-
rate since TRLs are not sufficiently precipitated and thus TRL-C is partly included in the
HDL-C value. Normally, LDL-C comprises the majority of non-HDL-C. However, non-
HDL-C is considered a better predictor for a residual risk for cardiovascular disease than
LDL-C [40]. It is also known that an undefined subgroup of ApoB-containing lipopro-
teins expresses the highest atherogenic action and it has been established that small dense
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LDL particles are more atherogenic than larger ones. Thus, the number of lipoprotein
particles reflects the atherogenicity better than the lipoprotein concentration. Since each
ApoB-containing lipoprotein carries only one ApoB molecule, it has been proposed to
determine the total ApoB concentration as a measure of atherogenicity [43,77], also under
statin treatment [78]. This uncouples atherogenicity from C. Apo-B and Apo-AI can be
assayed using commercial test kits based on automated immunoturbidimetric methods
(Randox, Crumlin, United Kingdom). First, Apo-B-containing particles are precipitated
from serum by phosphotungstic acid–MgCl2. ApoA1 is measured in this fraction while
ApoB in the residual fraction. For optimal differentiation, the separation of ApoB100 from
ApoB48 may be considered in distinguishing between liver-derived and gut-derived ApoB
containing TRL particles.

6. Personalized Diagnostics and Therapy

This review highlights a discrepancy between available research findings and daily
clinical routine. It may take some time before the measurement of TRL-C and ApoB
concentrations in serum become routine analysis in the clinical laboratory. Routine daily
measurements include TC, TG, HDL-C, and LDL-C. Measurement of LDL-C via direct
methodology is slowly being introduced and must be further standardized in all clinical
laboratories. While LDL-C may remain a leading predictive parameter, the additionally
acquired data for TRL-C should also be considered. Table 1 outlines a diagnostic and
personalized treatment strategy.

Table 1. A proposed scheme of diagnosing the cause of development of atherosclerosis via elevated
serum LDL-C or serum TRL-C. Personalized treatment can be applied.

Total C LDL-C TRL-C Therapy

Normal Elevated Low LDL-C lowering

Normal Low Elevated TG-lowering

Elevated Elevated Normal LDL-C lowering

Elevated Normal Elevated TG-lowering

Elevated Elevated Elevated LDL-C and TG-lowering
C, cholesterol; LDL, low density lipoprotein; TRL, triglyceride-rich lipoproteins; TG, triglyceride.

It must be realized that Lp(a) is included in LDL. Therefore, this has to be measured
in each patient at least once in a lifetime. LDL-C lowering should consist of combined
statin or bempedoic acid and ezetimibe treatment in order to obtain the maximal re-
sponse. When LDL-C lowering is insufficient, PCSK9 inhibition should be added to the
combination treatment.

7. Limitations

The proposed extended diagnosis procedure of the atherogenic lipoprotein compo-
nents depends to a large extend on the quality of the LDL-C measurement. Isolation of
LDL using ultracentrifugation followed by C measurement will ensure ultimate quality.
However, this technique is too time consuming and complex to be incorporated into daily
clinical routine. Homogeneous direct assays are now available to isolate LDL by chemical
means [59,79]. However, these various commercial assays may produce different results.
In addition, the validity of the assay appears high in healthy subjects and lower in patients
with cardiovascular disease [80]. Furthermore, the analytical result may differ when mea-
sured in fresh serum or frozen serum. Therefore, the most reliable assay must be chosen
and applied under controlled conditions. Any reasoning for applying the measurement
must be well defined. When the risk of development of cardiovascular disease needs to
be determined by measuring atherogenic lipoprotein C in documented patients, LDL-C
measurement must be performed exactly under cardiovascular conditions. A concentration
above the cut off level of the normal range is the criterion for treatment. It will suffice
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to apply the same assay and quality control criteria continuously. The patient should be
followed over time during treatment.

8. Summary of Results

VLDL and CM-derived remnants including CMR, IDL, and LDL in serum are consid-
ered atherogenic. Their C concentrations in serum are documented as predictive athero-
genic indicators of cardiovascular disease risk. VLDL, IDL, and LDL are the dominant
lipoproteins in fasting serum. CMRs are added to postprandial serum in amounts depend-
ing on the dietary fat intake. Serum LDL-C is used as the gold standard for risk prediction
and treatment is focused on lowering serum LDL-C. VLDL-C, IDL-C, and CMR-C are
called TRLs. Atherosclerosis may develop in patients with low LDL-C and high TRL-C
concentrations. The accuracy of LDL-C and TRL-C determinations is procedure-dependent,
i.e., on direct measurement or estimation procedures. It is unknown whether all TRLs are
equally atherogenic. Non-HDL-C combines TRL-C and LDL-C and thus all potentially
atherogenic lipoprotein species. Non-HDL-C may be considered the best and simplest
marker of lipoprotein atherogenicity. At higher serum TG concentrations (>300 mg/dL)
HDL-C also includes TRL-C because those particles are not completely precipitated by
the HDL-determination method. LDL-C and TRL-C concentrations in fasting serum do
not usually reflect the daily exposure to atherogenic lipoproteins, which is highest in the
postprandial phases. Potentially atherogenic lipoproteins all contain ApoB. The serum
ApoB concentration reflects the number of atherogenic particles and thus the cardiovascular
risk. Patients with elevated serum TRL-C concentrations may be detected when serum
LDL-C is measured directly with sufficient accuracy. Homogeneous, direct assays are
available allowing rapid analysis in a clinical routine setting. However, selection of the
preferred assay must be performed carefully.

9. Conclusions

Epidemiologic and genetic studies have established TRL and their remnants as im-
portant contributors to ASCVD. Combinations of LDL-C, non-HDL-C, TRL-C, and ApoB
concentrations must be evaluated as the utmost predictive risk marker for development of
cardiovascular disease and are recommended in the current guidelines. For clinical routine,
direct measurements of TGs, TC, HDL-C, and LDL-C allow semi accurate calculation of
TRL-C and non HDL-C. Patients with elevated LDL-C may be treated with conventional C
lowering therapies. Patients with elevated TRL-C should be detected and treated specifi-
cally. The first step of treatment is the implementation of lifestyle interventions. Second,
LDL-C lowering with statins or bempedoic acid—in case of statin intolerance—with or with-
out ezetimibe are recommended to reduce vascular risk, independent of statin-associated
lowering of TRL itself. Novel and emerging data, e.g., on omega-3 fatty acids (high-dose
icosapent ethyl) and new generations of selective peroxisome proliferator-activated receptor
(PPAR) modulator pemafibrate may identify patients who will benefit from TRL lowering.
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