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Abstract: Chronic obstructive pulmonary disease (COPD) is a prevalent lung condition associated
with significant morbidity and mortality. The management of COPD classically involves pulmonary
rehabilitation, bronchodilators, and corticosteroids. An aspect of COPD management that is currently
lacking in the literature is nutritional management, despite the prevalence of inadequate nutritional
status in patients with COPD. In addition, certain nutritional imbalances have been reported to
increase the risk of COPD development. This review summarizes the current literature on the role
diet and nutrients may play in the risk and management of COPD development.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a common lung condition with a
prevalence of more than 212 million cases and 3.3 million deaths worldwide [1]. COPD
is caused by irreversible airflow obstruction [2–4] due to chronic bronchitis and/or em-
physema [2]. Common symptoms include dyspnea [2,5], cough [2,5], increased sputum
production [2,5], and decreased exercise tolerance [2–6]. The most commonly cited risk fac-
tor for the development of COPD is cigarette smoke [2,7,8]. However, never-smokers make
up a substantial portion of patients with COPD [9]. Indeed, it is estimated that up to half of
COPD cases worldwide are due to non-tobacco causes [10]. This has led to investigations
into other factors that may contribute to and/or accelerate COPD development, including
dietary imbalances [5,8,11,12].

Weight loss and appetite suppression occur in nearly half of patients with COPD [13],
making malnutrition a common comorbidity [14]. Multiple factors precipitate this, includ-
ing heightened physical demands of ventilation and increased sedentary behaviors [15].
Consequently, individuals with COPD scarcely obtain adequate amounts of micronutri-
ents [16]. Despite this, nutritional research in patients with COPD is lacking.

In this narrative review, we will summarize the data on various nutrients, diets, and
supplements in the prevention and management of COPD (Table 1). This review was
conducted via a literature search on PubMed using the keywords “nutrition”, “nutrients”,
“diet” “COPD”, “emphysema”, “bronchitis”, and “health outcomes”. Due to the paucity
of literature regarding nutrition and COPD, studies from the late 1990s to present day
were included.

2. Meat

Most studies investigating the link between COPD development and meat consump-
tion focus on processed red meat (i.e., bacon, ham, sausage, and luncheon meat). Growing
evidence suggests an association between processed meat consumption and the risk of
COPD [17–20], with a high intake (greater than or equal to 75 g/week) of processed red
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meat associated with a 40% higher risk of COPD [21]. Indeed, each additional 50 g per
week of processed red meat intake is associated with an 8% higher risk of COPD develop-
ment [21]. Moreover, processed red meat, but not unprocessed (i.e., pork, beef/veal, and
minced meat), may be associated with a higher incidence of COPD development at 13-year
follow-up [22].

2.1. Health Outcomes

Studies investigating the relationship between meat consumption and health outcomes
in patients with COPD are scarce. Frequent processed meat intake was associated with
decreased lung function [force expiratory volume in one second (FEV1) [20,23], forced vital
capacity (FVC) [23], and forced expiratory volume in one second over forced vital capacity
(FEV1/FVC) [20,23] in the general population. Meanwhile, in patients with COPD (post-
bronchodilator FEV1/FVC lest than or equal to 0.70), one study identified high processed
meat consumption as a risk factor for COPD-related hospital readmissions [24]. As far
as we know, no studies have investigated the associations between meat intake and lung
function or the potential health benefits of decreasing processed meat intake in patients
with COPD.

2.2. Mechanisms

The primary mechanism explaining the relationship between processed meat intake
and COPD development is currently unknown; however, some potential mechanisms have
been proposed. Processed meats contain high amounts of nitrates and nitrites [25], which
are added to meat as preservatives and color additives [26]. Nitrates from processed meat
are commonly converted to nitrosamine compounds that are involved in the formation of
reactive nitrogen species and may amplify oxidative stress and inflammatory processes [27],
two keystones of COPD pathobiology [28]. Indeed, preclinical studies associated long-term
dietary nitrate intake with the development of pulmonary emphysema [29,30]. Additionally,
processed meats contain high amounts of saturated fatty acids and advanced glycation
end products [31], which are known to stimulate systemic inflammation [32] and increase
oxidative stress [32]. Of note, a similar pro-inflammatory profile [33] was identified in
patients with COPD following the consumption of processed red meat [34]. Lastly, diets
rich in meat products have also been linked to increased levels of trimethylamine N-
oxide (TMAO) [35,36]; elevated circulating levels of this byproduct have been associated
with all-cause mortality in COPD [37]. The above mechanisms highlight the negative
role of inflammation on COPD health outcomes. Indeed, COPD is characterized by an
amplification of the normal inflammatory response, resulting in multisystemic changes in
the lungs [38]. Furthermore, the heightened inflammatory response in COPD is thought
to help drive the common comorbidities—such as heart disease, muscle wasting, and
diabetes—seen in this population [38].

