
Citation: Bell, V.; Varzakas, T.;

Psaltopoulou, T.; Fernandes, T. Sickle

Cell Disease Update: New Treatments

and Challenging Nutritional

Interventions. Nutrients 2024, 16, 258.

https://doi.org/10.3390/nu16020258

Academic Editor: Rodney R. Dietert

Received: 19 December 2023

Revised: 11 January 2024

Accepted: 12 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

Sickle Cell Disease Update: New Treatments and Challenging
Nutritional Interventions
Victoria Bell 1 , Theodoros Varzakas 2,* , Theodora Psaltopoulou 3 and Tito Fernandes 4,*,†

1 Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba,
3000-548 Coimbra, Portugal; victoriabell@ff.uc.pt

2 Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
3 Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; tpsaltop@med.uoa.gr
4 CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
* Correspondence: t.varzakas@uop.gr (T.V.); profcattitofernandes@gmail.com (T.F.)
† Previous Address: Lúrio University, Nampula 3100, Mozambique.

Abstract: Sickle cell disease (SCD), a distinctive and often overlooked illness in the 21st century,
is a congenital blood disorder characterized by considerable phenotypic diversity. It comprises a
group of disorders, with sickle cell anemia (SCA) being the most prevalent and serious genotype.
Although there have been some systematic reviews of global data, worldwide statistics regarding
SCD prevalence, morbidity, and mortality remain scarce. In developed countries with a lower number
of sickle cell patients, cutting-edge technologies have led to the development of new treatments. How-
ever, in developing settings where sickle cell disease (SCD) is more prevalent, medical management,
rather than a cure, still relies on the use of hydroxyurea, blood transfusions, and analgesics. This is
a disease that affects red blood cells, consequently affecting most organs in diverse manners. We
discuss its etiology and the advent of new technologies, but the aim of this study is to understand the
various types of nutrition-related studies involving individuals suffering from SCD, particularly in
Africa. The interplay of the environment, food, gut microbiota, along with their respective genomes
collectively known as the gut microbiome, and host metabolism is responsible for mediating host
metabolic phenotypes and modulating gut microbiota. In addition, it serves the purpose of providing
essential nutrients. Moreover, it engages in direct interactions with host homeostasis and the immune
system, as well as indirect interactions via metabolites. Nutrition interventions and nutritional
care are mechanisms for addressing increased nutrient expenditures and are important aspects of
supportive management for patients with SCD. Underprivileged areas in Sub-Saharan Africa should
be accompanied by efforts to define and promote of the nutritional aspects of SCD. Their importance
is key to maintaining well-being and quality of life, especially because new technologies and products
remain limited, while the use of native medicinal plant resources is acknowledged.
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1. Introduction

Sickle cell disease, an often overlooked disease in the 21st century, is a noncontagious
and enduring congenital blood disorder. It encompasses a group of clinical syndromes
that affect hemoglobin due to a genetic code for abnormal polymerized deoxygenated
hemoglobin. This abnormal hemoglobin distorts the shape of red blood cells, and it is
inherited by children from their parents [1]. The term sickle cell disease (SCD) is derived
from the polymerization of two mutant sickle β-globin subunits leading to a crescent or
sickled shape of erythrocytes [2].

Sickle cell disease comprises various genotypes, yielding a group of hemoglobinopathies [3].
The production of hemoglobin is regulated by the inheritance of a pair of genes, but there
is considerable variability in absolute hemoglobin levels among patients with SCD [4].
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Sickle cell anemia results from the inheritance of two sickle genes, with one gene from each
parent [5,6].

Two parts, heme and globin, constitute the normal form of hemoglobin. The protein
is made up of four polypeptide chains (two α chains and two β chains). There are many
known mutations in the hemoglobin subunit β-HBB (β-globin protein) coding gene, which
make up the most common form of hemoglobin in adult humans, hemoglobin A (HbA) [7].
A variety of inherited diseases arise from these mutations. Abnormal versions of β-globin,
such as hemoglobin C (HbC), hemoglobin E (HbE), and hemoglobin S (HbS), are produced
by a variant mutation in the HBB gene. It is this mutation in the HBB gene that causes
sickle cell anemia [8].

Sickle cell anemia (SCA) is the most prevalent and serious genotype of SCD, followed
by HbSC (“mild” form of SCA), hemoglobin (Hb) Sβ thalassemia, HbSβ+thalassemia
(accounting for some 30–40% of SCD patients), and other rare and benign genotypes [9,10].

Sickled red blood cells are susceptible to chronic hemolysis [11], and emerging ev-
idence reveals that SCD is made evident by the presence of chronic inflammation and
oxidative stress, both of which play a role in the development of chronic vasculopathy and
several other enduring complications [12]. SCA, characterized by abnormal red blood cells
and hemoglobin, is worsened by low oxygen levels in the air [13].

SCA is manifested as the result of the presence of an autosomal recessive allele, which
is found on the short arm of chromosome 11p15.5 [14]. This alteration of the genetic code
leads to the substitution of a single amino acid, where valine replaces glutamic amino acid
in the sixth position of the 146 amino acids of the β chain of hemoglobin [5] (Figure 1).
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Figure 1. The most common clinical manifestation of sickle cell disease, a vaso-occlusive crisis (VOC)
occurring when blood flow is blocked by sickled red blood cells (crescent-shaped) to the point that
tissues and organs become deprived of oxygen, causing pain.

