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Abstract: This study aimed to characterize the composition of lipids in the red blood cells (RBCs)
of adolescent swimmers and correlate this lipidome with the aerobic performance of the athletes.
Five experimental assessments were performed by 37 adolescent swimmers. During the first session,
the athletes went to the laboratory facility for venous blood sampling. The critical velocity proto-
col was conducted over the 4 subsequent days to measure aerobic performance (CV), comprising
maximal efforts over distances of 100, 200, 400, and 800 m in a swimming pool. RBCs were obtained
and extracted for analysis using the liquid chromatography—high resolution mass spectrometry
untargeted approach. A total of 2146 ions were detected in the RBCs, of which 119 were identi-
fied. The enrichment pathway analysis indicated intermediary lipids in the glycerophospholipid,
glycerolipid, sphingolipid, linoleic acid, and alpha-linolenic metabolisms, as well as pentose and
glucuronate interconversions. A significant impact of the intermediary lipids was observed for the
glycerophospholipid metabolism, including phosphatidylethanolamine (PE), phosphatidylcholine
(PC), 1-acyl-sn-glycero-3-phosphocholine, sn-glycerol 3-phosphate, and phosphatidic acid. Inverse
and significant associations were observed for PE 18:2/18:3 (r = −0.39; p = 0.015), PC 18:3/20:0
(r = −0.33; p = 0.041), and phosphatidic acid 18:0/0:0 (r = −0.47; p = 0.003) with aerobic performance.
Swimmers who exhibited higher levels of aerobic performance also had the lowest abundance of PE,
PC, and phosphatidic acid.

Keywords: lipidomics; swimming; red blood cells; critical velocity; aerobic performance

1. Introduction

Although biofluids are the most preferred biospecimen for biochemical analysis, a
paucity of interest has been given exclusively to red blood cells (RBCs). The main role of
RBCs is to act as carriers of both oxygen and carbon dioxide [1,2], explaining why these cells
are so important for those interested in aerobic exercise performance [3,4]. The relevance of
hemoglobin is widespread in scientific studies, but this is not the only aspect that needs
to be considered in the transport of respiratory gases. Indeed, the membrane properties
of RBCs are also able to affect their oxygen-carrying capacity [5]. Evidence supporting
this comes from rheological studies showing that more deformable/flexible RBCs may
move through the microcirculation more easily [6–10]. Among the different issues that
may be explored regarding membrane components, one that deserves attention is the
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composition of lipids, which appears important in RBCs given the absence of nuclei and
organelles [11–14].

Given the importance of lipid composition in RBCs, lipidomics appears as an important
tool, not only for understanding the biophysics of RBCs but also for providing valuable
insights into the determinants of aerobic exercise performance. Although the evaluation
of lipids in sports is growing, research on the topic is still incipient. Only a few lipidomic
studies have investigated RBCs in the context of physical exercise [15–17]. To the best of
our knowledge, there is a lack of studies exploring whether lipids in RBCs are related
to aerobic exercise performance. Liquid chromatography coupled to mass spectrometry
(LC-MS)-based lipidomics has already been performed outside of the sports context [18–20].
Indeed, MS-based lipidomics has emerged as a promising source of information, with
considerable sensitivity and the ability to detect thousands of metabolites simultaneously.
Therefore, by using an untargeted lipidomic approach, the first aim of the current work
was to characterize the composition of lipids in the RBCs of swimmers, which are known
to have a high dependence on aerobic metabolism as an energy requirement [21]. The
second and main goal of this research was to verify the possible relationships between RBC
lipidome and aerobic performance. For this, we used eigenvector centrality to understand
which lipids would be correlated with the critical velocity, a valid measure of aerobic
capacity [22,23].

2. Materials and Methods
2.1. Participants

Data from the participants included in this study were published before, but concern-
ing distinct analysis [24]. Five experimental assessments were performed by 37 adolescent
swimmers (male, n = 19; age = 15 ± 2 years; body mass = 61 ± 11 kg; height = 166 ± 16 cm;
female, n = 18; age = 14 ± 2 years; body mass = 55 ± 9 kg; height = 160 ± 7 cm). The
athletes went to the laboratory facility during the first session for venous blood sampling
and anthropometric measurements. The critical velocity protocol was conducted over the
4 subsequent days (48 h apart at the same time of day) to measure aerobic performance,
that is, the aerobic component of the critical velocity protocol. After the identification of
molecules in the RBCs by the lipidomic procedure, the complex networks elicited the lipids
with higher relevance for aerobic performance (Figure 1).