2.3. Recommendations

Existing evidence has shown the negative health effects of processed meat in the gen-
eral population [39]. In COPD, an increased disease development risk [21] as well as worse
health outcomes [24] have been related to increased meat consumption, supporting the
concept that patients with COPD may benefit from limiting processed meat consumption.
Additionally, those at risk of COPD may specifically benefit from reducing their meat intake
to no greater than 75 g/week. However, information is still limited, and more studies are
needed to establish specific guidelines.

3. Fruit and Vegetables

Due to their antioxidant capacity, diets rich in fruits and vegetables have been proposed
to be protective against COPD [40]. Indeed, people who consume diets rich in fruit and
vegetables are at a lower risk of COPD development [40–44]. However, some conflicting
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results have been reported, suggesting that only the long-term intake of fruits, but not
vegetables, may be linked to a lower risk of COPD [45].

3.1. Health Outcomes

In the general population, a diet rich in antioxidants and/or a diet rich in fruit and
vegetables is associated with better lung function, specifically FEV1 [23,44]. One study in
individuals with chronic airflow limitation (COPD, asthma, and COPD plus asthma) iden-
tified a positive association between serum antioxidants and pulmonary function (FEV1
percent predicted and FVC percent predicted) [46]. Additionally, a three-year prospec-
tive study demonstrated that increasing the consumption of fresh fruits and vegetables
improved lung function (specifically FEV1) in patients with COPD (GOLD stage I–IV) [47].

3.2. Mechanisms

Fruits and vegetables are rich in vitamin C [48], vitamin E [49], and β-carotene [50],
all of which are described to have antioxidant and anti-inflammatory properties [51,52]
and, thus, protect against oxidative stress, one of the root causes of COPD. Indeed, dietary
antioxidant intake has been shown to lower oxidative stress [53]. However, increasing the
intake of fruits and vegetables had no effect on biomarkers of airway systemic inflammation
or oxidative stress in patients with moderate-to-severe COPD [54].

3.3. Recommendations

Current evidence from the limited number of observational studies infers that in-
creased fruit and vegetable intake may be beneficial for people with COPD, improv-
ing pulmonary health outcomes, which is possibly related to their antioxidant and anti-
inflammatory capacity. However, clinical trials in this area are minimal, and future studies
should investigate the potential benefits that greater fruit and vegetable consumption have
in this population. Thus, a recommended increase in daily fruits and vegetables may be
beneficial for patients with COPD.

4. Dietary Fiber

Dietary fiber consumption is associated with positive effects on the metabolic [55]
and cardiovascular [56] systems. In terms of COPD, high total dietary fiber intake was
associated with the reduced risk of COPD development [57–60]. Specifically, long-term
high dietary fiber intake (greater than or equal to 26.5 g/day) was associated with a 30%
lower risk of COPD, while increasing total dietary intake by 1 g/day was associated with a
5% risk reduction [60]. When investigating sources of dietary fiber, total cereal and fruit,
but not vegetable fiber, have been related to a lower risk of COPD [61].

4.1. Health Outcomes

To the best of the authors’ knowledge, no specific information is available evaluating
dietary fiber intake and health outcomes in COPD. However, in the general population,
better lung function (FEV1, FVC, FEV1/FVC) has been related to higher fiber intake [59,62].
Interestingly, decreasing total fiber intake has been associated with obstructive airflow
patterns [63].