After more than one hundred years since the discovery of sickle cell group of
hemoglobinopathies as genetically inherited diseases [15], new studies are still necessary
to explore the molecular mechanisms leading to fetal hemoglobin induction and find ways
to reduce the adverse effects in patients with SCA and other β-hemoglobinopathies [16].
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There are both severe and mild SCD genotypes, which reflect the type of symptoms
and prognoses for the disease. Research has been conducted during routine patient care
to identify possible clinical biomarkers among SCD patients. These biomarkers may vary
according to genotype and treatment categories. However, there is still insufficient progress
in developing treatment options or counseling decisions [17–19].

Sickle-shaped red blood cells are more rigid and stickier, which leads to the obstruction
of small blood vessels. This obstruction prevents oxygen from reaching body tissues and
organs, inducing both acute and chronic intense pain. There is little research focusing
on the pathophysiology of acute or chronic pain in SCD, and therefore it is still poorly
understood. However, it is believed to be dependent on the interaction of several molecular
mechanisms [2,20,21].

1.1. The Incidence of Sickle Cell Disease

This disease substantially induces multimorbidity and impairs quality of life, while
placing strain on healthcare systems wherever it exists [22,23]. The global burden of this
disease has been assessed [24], highlighting the high risk of child mortality associated with
SCA. In Sub-Saharan Africa, it can contribute to as much as 90% of under-5 mortality [25,26],
with approximately 500 children with SCD continuing to die prematurely every day [27].
This is due to delayed diagnosis and/or the lack of access to comprehensive care, a trend
that urgently needs to be reversed [9].

Every year, between 300,000 and 400,000 newborns with SCA are delivered around
the world, whereas tens of thousands of people show the homozygosity for hemoglobin S
form, which represents the most severe clinical phenotype of the disease [28]. Although
SCD occurs worldwide, Sub-Saharan Africa is the region with the highest prevalence. It is
estimated that approximately 1000 children with SCD are born in Africa every day, and
more than 500 of them die before reaching the age of 5 years [29].

Children suffer several preventable chronic disorders that are followed by premature
death associated with SCD. Efforts have been made to identify achievable goals to improve
outcomes both in the short and long term. These initiatives aim to recitfy the present unfair
attention given to this inherited condition, particularly in developing countries [30].

Approximately 1 in 12 African Americans carries the SCD mutation, and 1 in 500 African
Americans suffers from the disorder. In the U.S., 1 out of every 16,300 Hispanic-American
neonates is born with SCA each year [31]. Epidemiological data on all blood disorders is
still scarce, but SCD is estimated to affect approximately 250 million people globally.

Despite the increase in the global burden of SCD, which is believed to affect over
20 million people [32], including an estimated 200,000 annual sickle genotype births in Sub-
Saharan Africa [33], available data on SCA prevalence, morbidity, and mortality remains
limited on a global scale. However, some systematic reviews on global data exist [34,35].

Different areas in Côte d’Ivoire, Egypt, Lake Chad, Sudan, Lake Victoria, the coast
of Kenya, Tanzania, Mozambique, and the east coast of Madagascar have been projected
to have a a predicted HbS allele frequency between 7.5% and 12.5% [36]. In northern
Mozambique, hematological studies have revealed a prevalence of sickle cell trait (HbAS)
and G6PD (glucose-6-phosphate dehydrogenase) deficiency to be around 4% [37,38].

Sickle cell trait (HbAS) is notably more common in West Africa. It is very interesting
and well-known that carriers of the sickle cell trait HbAS experience natural and nearly
complete protection against severe Plasmodium falciparum malaria. This protection is ob-
served despite the inadequately understood relationships between HbAS, malaria, and
other common causes of child mortality [39–42].

1.2. Sickle Cell Disease Physiopathology

When cells are subjected to physiological stressors, they react with a mechanism
described as the heat shock response. This mechanism activates a certain type of critical
molecular regulator called heat shock proteins (HSPs) [43].
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Heme oxygenase 1 is a member of the heat shock protein (HSP32) family and is
involved in numerous cellular operations [44]. Increased heme in SCD causes the up-
regulation of heme oxygenase 1, which leads to cardiomyopathy through ferroptosis, an
iron-dependent nonapoptotic form of cell death [45].

This enhances the fact that both genetic and environmental factors affect the process.
Thus, the understanding of biomarkers and the molecular basis of diseases such as SCA
are significant in playing a definitive role on the onset of such pathologies and, therefore,
on the prevention strategies [46,47].

This leads to the formation of hemoglobin S and the change to sickle-shaped red blood
cells compared to normal red blood cells. These cells obstruct the bloodstream, hence
leading to serious problems, including cerebrovascular accident, nephropathy, retinopathy,
infections, aches, and pains [48] (Figure 2).
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Among the four DNA bases (two purines: adenine and guanine, two pyrimidines:
thymine and cytosine), guanine has the lowest redox potential and is preferentially targeted
for oxidation [49]. Despite guanine reduced redox potential, guanine radicals are known to
trigger mutations and damage the genetic code, which are involved in carcinogenesis and
ageing [50].

Because SCD is hallmarked by an underlying chronic inflammatory status, which
is partly driven by proinflammatory M1 macrophages [51], heme scavenging or modu-
lation, as well as the potential therapeutic targeting of mitochondrial biogenesis, might
significantly ameliorate tissue damage associated with SCD pathophysiology [52].

Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α), a transcrip-
tional coactivator protein that regulates the genes involved in energy metabolism [53],
exerts significant control over, induces, and coordinates gene expression. It stimulates
mitochondrial oxidative metabolism (i.e. respiratory capacity, oxidative phosphoryla-
tion, and fatty acid β-oxidation), produces ATP and lipids, induces amino acid and heme
biosynthesis, and generates/sequesters reactive oxygen species (ROS) [54].