According to the training periodization created by coaches, the swimmers were at the
start of the general preparation period. Coaches were advised by researchers to not conduct
physical training during the experimental time interval. Hence, during the critical velocity
protocol, athletes only engaged in light, leisurely activities. Throughout the experiment,
researchers instructed athletes to keep the same individual hydration/food habits.

2.2. Determination of Aerobic Performance

The critical velocity protocol was conducted on four randomized maximal efforts over
distances of 100, 200, 400, and 800 m in a swimming pool (25 m). Athletes were encouraged
by researchers and coaches to provide their best efforts during trials. For determination of
the aerobic estimate (e.g., CV), the equation D = CV × t + AWC was applied, where D is
equivalent to distance, t is related to time to cover the distance, AWC (e.g., anaerobic work
capacity) refers to the y-intercept, and CV relates to the slope of the regression. Given the
purposes of this report, only CV was considered for the relationship with the RBCs’ lipids.

2.3. Red Blood Cell Profiles

Before having their blood drawn, adolescent swimmers were instructed to abstain
from alcohol and unusual foods and drinks for 3 days. A volume of 5 mL of venous blood
was drawn by a skilled nurse for hematological evaluations. Samples were brought to a
specialized laboratory facility where the Coulter LH 750 hematology analyzer (Beckman
Coulter, Miami, FL, USA) [25] evaluated the red blood cell profile, including red blood cell
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count, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin,
mean corpuscular hemoglobin concentration, and red cell distribution.
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Figure 1. Experimental design of the study. Red blood cells (RBC) were collected by centrifugation of
venous blood samples (Panel 1). The RBCs were preserved at −80 ◦C until further use. Subsequently,
the swimmers underwent four predictive trials at 100, 200, 400, and 800 m to determine the critical
velocity (Panel 2). Panel 3 shows that untargeted lipidomics were performed using an ultra-high-
performance liquid chromatography system coupled to a quadrupole time-of-flight mass spectrometer.
In Panel 4, the complex network and eigenvector centrality identified the lipids that were most
relevant for the critical velocity, which was the target of this analysis.

2.4. Extraction and Lipidomic Analysis of RBCs

In addition to the blood sample collected for hematological analysis, another 5 mL
of venous blood was collected for lipidomic analysis in a separate tube. The sample was
centrifuged at 1500 rpm for 10 min, allowing the separation of plasma and RBC. The
RBC samples were transferred to other tubes and frozen at −80 ◦C until extraction. The
extraction was based on Gil, et al. [26]. Each sample (200 µL) was then extracted by
adding 850 µL of a cold solution composed of methanol (MeOH)/methyl-terc-butyl-ether
(MTBE)/chloroform (CHCl3) (1.33:1:1, v/v/v). Afterwards, the samples were homogenized
by vortexing for 30 min (2000 RPM at 22 ◦C), and then vortexed for an additional 30 s.
Samples were again centrifuged (13,000 RPM, 10 min, 4 ◦C), and the supernatant was
collected and dried over a nitrogen gas (N2) flow. Samples were resuspended in 200 µL of
a solution of isopropanol (ISP)/acetonitrile (ACN)/H2O (2:1:1 v/v/v).

A total of 25 µL of each resuspended sample was collected to compose a pooled
sample used as quality control (QC). To check deviations in extraction and system stability,
QC samples were injected after 10 samples. Furthermore, a QC sample was used at the
beginning of the experiment to perform instrumental stabilization of the LC-MS system.
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Participant samples were extracted and analyzed randomly to observe biological variation
and minimize instrumental bias.

The analyses were adapted from Silva et al. [27]. An ACQUITY UPLC was used,
coupled to a XEVO-G2XS (QToF) quadruple time-of-flight mass spectrometer (Waters,
Manchester, UK) equipped with an electrospray ionization (ESI) source operated in the
negative ionization mode. For lipidomic analysis, we employed an ACQUITY UPLC® CSH
C18 column (2.1 mm × 100 mm × 1.7 µm, Waters), using the mobile phase A composed of
an ACN:H2O solution (60:40, v/v) with 10 mM ammonium formate + 0.1% formic acid, and
the mobile phase B, composed of ISP/ACN (90:10, v/v) with 10 mM ammonium formate +
0.1% formic acid. The flow rate was 0.4 mL min−1. Initially, the column was conditioned
with 40% B, increasing to 43% over the next 2 min and subsequently to 50% within 0.1 min.
In the next 9.9 min, the gradient was gradually increased to 54% B and then to 70% B in
0.1 min. At the end of the gradient, B was increased to 99% over 5.9 min; after this period,
solution B returned to 40% in 0.1 min, balancing the column for the next injection for the
next 1.9 min.