1.3. Sickle Cell Disease Diagnosis

Sickle cell disease can be prevented prenatally, and it can also be diagnosed in utero
or in the newborn period through screening. Early diagnosis of this condition is essential
for beginning treatments that can reduce the risk of life-threatening complications, such
as severe infections and strokes, as well as managing the disease effectively to reduce
morbidity. SCD is diagnosed through a simple complete blood test, peripheral blood
smears, hemoglobin electrophoresis, HPLC, and various genetic sickling tests. Hemoglobin
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S solubility assay and sodium metabisulfite test may be used for screening individuals
aged 6 months or older. For pregnant women, screening should ideally be conducted
before 10 weeks’ gestation. Recent studies have also reviewed current emerging portable
techniques that have been developed for the early detection and diagnosis of sickle cell
disease and carrier states [55–57]. More detailed molecular genetic diagnose testing is also
available [58].

2. The Advent of New Technologies

The discovery of CRISPR (clustered regularly interspaced short palindromic repeats)
and its function, which took place between 1993 and 2005, marked the recognition of ac-
quired immunity systems that are widespread in archaea and bacteria. This discovery has
since been widely validated through the development of CRISPR and CRISPR-associated
protein (Cas) systems [59]. As a result of the emergence of genome editing tools, this
subject has experience significant growth, with universities, research institutes, biotechnol-
ogy enterprises, and sizable pharmaceutical companies collaborating to create innovative
therapeutics with far-reaching potential [60,61].

Using CRISPR-Cas technology, which is a specific, efficient, and versatile gene editing
technology, one can modify, delete, or correct precise regions of DNA [62,63]. However,
this gene therapy still needs to be economical, practical, easy, explicit, quick, convenient,
safe, and adequately valid to be capable of producing the desired effect [64].

Formerly, gene editing required tissue samples to be removed from the body for
editing outside, but now it is possible to use this technology in vivo. Thus, genome editing
therapies can be developed to silence “bad” genes [65–67].

CRISPR-Cas9, which depends on ribonucleoprotein complexes (RNPs), leverages the
subcellular location of mRNAs transported within cells in RNPs and is indeed a powerful
tool for targeting and editing DNA [62,68,69].

Since the early 2000s when the identity and clinical functions of microRNAs (miR-
NAs) [70] were discovered, the roles of miRNAs as potential biomarkers for both diagnosis
and prognosis have been actively investigated over the past few decades [6,71,72].

MicroRNAs, which are short noncoding genetic material implicated in the modulation
of mitochondrial activity and homeostasis, also contribute to the readjustment of cell
metabolism, offering a new perspective on the regulation of gene expression following
transcription [73]. They act by enhancing the activity of apoptosis-inducing factors and by
targeting and eventually silencing specific genes. This silencing process involves known
oncogenes and disease suppressor genes related to metabolic signaling pathways and is
associated with genetic disorders [73,74].

Patients with high fetal hemoglobin (HbF) status, which is a product of γ-globin genes
and modulates SCD, experience fewer painful crises and enhanced survival rates [75].
Examining the factors that control γ-globin genes at both transcriptional and translational
levels, including miRNAs, can assist in the identification of possible therapeutic avenues
for SCD [76,77].

Some miRNAs have the potential to serve as valuable molecular tools for innovative
therapeutic approaches in hemoglobinopathies, especially in the context of hematogenesis,
erythrocyte cell differentiation, and degree of anemia severity. Using these miRNAs could
ameliorate the clinical framework of SCA [78].

Patients with SCD often display abnormal triggering of the innate component of
the immune system’s natural defense pathway, leading to higher risks of infection and
predisposing patients to autoimmune diseases [79].

The future of medical research will be to focus on the identification and development of
noninvasive biomarkers for specific diseases. However, it is still uncertain which miRNAs,
or combinations of multiple biomarkers, could be the most prominent candidates for
discovery and development [80].
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3. Current Treatments of Sickle Cell Disease

A definitive cure for sickle cell anemia (SCA) remains a subject of debate. In this
review, we only aim to summarize current trends and knowledge regarding available
treatments for SCD and to emphasize the fact that there is a substantial unmet need for
medicines. We will also provide a brief overview on existing therapeutic interventions
worldwide, which are largely limited to blood transfusions.

Increasing the production of fetal hemoglobin (HbF) in significant quantities can
diminish the severity of the clinical progression in β-thalassemia and SCD. This can lead to
a decrease in morbidity, disability, impairment, illness, and mortality [81].

There are science-based guidelines elaborated by the American Society of Hematology
(ASH) designed to support patients, clinicians, and other healthcare professionals, namely,
in pain management decisions for children and adults with SCA. However, these do not
provide specific guidance on nutritional care and other strategies [82,83].

SCD is caused by a mutation that results in the substitution of glutamic acid for valine.
Despite many gaps in our understanding of the biological mechanisms of glutamine and its
therapeutic implications, the FDA approved L-glutamine (10–30 g/day oral powder, twice
daily) in 2017 for individuals aged 5 and older to lower the number of pain crises [84].

Until recently, only the use of an oral chemotherapeutic drug, hydroxycarbamide (also
known as hydroxyurea), was considered for the treatment of SCD. Hydroxyurea, which is
a ribonucleotide reductase, is the only approved drug for disease-modifying treatment in
patients with SCA [85]. However, it is currently underutilized in clinical practice [86].

A class of new medications called hemoglobin S (HbS) polymerization inhibitors (e.g.,
voxelotor), has been recently approved by the FDA in 2019 and by the E.U. EMA in 2022.
These drugs are intended for the oral treatment of hemolytic anemia due to SCD and
vaso-occlusive crisis (VOC), in adults and children aged 12 years and older [87].