The mass spectrometer was operated in MSE mode with an m/z range of 50–1200 Da,
and an acquisition time of 0.5 s per scan. MSE analysis was operated at 6 V for low-
collision energy and a ramp of 20–50 V for high collision energy. Leucine enkephalin
(molecular weight = 555.62; 200 pg L−1 in 1:1 ACN: H2O, v/v) was used as the lock mass
for mass accuracy, and a 0.5 mM sodium formate solution was used for calibration. Other
parameters were as follows: source temperature = 140 ◦C, desolvation temperature =
550 ◦C, desolvation gas flow = 900 L h−1, capillary voltage = 2.5 kV, and cone voltage =
40 V.

2.5. Data Processing and Putative Identification of Metabolites

The LC-MS raw files were processed using the Progenesis™ QI software v2.4 (Non-linear
Dynamics, Newcastle, UK), which allowed the selection of possible adducts, peak align-
ment, deconvolution, and annotation of compounds based on MSE experiments. An align-
ment score of 95% was adopted. The adducts [M+H]+, [M+K]+, [M+Na]+, [M+ACN+H]+,
[M+H−H2O]+ and [M+NH4]+ were considered for the positive acquisition mode, and
[M−H]−, [M+Cl]−, [M−H2O−H]−, and [M+FA−H]− for the negative acquisition mode.
Progenesis QI generates an intensity table of the features, which are the ions of each sam-
ple, labeled according to their nominal masses and retention times, as a function of their
intensity, considered as the areas of the extracted ion chromatogram.

Due to low- and high-energy acquisition enabled by the use of MSE, we have informa-
tion on precursor ions (low energy) and fragments (high energy) in the same spectrum. A
precursor mass error of ≤5 ppm was considered, and a fragment tolerance of ≤10 ppm.
Fragmentation profile, mass accuracy, mass error, and isotope similarity were evaluated
to accept the annotated molecules. To allow the compatibility of Progenesis PQI data and
external SDF-based spectra libraries, we used an in-house software named “SDF2PQI”
to increase the number of fragment matches [28]. SDF2PQI was recently detailed else-
where and is available free of charge. External SDF-based spectra libraries were used, such
as LipidMaps (http://www.lipidmaps.org/, accessed on 7 December 2023), the Human
Metabolome Database (http://www.hmdb.ca/metabolites), and the MoNA—MassBank of
North America (https://mona.fiehnlab.ucdavis.edu/).

2.6. Statistical Analyses

The complex network was created based on only significant (p < 0.05) correlations [24,29]
between CV and erythrocyte lipids, regardless of the correlation coefficient. In the net-
work, each variable that was associated with another was represented as a node, and the
associations between the variables’ edges connecting these nodes represented connections
between nodes. By selecting CV as a target inside the topology, weighted and targeted
complex networks were developed. These methods gave positive weights to both positive
and inverse correlations equally, regardless of the correlation’s direction.

http://www.lipidmaps.org/
http://www.hmdb.ca/metabolites
https://mona.fiehnlab.ucdavis.edu/
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In the eigenvector approach, the centrality of a node is calculated using the target
techniques based on the centrality of its neighbors and the weights of its edge connections.
The edge weights were determined by multiplying Pearson’s correlation coefficient between
the nodes connected by the edge (which can vary from 0.01 to 1; higher means closer) by
the edge’s degree of closeness to the target node CV (which can vary from 0.01 to 1; higher
is better). The centrality eigenvector values were acquired using a Python (version 3.9.3)
application created specifically for the study and the NetworkX 2.5 package [30]. The
Shapiro–Wilk test confirmed the data normality, and the Pearson approach was used for
the correlation analysis. Data are expressed as mean ± standard deviation.

To select features based on the eigenvector approach, a threshold of ≥0.0001 was
adopted. The principal component analysis (PCA) and enrichment analysis were performed
using MetaboAnalyst 5.0 software. The relative standard deviation (RSD) was calculated for
the intra-batch QC group, and those features found with an RSD < 30% were not considered
for statistical analysis. The dataset was sum-normalized, log-transformed, and scaled by
pareto. The false discovery rate (FDR) was applied to control the rate of false positive
findings, considering p < 0.05. The impact in enrichment analysis refers to a quantitative
measure that assesses the biological relevance or importance of enriched pathways.

3. Results

Performances on the 100, 200, 400, and 800 m were obtained at 73 ± 9 s, 170 ± 16 s,
354 ± 43 s, and 747 ± 84 s, respectively. Consequently, the CV was calculated at
1.05 ± 0.11 m/s, with a high R2 (0.999 ± 0.001). Parallel to the mass spectrometry analy-
sis, the red blood cell profile was determined (red blood cell count = 4.83 ± 0.37 106/µL;
hemoglobin = 13.8 ± 1.01 g/dL; hematocrit = 42.8 ± 2.95%; mean corpuscular volume
= 88.6 ± 3.40 fl; mean corpuscular hemoglobin = 28.7 ± 1.04 pg; mean corpuscular
hemoglobin concentration = 32.3 ± 0.5 106/µL; red blood cell distribution = 13.4 ± 0.4%).

LC-MS raw data were processed, and 2823 signals were detected and filtered by RSD
for the QC group. The analytical quality and the LC-MS reproducibility can be observed by
the clustering of the QC group in PCA (Supplementary Figure S1). The selection of features
was based on eigenvector value (≥0.0001), with 266 indicated as the differential, identified
(n = 119), and grouped by chemical subclass.

Table 1 presents the total of erythrocyte lipids detected, identified, and relevant for
the CV of adolescent swimmers. Lipids from the glycerophospholipids and sphingolipids
classes comprised 81.5% of the identified ones. The complete list of lipids, main classes,
sub-classes, fragments, and the respective eigenvector values can be visualized in Supple-
mentary Table S1.

Table 1. Lipids that were detected and identified in RBCs and also relevant (i.e., eigenvector) for the
aerobic performance of adolescent swimmers.

n Eigenvector Range (A.U)

Total Features with RSD < 30% 2146 0–0.088345
Features selected by eigenvector 266 ≥0.0001

Lipids Identified 119 0.000102–0.088345
Glycerophospholipids 65 0.000102–0.085850

Sphingolipids 32 0.000197–0.088324
Fatty Acyls 6 0.000104–0.088345

Neutral glycosphingolipids 3 0.000174–0.068406
Glycerolipids 2 0.001768–0.074106

Others classes * 11 0.000112–0.079785
A.U—arbitrary units; * Others include carboxylic acids and derivatives, organooxygen compounds, lactones,
phenols, pyrans, pyridines and derivatives, and dihydrofurans.

Before proceeding with further analysis on the lipids relevant for aerobic performance,
a comparison regarding the identified molecules between male and female athletes was
performed. The PCA analysis showed that the data variability was not sufficient to discrim-
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inate between male and female adolescent swimmers by the lipids (Figure 2). Based on this
result, the enrichment and the last analysis considered the total sample regardless of sex.
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Figure 2. The principal component analysis (PCA) between male and female adolescent swimmers
regarding the lipids identified in lipidomic analysis that were relevant for aerobic performance;
red—female; green—male.