This small-molecule drug is able to attach to and stabilize hemoglobin, preventing
hemoglobin polymerization (i.e., formation of abnormal hemoglobin) that causes the
formation of sickle shaped red blood cells [88]. In well-resourced countries, three potential
treatments are available for preventing or reducing the morbidity and mortality associated
with SCA: transfusions, hydroxyurea, and stem cell transplantation [89]. There is no
evidence of any benefits of corticosteroid use in SCD acute events [90].

The polymerization of abnormal hemoglobin S upon deoxygenation in the tissues to
form fibers in red cells causes the development of SCD, thus, generating deformations and
blockages in the circulation. Hence, many attempts have been made to find drugs that can
control nonpolymerizing fetal hemoglobin [88].

Vaso-occlusive crisis has been prevented and treated using an approved drug called
crizanlizumab. This drug is designed to treat pain by preventing blood cells from sticking
to the inner walls of blood vessels. The monthly administration of this monoclonal antibody
against P-selectin (mediator of inflammation through promoting adherence of leukocytes
to activated platelets and endothelium) has proven effective in lowering the frequency of
sickle pain crises [91].

There is a hypothesis, which requires further investigation, suggesting that leucine
transcriptional nuclear factor NRF2 activation with sulforaphane (a chemical compound
found in vegetables such as broccoli and Brussels sprouts), may offer therapeutic benefits
for SCD patients. These potential benefits could include reducing liver damage, restoring
oxidative capacity, and increasing fetal hemoglobin concentration [92].

Allogeneic hematopoietic stem cell transplantation, also referred to as bone marrow
transplant, has been known to cure severe congenital anemias. This treatment has been
used to transplant healthy hematopoietic stem cells, obtained from several sources, into
patients with dysfunctions related to many malignant and nonmalignant disorders [93]
(Table 1).
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Table 1. Therapeutic interventions in sickle cell disease.

Therapeutic Intervention Outcome

Blood transfusion Reduce the burden of sickled cells [94,95]

Hydroxyurea Increase fetal hemoglobin (HbF) to stop
polymers forming in the sickle hemoglobin [96]

Hematopoietic stem cell transplantation Reverse the sickle phenotype [97,98]

L-glutamine Antioxidant effects [99]

Hemoglobin S (HbS) polymerization inhibitors Prevent HbS polymerization [100]

Monoclonal antibody (crizanlizumab) Reduce selectin-mediated adhesion [101]

Gene editing therapy (Casgevy™) Editing faulty gene in a patient’s bone marrow
stem cells [102]

Recent Advanced Therapeutic Approaches for Sickle Cell Disease

Currently, the sole validated healing medicinal approach for SCD is allogeneic (geneti-
cally dissimilar) hematopoietic stem cell transplantation, ideally from an unaffected human
leucocyte antigen (HLA)-identical matching sibling donor, when available. Combining
genetic treatments and hydroxyurea seems to provide the best results [103]. However, nor-
mally, this is only considered for children younger than 16 who have severe complications
from the disease [104–107].

Although still under review in the U.S., the European Union, and Saudi Arabia,
the Medicines and Healthcare products Regulatory Agency (MHRA) in the U.K. has
conditionally approved an innovative and first-of-its-kind gene editing therapy for patients
aged 12 and over with SCD and transfusion-dependent beta thalassemia. It is worth noting
that in the U.K., there are approximately 15,000 SCD patients.

These treatments, known as CasgevyTM and LyfgeniaTM, which have been approved
by the FDA, are designed to work by editing the faulty gene in a patient’s bone marrow
stem cells. They are the first medicines to be licensed using the innovative gene editing
tool CRISPR. The inventors of LyfgeniaTM were awarded the Nobel Prize in 2020 [102].
Following the U.K.’s authorization to use CasgevyTM, Bahrain was the second country to
approve the use of the drug, and in December 2023, the U.S. became the third.

A drug called masitinib, which has been available in Europe since 2008 for veterinary
use under the name “masivet”, a tyrosine-kinase inhibitor used in canine cancer treatment,
is presently being tested for the treatment of SCD. A new clinical development program for
a phase two clinical trial of masitinib in SCD has been granted a substantial investment
to study the involvement of mast cells and basophils in orchestrating acute and chronic
complications of SCD. A new patent has been filed, which, if granted, will extend the
international protection of masitinib for use in treating SCD until 2040 [108].

Microglia from the brain and spinal cord and mast cells (bone marrow-derived tissue-
dwelling cells), two key immune cells involved in numerous pathologies, release substances
such as histamine, leukotrienes, and cytokines, causing inflammation. This process is
strongly related to SCD [109].

4. Influence of Gut Microbiome in Sickle Cell Disease

The gut microbiota, their genes (microbiome), and metabolites express a large number
of potential signaling molecule ligands and metabolites. These components, under home-
ostatic conditions, can control inflammatory interleukins, growth factors, cytokines, and
prostaglandins in coordination with tissue immunity [110,111].

The gut microbiota, which accommodate approximately 1013–1014 cells belonging to a
diverse group of microorganisms [112] (equivalent to over 3 million genes), play a key role
in human health by determining the development of conditions linked with the nervous
system, autoimmunity, metabolism, and inheritance [113,114].
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Increased gut injury and permeability, modified microbiota composition, and bacterial
overgrowth, along with collateral bacterial translocation in SCA patients, reveals a state of
dysbiosis and an increase in gut microbiota responsible for triggering inflammation [115].

Gut microbiota are closely involved in energy homeostasis [116], immune system
regulation [117], metabolism [118], and other physiological processes of hosts, as reported
by research studies.