The enrichment pathway analysis was performed with all metabolites (n = 119),
which indicated intermediary lipids in the glycerophospholipid, glycerolipid, sphingolipid,
linoleic acid, and alpha-linolenic metabolisms, as well as pentose and glucuronate inter-
conversions (Figure 3). A significant impact of the intermediary lipids was observed for
the glycerophospholipid metabolism, including phosphatidylethanolamines (PEs), phos-
phatidylcholines (PCs), 1-acyl-sn-glycero-3-phosphocholine, sn-glycerol 3-phosphate, and
phosphatidic acids. While the latter two classes of lipids also have intermediate glyc-
erolipid metabolisms, sphingomyelin (SM) and ceramides (CERs) were found to be hits
of the sphingolipid metabolism. In addition to glycerophospholipid metabolism, PC also
has intermediate linoleic acid metabolism, which was highlighted in this pathway. Lastly,
D-xylose and D-xylonolactone were the hits in pentose and glucuronate interconversions.
The entire glycerophospholipid metabolism is presented in Supplementary Figure S2.
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The lipids highlighted in the glycerophospholipid metabolism pathway were corre-
lated with the CV (Figure 4). Inverse and significant associations were observed for PE
18:2/18:3 (Figure 4A), PC 18:3/20:0 (Figure 4B), and phosphatidic acid 18:0/0:0 (Figure 4E)
with the CV.
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Figure 4. Correlation between the RBC lipids highlighted in the enrichment analysis for the glyc-
erophospholipid metabolism pathway with the critical velocity (CV) of adolescent swimmers. (A) cor-
relation between phosphatidylethanolamine 18:2/18:3 with CV; (B) correlation between phosphatidyl-
choline 18:3/20:0 with CV; (C) correlation between 1-acyl-sn-glycero-3-phosphocholine 18:0/0:0 with
CV; (D) correlation between sn-glycerol 3-phosphate with CV; (E) correlation between phosphatidic
acid 18:0/0:0 with CV. Red—female; green—male; * p < 0.05.

4. Discussion

The lipidomics approach, along with the targeted network analysis, revealed 119 RBC
metabolites associated with the CV of adolescent swimmers. The differential abundance of
lipids resulted in a significant impact on glycerophospholipid metabolism. Among the glyc-
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erophospholipids, compounds representing subclasses such as phosphatidylethanolamine,
phosphatidylcholine, and phosphatidic acid were inversely correlated with critical veloc-
ity. The data presented here can support the view that these glycerophospholipids are
downregulated in athletes with high aerobic performance.

In our enrichment pathway analysis, we observed a marked relevance of glycerophos-
pholipid metabolism (Figure 3A). Since glycerophospholipids are a class of lipids that con-
stitute a major component of cell membranes [31], they are expected to have an important
role for RBCs. Our finding, together with those of others reported in the literature [14,16,32],
reinforces the idea that glycerophospholipids are inexorably linked to the structure of RBCs.
The reason why the metabolism of glycerophospholipid was highlighted in the RBCs of
swimmers is an interesting finding and deserves further consideration. An enhanced use of
fat metabolism can be responsible for the prominence of glycerophospholipid metabolism.
Thus, we hypothesize that aerobic activities included in the scope of swimming training
may play a role in stimulating fat-oxidative pathways. The results in the present study are
not sufficient to demonstrate a causal effect of aerobic training on glycerophospholipids, but
it would not be surprising to find an increased flux of lipids in the circulation of endurance-
trained swimmers. Given that RBCs are incapable of performing biosynthesis due to the
lack of organelles, it is opportune to mention that the membrane lipid composition of RBCs
depends on the exchange with the plasma lipids [12–14]. In support of this, hemorheo-
logical changes have been demonstrated in rabbits with hypercholesterolemia [33]. Other
researchers have proved that RBCs are sensitive to plasma lipids [34–36].

With regard to the correlations, we found a significant inverse relationship between
CV and three metabolites of glycerophospholipid metabolism. Swimmers who exhibited
higher levels of CV (a measure related to aerobic performance) also had the lowest abun-
dance of phosphatidylethanolamine at 18:2/18:3 (r = −0.39; p = 0.015), phosphatidylcholine
at 18:3/20:0 (r = −0.33; p = 0.041), and phosphatidic acid at 18:0/0:0 (r = −0.47; p= 0.003).
At the moment, we have no conditions to elucidate these relationships, but it appears ap-
propriate to speculate that changes in RBC glycerophospholipids may be indirectly linked
with physical fitness. Phosphatidylethanolamine is a key regulator that we can use as an
example. There are reasons to believe that a high amount of phosphatidylethanolamine
is indicative of poor health. Supporting this, increased phosphatidylethanolamine lev-
els have been found in non-alcoholic steatohepatitis patients [37]. An increased phos-
phatidylethanolamine content of platelets has also been found in patients with poorly
controlled diabetes [38], and increased phosphatidylethanolamine has been described in
cancer [39] and hypertension [40].