A disruption of the microbiome spawns considerable dysbiosis. This dysbiosis is
observed in SCD patients because some bacteria trigger proinflammatory responses and
can affect some of the pathophysiological features of this disease [119]. This microbial
imbalance was mainly recorded in the U.S., as SCD patients often are hospitalized and
subject to nosocomial infections. However, in Africa, where SCD prevails, not many studies
have been conducted, and the gut microbiome profile is associated with race and/or
ethnicity [120].

A complex interplay occurs between environmental (e.g., diet and medications) and
host factors within the gastrointestinal tract, where symbiotic microorganisms reside. This
interplay is affected by the human genome, which affects the gut microbiome through
enzymes and miRNAs [121]. The target for customized nutrition and therapy, as well as
the renovation of exchanges between the microbiota and host, and the modification of
nutrition to restore the necessary symbiosis, is microbiota modulation. The aim is to reverse
established microbial dysbiosis [122–124].

A crucial mediator in the immunomodulation of inflammation, cell adhesion, and
induction of aged neutrophils, which are the main arbitrators of recurrent VOC, is diverse
gut microbiota [125].

Several studies have shown that host genetics affect the composition or structure of the
gut microbiome and vice versa [126,127]. However, our understanding of the association
between host genetics and the gut microbiome in complex human diseases remains limited.
It is still challenging to estimate the scale to which host genetics shape the configuration of
the gut microbiota [128,129].

To understand the complex pathophysiology of the disease and the evaluation of
potential specific therapies, researchers have developed several murine models and genera-
tion of transgenic mouse clones as a solution for the absence of a natural animal pattern
for SCD [130–132]. Most studies on this interaction have therefore been conducted using
genetically engineered mouse models. Results from these studies have strengthened our
knowledge of host genetics and its influence on the human gut microbial variation despite
the existing differences between the microbial composition of humans and mice [133,134].

Therapeutic strategies involving synergistic gene addition and gene silencing in stem
cell progeny have demonstrated proof of concept through targeted research [135]. The
gut microbiome has been characterized in murine models with SCA, revealing significant
dysbiosis [115]. The gut microbiota is believed to play a role in the severity of SCD
because the permeability of the intestinal barrier is compromised. This is connected with
gene silencing of continuous intercellular network proteins, enhanced inflammation, and
oxidative stress, which are all specific to the small intestine [136].

The generation of ROS and other free radicals occurs during normal cellular metabolism,
and inflammation and oxidative stress are intertwined, one aggravating the other. The
therapeutic potential of natural food antioxidants has been widely researched, namely, in
chronic metabolic disorders [137,138].

SCD patients show decreased protection from antioxidants in their blood, possibly due
to lipid peroxidation, which results from its interaction with ferroptosis and a compromised
antioxidant competence [139]. When administered at appropriate doses, omega-3 fatty
acids (ω-3 FAs), specifically docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, are
potent anti-inflammatory mediators that modulate pain. They also decrease episodes of
VOC in SCD [140]. The therapeutic effects of polyunsaturated ω-3 fatty acids in SCD have
been shown in clinical trials, providing increasing evidence for a safe and effective treatment
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for SCD, demonstrating improvements in VOC rates, biomarkers of inflammation, cell
adhesion, and hemolysis [141,142].

Chronic sickle cell pain and osteoporosis are common clinical manifestations in hu-
mans, but their underlying causes are not fully understood. It appears that the gut micro-
biome may play a role in the management of chronic SCD pain. Increased gut tissue injury
and permeability and bacterial translocation of luminal contents contribute to the role of
the microbiome in SCD [115,143].

It is also suggested that gut dysbiosis in SCD induces pain through changes in vagal
nerve activity [144]. Increased inflammatory cytokines, which are critical mediators that
oversee and regulate immune and inflammatory responses via complex networks serving
as biomarkers, arise from increased gut bacteria burden and augment antigenic load,
travelling across the impaired intestinal barrier through inflammation [145] (Table 2).

Table 2. Nutritional and gut microbiome interventions in sickle cell disease.

Nutritional Intervention Outcome

Microbiota modulation Reverse established microbial dysbiosis [127–129]

Omega-3 fatty acids Improve VOC rate, markers of inflammation, adhesion,
and hemolysis [146]

The identification of therapeutic approaches for gut modulation is still in its early
stages despite the evaluation of the microbial differences between SCD patients and healthy
controls in some studies [26,146].

5. Nutritional Perspectives in Sickle Cell Disease

Nutritional imbalances are considered as crucial factors contributing to the severity of
sickle cell disease. This has led to increased interest in promoting dietary supplementation
for treating patients, especially because no cure for sickle cell anemia is available. Patients
with sickle cell disease require higher energy and protein intake compared to healthy
individuals. These patients tend to suffer from undernutrition if their energy intake is
consistently low [147].

There has been little researched on dietary interventions that may be useful as a
supplementary tool to treating SCD. However, it is well-established that unbalanced
nutrition is a significant risk factor that adversely impacts clinical events, welfare, vital
processes, and the independence of patients [148].

There is a deficiency in knowledge and the possible integration of nutrition into
sickle cell medial services. Awareness must be raised regarding the value and importance
of the role of nutrition in improving the management and care of SCD, particularly in
Africa [149]. Nevertheless, helpful dietary suggestions, especially for children with SCD,
must be a priority.

Major factors contributing to the increased severity of SCD include chronic inflamma-
tion and oxidant stress. Hence, the establishment of recommended reference intakes for
SCA patients is fundamental, and nutritional intervention should be included as supple-
mentary care in conjunction with standard practices [150].

Because no easy and cost-effective treatment has yet been found, recent efforts have
been directed toward nutritional interventions to reduce ill health and improve the qual-
ity of life for SCD patients. However, there are limitations within the current scope of
the recommended daily allowances and dietary reference intakes for world populations,
and nutrient density has also been under consideration [151]. This makes it even more
challenging to establish specific nutritional requirements for sickle cell patients.

The role of malnutrition as one of the complications of SCA and the possible ben-
efit of regular micronutrient supplements have been recently demonstrated by several
authors [152,153]. Symptoms occur around the age of 5 months, but they vary among
individuals and are characterized by episodes of pain, fatigue, frequent infections, organ
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damage, and early mortality. These symptoms can cause delayed growth and development
in children while resulting in a need for a higher amount of certain nutrients, including
calories and protein [154].

Due to chronic ischemia-reoxygenation damage induced by VOC, patients with SCD
may suffer from leaky gut, which affects microbiota density and adhesion to the epithelial
wall and the degree of translocation [155]. This influences nutrient intake, metabolic
homeostasis, hormonal environment, microbiota imbalance, and immunity [156].

Particular attention has been directed to identifying dietary deficiencies that often
coexist with SCD and searching for novel dietary strategies to reduce morbidity and
improve the quality of life for these patients [157,158]. SCD has been also associated with
vitamin D deficiency and poor appetite. Although a few studies have been conducted,
none have been of sufficient quality to guide clinical practice [159].

Recognizing gene–nutrient interactions with the objective of explaining a specific
response in various ethnic and environmental contexts is a complex task [160]. The preva-
lence of nutritional deficiencies in SCD is evident, and they may be associated with worse
pain outcomes [119]. Nutrition, being a complex and wide-ranging issue, calls for the
implementation of a new collaborative approach that addresses staple food types and
sources, micronutrients, and phytonutrients, which are all critical for optimal human health
and well-being. Particular focus should be given to improved digestibility, the human gut
microbiome, overall vitality, and mental health [161,162].

Children with hereditary diseases such as SCD frequently have feeding disorders and
dysphagia as a result of the elaborate interplay between anatomical, physiological, medical,
and behavioral factors. These feeding complications may also cause food consumption
to be troublesome, passive, or even painful because of a lack of breath and ability to talk,
choking, coughing, tiredness, or vomiting, causing the child to stop eating and requiring a
parent to feed their child.

Dietary intake has been inadequately considered in SCA, and questionable guidance
for dietary iron restriction has been assumed, although iron deficiency is unexpected in
SCD patients based on the fact that the homozygous SCA genotype is associated with the
most severe form [163].

It has been proven that the disease mechanism of SCD has considerable nutritional
and health connotations, including elevated energy and nutrient requirements, nutrient
deficiencies, and growth abnormalities [164,165]. However, these data were obtained
using small sample sizes, namely in Sub-Saharan Africa, where it prevails. Hence, the
need for further investigation of the potential benefits of nutrition-related interventions
for these patients is imperative [166]. Over the last decade, the prime concerns for basic,
clinical, and demographic research regarding food, diet, supplements, and nutrition in
individuals with SCD and thalassemia have been suggested as main areas of research and
innovation [167,168].

The main obstacle has been difficulty in the assessment of dietary intake, nutritional
status, the use of nutritive and nonnutritive dietary supplements, and increased vulnerabil-
ity to infections caused by specific pathogens in these patients, particularly children under
5 years of age [169].

The risk of a worse prognosis in SCA has increased due to inadequate food and
nutrient intake data in developing countries [170]. Plans to motivate the intake of minimally
processed foods should be considered due to the benefits of antioxidants acting positively
against SCA [171,172].

Micronutrient deficiencies in these patients may increase vulnerability to stunting,
inflammation, opportunistic infection, and acute painful crisis [173]. A number of micronu-
trient deficiencies and their associations, including iron, zinc, copper, folic acid, pyridoxine,
and vitamin E, have been long considered and addressed [174]. While it is possible that
folic acid supplementation may increase serum folate levels, the effect of supplementation
on SCA remains unclear [175].
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Randomized clinical trials have assessed the efficacy of antioxidant nutrient supple-
mentation in reducing hemolysis in SCD patients. It found that vitamin C and E, when
used in safe doses, were considered to worsen hemolysis [176]. However, supplementation
with ω-3 fatty acids, vitamin A, and zinc were reported to improve indirect hemolytic
markers [172].

Some preliminary meta-analyses have found a that supplementation with the semi-
essential amino acid L-arginine or its precursors has a beneficial effect on patients with
SCD. The conversion of proline, glutamate/glutamine, and the nonproteinogenic amino
acid citrulline leads to the endogenous synthesis of L-arginine [177,178], which plays an
important role in cell division, the healing of wounds, the stimulation of protein synthesis,
immune function, and the release of hormones [179].

Morbid occurrences in SCA lead to an increase in the generation of reactive oxygen
species (ROS) through the activation of several prooxidant enzymes. Under normal con-
ditions, these enzymes would be balanced between oxidant and antioxidant systems to
prevent oxidative damage. However, the injury of sickle red blood cells causes hemolysis,
the release of free hemoglobin, the modification of mitochondrial respiratory chain activity,
and red blood cell autooxidation [180].

A surplus of free radicals can damage cells, causing illness and aging and contributing
to greater oxidative stress in erythrocytes, endothelial cells between the bloodstream and the
surrounding tissues cells, polymorphonuclear leukocytes, and thrombocytes. This oxidative
stress is associated with multiorgan disorders, vasculopathy, and cellular dysfunction [181].