There is a growing body of evidence that supports the idea that phosphatidylethanola-
mines can be modified by glycation, oxidation, and other chemical processes [41–45]. With
this in mind, it is reasonable to expect harmful changes in membrane thickness and rigidity,
and thus RBC locomotion could be seriously compromised [46,47]. This agrees with
previous findings confirming that acute exercise decreases RBC deformability [48–51]. In
contrast to acute exercise-related alterations in RBCs, exercise training is known to improve
hemorheological parameters [50]. Although we have no measurements of hemorheological
parameters (e.g., whole-blood viscosity, RBC aggregation, RBC deformability), we believe
that endurance-trained swimmers have enhanced blood flow capacity (likely facilitating
oxygen diffusion and tissue repair during rest moments). This, in turn, could be achieved
with highly deformable RBCs, which would have conditions to pass (due to reduced
membrane stiffness) through the smallest capillaries. All these findings are intriguing and
emphasize that the RBC has a complex role, which further depends on the condition in
which these cells were harvested, such as exercise or rest (which was our case). Future
in-depth studies will need to be conducted to understand mechanisms involving aerobic
capacity and RBC glycerophospholipids, comparing both rest and exercise conditions from
an integrated perspective. Some of the main findings are sketched in Figure 5.

There are some studies employing metabolomics in the context of swimming [52–54].
Researchers have characterized the serum metabolic profile of swimmers to identify fitness
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levels or predict competitive potential. Cai et al. [55] discriminated swimmers with different
competitive levels using high-density lipoprotein, glutamine, methanol, and α-glucose. On
the other hand, plasma tyrosine was inversely associated with aerobic performance [56].
Although the presented knowledge has contributed to the characterization of different
metabolites present in the plasma and serum of swimmers, there is a scarcity of studies
exploring RBCs. The novelty of our study was to analyze the RBC lipidome in athletes
under rest conditions. The researchers employing lipidomics in RBCs have focused on
the metabolic changes that occur after an exercise bout [15,16]. Knowing all the benefits
that RBCs can bring to the aerobic physical performance of swimmers and the scientific
potential of the lipidomic approach, it becomes of great value to characterize the lipid
molecules present in the RBCs of young swimming athletes.
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Our study has some limitations. We did not examine whether athletes would have a
different RBC lipidome under exercise or diet situations. Although linked to aerobic exercise
performance, we did not analyze the shape of RBCs by histological assays. Given that RBC
membrane fluidity and lipid composition may be affected by nutrition factors [57–62], it
is imperative to account for this factor in a further experimental design. Therefore, more
studies are needed to get a better understanding of the impact of athletes’ diets on the RBC
membrane lipidome. At the moment, we do not have enough information on food ingested
by swimmers, despite the fasting state of athletes. Despite limitations, our study is a first
step in exploring RBC lipidomics in adolescent swimmers. To our knowledge, our study
is the first to demonstrate a connection between some glycerophospholipids in RBCs and
aerobic exercise performance (this knowledge could be useful in the fields of medicine and
biology). Another approach to be highlighted is the use of critical velocity protocol, which
can access aerobic capacity without the necessity of blood collection. Still, we investigated
whether the strength and direction of the association were dependent on sex. The PCA
analysis found no difference between male and female adolescent swimmers by the lipids,
and the dispersion was homogeneous without any agglomeration for females (red circle)
and males (green square). This supports the possibility that other factors beyond gender
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are responsible for the changes in RBC glycerophospholipids in athletes. We believe that
glycerophospholipids in RBCs are an important link between aerobic exercise performance
and the regulation of oxygen-carrying capacity. Considering that RBCs regulate several
processes that are pivotal in physiology, our findings provide new insights and bring us
much closer to understanding RBC adaptations in athletes with different levels of aerobic
capacity. The next step will be to explore whether adaptations resulting from aerobic
training could be attributed to changes in the RBC lipidome.

5. Conclusions

A significant impact of the intermediary lipids was observed for glycerophospho-
lipid metabolism in the red blood cells of young swimmers. Among these lipids, phos-
phatidylethanolamine 18:2/18:3, phosphatidylcholine 18:3/20:0, and phosphatidic acid
18:0/0:0 were inversely correlated with CV, suggesting that these are downregulated in
athletes with high aerobic performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu16060765/s1, Figure S1: Principal Component Analysis (PCA)
results. PCA using all metabolites detected. The red point represents the QC Samples, and the green
point represents Swimmers Samples; Figure S2: The glycerophospholipid metabolism pathway and
the lipids (i.e., red) that were identified in erythrocytes of young swimmers; Table S1: Compounds
identified (n = 119) for red blood cell lipidomics.
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