Despite the capacity, constraints, and frustrations of antioxidant treatment to date,
many foods containing powerful antioxidant enzymes may play an essential role in con-
tributing to the mitigation of oxidative-related obstacles. This enables the development of
nutritional strategies aimed at improving antioxidant status in SCA patients [182].

However, free radicals react too quickly with lipids, proteins, and nucleic acids in
cell membranes, making it challenging for exogenous monomers to scavenge them ef-
fectively [183]. Hence, the idea of collecting these radicals in biological systems using
exogenous compounds has been considered impractical [139].

It is not the deficit of essential polyunsaturated fatty acids in the diet, but rather the
modified metabolic pathways of fatty acid elongation and desaturation on the endoplasmic
reticulum membrane in children with SCD that leads to reduced polyunsaturated fatty
acids in the phospholipids of the cell membranes, which contributes to known disease
symptoms [184].

The possible nutritional strategy, when used as a complement to adequate treatment,
must focus on mediating the mechanism of a free-radical substitution reactions. This
involves maintaining a balance between the formation and removal of free radicals, which
can be achieved through a diet rich in healthy, high-antioxidant foods [185].

In individuals with SCD, the antioxidant defense system is greatly compromised
due to depleted expression and activity levels of antioxidant enzymes (e.g., superoxide
dismutase-SOD, catalase-Cat, and glutathione peroxidase-GPx). These enzymes play a
crucial role in breaking down hydrogen peroxide and thus controlling its intracellular
concentration [186,187].

5.1. African Plant Resources in Sickle Cell Disease

There is the need in Africa to embrace both natural and pharmaceutical medicine,
creating a harmony between nature and science and dismissing any stigma associated with
sickle cell disease. The exploration of native African herbs and plants for medicinal use has
long been the subject of extensive research. In addition, there has been a time-consuming
search for new drugs through molecular pharming [188].

Interest in natural products is gaining attention as an integrative approach to the
management of sickle cell disease, particularly in Africa, where there is rich biodiversity.
As many as 5000 local medicinal foods [189] directly sourced from the wild are used by
traditional healers, who serve approximately 80% of the African population [190,191].
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Traditional remedies, often based on empirical observations that have proven their
accuracy over time, are more popular than pharmaceutical drugs. However, this knowledge
is at risk of being lost to younger generations because it is verbally transferred from
generation to generation, and they are not eager to inherit this heritage [192]. The bioactive
compounds found in these tropical plants interact with the gut microbiota and the available
phytonutrients, playing a critical regulatory role in human health [193].

Several structured surveys have been conducted in Sub-Saharan Africa, where approx-
imately 80% of the world’s SCA cases occur. These surveys were designed to assess various
challenges and dietary aspects of patients with SCA. Their aim was to identify knowledge
gaps and prioritize future areas of research [32,35,166,194].

The potential benefits of nutrition in African SCD patients have been studied primarily
in Nigeria [195], with less research in other Sub-Saharan countries, such as Ghana, Sudan,
Kenya, Malawi, Tanzania, Cameroon, Ivory Coast, Gabon, and Mali. These studies have
explored the use of indigenous medicinal sources, including seed oils from Solenostemon
monostachyus, Ipomoea involucrate, and Carica papaya plants, commercial Cajanus cajan plant
extracts, and Acacia Senegal seed oil [166] (Figure 3).
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Figure 3. Some of the tropical plants used in SCA in Sub-Saharan Africa.

The leaves, root bark, and seeds of Alchornea cordifolia (Christmas bush) and Ceiba
pentandra are wild harvested and cultivated for their medicinal uses in DR Congo. They are
used to produce a beverage known as “blood tonic” that is used by individual suffering
from SCA [196].

Found throughout Africa, Moringa oleifera is rich in many phytochemicals exhibiting
antiurolithiatic properties. It is widely used for a vast number of ailments and might be
significant in the management of SCD [197] (Table 3).

Table 3. Traditional medicine in sickle cell disease.

Plant

Alchornea cordifolia Traditional use as “blood tonic” [193]

Ceiba pentandra Traditional use as “blood tonic” [193]

Moringa oleifera Antiurolithiatic properties [195]

Nigella sativa Antioxidant properties [196]

A study conducted in Sudan on Nigella sativa (black cumin seed) oil extract, which is
known to have calcium antagonist antioxidant properties that are useful in the management
of SCA, reported significant anti-sickling activity in vitro [198].
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5.2. Mushroom Nutritional Prospects

The typical herbal remedies used by traditional healers in different parts of Africa
and elsewhere for the treatment of SCD were recently evaluated [199,200]. Safe, effective,
and inexpensive therapeutic agents are urgently needed in Africa, and SCD management
can be considered in two main aspects: medical protection and the management of major
complications, both of which can be complemented by nutritional approaches [201].

Exogenous food-derived microRNAs, obtained through cross-kingdom modulation,
may enter the human host from mushrooms, marine algae, and herbal teas. These microR-
NAs may serve as alternative tactics for new therapeutic effects, enhancing the existence of
microRNA interactions between the diet, host, and gut microbiota [202–204].

Several reviews have revealed a solid connection between oxidative stress, inflam-
mation, the immune response, and the pathogenesis of SCD, enhancing the role of the
dominant natural immune system [205,206].

Despite the use of medicinal plants for millennia, information on African mushrooms
in healthcare is less abundant [207,208]. Edible medicinal mushrooms, whether in the
form of biomass, extracts, or derivatives, are potential sources of many bioactive products
that can regulate immunity [209]. Mushroom bioactive elements exhibit various pharma-
cological activities, including multitargeting bioactivities, low toxicity, high safety, and
affordability, making them valuable medicinal sources [210].

These fungal biochemical compounds include carbohydrates (β-glucans/lentinan,
trehalose, chitosans) [210], carbohydrate-binding proteins (lectins) [211], mono- and polyun-
saturated fatty acids(linoleic, oleic, palmitic) [212], phenolic compounds (caffeic, gallic,
cinnamic, p-hydroxybenzoic, p-coumaric, and melatonin) [213], indole compounds (L-
trytptophan) [214], vitamins (vitamins B complex, vitamin C, and tocopherols), terpenoids
(carotenoids such as β-carotene and lycopene) [215], and unique molecules (e.g. ergoth-
ioneine and glutathione) [216,217].

Natural products, which have the ability to affect numerous targets and impact several
signaling pathways, are widely recognized for their health benefits. Natural antioxidant-
rich foods include berries, avocado, apples, cruciferous vegetables, nuts, olive oil, pulses,
tomatoes, and mushrooms [218]. Mushrooms also possess strong anti-inflammatory effects.
Despite being underappreciated as a medicinal source in Western countries, there is a
growing need for further investigation, including their potential role in complementary
prophylactic dietary treatments for sickle cell disease.

The consumption of edible mushrooms, either unprocessed or as supplements (extracts
or as biomass), has been well-documented for many years as powerful instrument in
maintaining health, longevity, and quality of life [219]. Their mode of action has been
studied and can be attributed to their unique composition, including the essential amino
acid (ergothioneine) [220], a type of β-glucans [221,222], specific enzymes, and secondary
metabolites [223,224]. The way in which mushroom bioactive components interact with
gut microbiota, influencing metabolism and various health disorders, has been the subject
of many recent reviews [225,226].

Certain mushrooms are very rich in superoxide-dismutase, glutathione-peroxidase,
catalase, and proteases, which are known to interact with transcription factors (e.g., nuclear-
factor erythroid 2-related factor 2), thus preserving redox homeostasis in the cell and
counteracting oxidative stress [227].

The regulatory effects of mushroom active ingredients (e.g., polyphenols) on ferropto-
sis has been described [228]. Edible mushrooms contain the ferroptosis inhibitor gallic acid,
a natural hydroxybenzoic acid, which is also present in various foods such as nuts, red
fruits, olive oil, green tea, and vegetables [229]. Ferroptocide is an inhibitor of thioredoxin,
a central redox system in mammalian cells, that induces ferroptosis, which is the unique
form of programmed death distinct from apoptosis, and maintains redox balances in sickle
red blood cells [230–232].

Substantial oxidative stress is a prominent contributor to SCD due to a dispropor-
tionate yield of reactive oxygen species compared with the ability of antioxidant agents,
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including enzymes such as SODs, catalase, and glutathione peroxidase, to counteract them.
Multiple inflammatory pathways are stimulated in a chain reaction involving sickle cell
redox balance, hemolysis, vasculopathy, and regulation in the immune response [205].

Research on Ganoderma lucidum mushroom extracts revealed a significant decrease
in hemoglobin polymerization rate, enhancing the binding of oxygen, thus preserving or
stabilizing the structure of hemoglobin [233].

The mushroom Auricularia auricular, which is known for its medicinal properties [234]
and anti-sickling potential, was recently studied in Nigeria. The study showed that this
functional food, which has strong free radical scavenging activity, may reverse and stabilize
erythrocyte membrane integrity and morphology. This means that this mushroom may
offer a valuable natural option for the treatment and management of sickle cell anemia [235].

The mushroom Hericium erinaceus, mainly through its polysaccharide components, has
traditionally and historically been used as a natural remedy for gastrointestinal disorders
and epigastric pain. However, to the best of our knowledge, it has not been tested for use
in treating SCD chronic pain [236]. H. erinaceus can regulate heat shock proteins (HSP70),
which has the potential to offer beneficial health effects [237].

Termite mushrooms (Termitomyces), a species from Africa and Asia, is used to increase
hemoglobin levels (12.2 g/dL) and white blood cells (26,300 cells/mm3) [238] and con-
tributes widely to modern medical research because its mycelial biomass expresses strong
antioxidant potential [239] (Table 4).

Table 4. Mushrooms in sickle cell disease.

Mushroom Outcome

Ganoderma lucidum Decrease in hemoglobin polymerization rate [233]

Auricularia auricular Free radical scavenging activity [235]

Hericium erinaceus Regulation of heat shock proteins (HSP70) [237]

Termitomyces Increase hemoglobin levels and white blood cells [238]

6. Concluding Remarks

The phenomenal success of the new genetic treatment for SCD is an important mile-
stone, but it is not yet available to all patients.

This review assesses the present evidence on the singular mechanisms of traditional
and new treatments for SCD, a condition that commonly leads to a dysfunctional immune
response. It also offers some suggestions regarding nutritional strategies for SCD patients,
particularly those in Sub-Saharan Africa. There is an unprecedented need for clinical
research to better explore the potential benefits of nutrition-related interventions involving
commonly used medicinal plants.

There is a global need to identify new ways to maximize the well-being of individuals
with SCD, and nutritional interventions could possibly play a pivotal role. It is important to
promote the analysis, investigation, and development of functional foods that can provide
readily available, cost-effective, and complementary or alternative molecules to decrease
the number of crises in individuals with SCD. Hence, the overall nutrition of children with
SCD should be improved, leading to an enhanced quality of life.

A systematic assessment of the drivers of the nutritional status of SCD patients should
be a priority for future research. This assessment should also explore the use of various
indigenous plant resources in Sub-Saharan Africa in this domain.
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