4.2. Mechanisms

Although the mechanism connecting dietary fiber and risk of COPD is unknown,
the positive benefits from greater dietary fiber intake in the general population have
been postulated to be related to improved gut microbiome and reduced inflammatory re-
sponses [64]. Fiber fermentation results in the formation of metabolites such as short-chain
fatty acids [65], which are known to have systemic [66] and pulmonary anti-inflammatory
effects [67]. Diets low in fiber can also result in gut dysbiosis and promote chronic, systemic
inflammation [68].
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4.3. Recommendations

Despite the established benefits of dietary fiber intake on cardiovascular [69] and
metabolic [55] health, its potential role in lung health is largely underexplored. High dietary
fiber consumption may exhibit some benefits for people with COPD, although further
research exploring fiber consumption and health outcomes in this population is needed.
Therefore, current recommendations support the concept that those at risk of COPD should
consider incorporating greater than or equal to 26.5 g/day of fiber into their diet. Given the
lack of research on dietary fiber and COPD health outcomes, no recommendation regarding
high fiber diets for patients with COPD can be made at this time.

5. Vitamin D

In accordance with the American Association of Clinical Endocrinologists, vitamin
D deficiency is defined as a serum level of 25-hydroxyvitamin D (25(OH)D) lower than
75 nanomolar per liter (nmol/L) [70]. By this definition, as much as 23% of the United
States population is at risk of vitamin D deficiency [71]; vitamin D deficiency is frequently
identified in patients with COPD [72–76]. The etiology of this deficiency in COPD seems
to be multifactorial, including poor dietary intake [77], reduced exposure to sunlight [77],
catabolism by common medications prescribed for the management of COPD (i.e., gluco-
corticoids) [77], or the effects of comorbid conditions such as chronic kidney disease [77].

5.1. Health Outcomes

Vitamin D deficiency has been identified as a risk factor for the development of
COPD [72,78,79], specifically levels lower than 32 nmol/L, which have been associated
with a 23% increased risk of developing COPD [72]. Multiple studies have found that
vitamin D deficiency is linked with poor lung function in patients with COPD (GOLD
stage I–IV) as measured by FEV1 [76,80] and FVC [76,77]. Additionally, vitamin D sup-
plementation decreased the rate of acute pulmonary exacerbations [74,81,82] in patients
with mild-to-very severe disease. Despite these findings, some questions have arisen as
to whether vitamin D supplementation improves lung health outcomes primarily due to
issues replicating these findings [8,73]. A recent meta-analysis compiling 19 studies and
more than 2000 patients supported the relationship between vitamin D supplementation
and lung function improvements, specifically in COPD [81]. To note, there are data to
support the concept that vitamin D deficiency may play a role solely in the development of
emphysema and no other COPD phenotypes. Therefore, it is plausible that studies that did
not find benefit in vitamin D supplementation consisted of patients with COPD whose dis-
ease state was more attributable to chronic bronchitis rather than emphysema [83]. Besides
lung health, vitamin D deficiency has also been linked to an increased risk of mortality in
people with COPD [72]. Indeed, vitamin D levels lower than 32 nmol/L were associated
with a 38% increased risk of overall mortality and 57% greater COPD-specific mortality
when compared to patients with COPD with higher vitamin D levels [72].

5.2. Mechanisms

The exact mechanisms linking vitamin D deficiency and COPD are largely unknown [77].
Because of the high prevalence of vitamin D deficiency [71] and its effects on gene regulation
and immune cell defense [83], researchers have explored the effects of vitamin D on
respiratory diseases such as asthma [84] and COPD [81]. As previously mentioned, patients
with COPD have systemic inflammation [2,8,85], and serum 25(OH)D concentrations are
negatively associated with inflammatory biomarkers in COPD [85]. Cigarette smoke also
inhibits vitamin D receptor translocation which leads to the downregulation of vitamin
D signaling [86] and may contribute to promoting a proinflammatory environment in
the airways [81]. Indeed, an animal model of vitamin D receptor deficiency exhibited
increased inflammation in the lungs [87]. Similarly, another preclinical study showed that
vitamin D inhibited alveolar macrophage proliferation and the associated inflammatory
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response [83]. Therefore, it is postulated that vitamin D deficiency would disrupt this
balance of inflammatory control in the lungs, leading to tissue destruction [83].

5.3. Recommendations

The American Association of Clinical Endocrinologists defines optimal serum vitamin
D levels as those greater than 75 nmol/L [70], although that cutoff is not agreed upon by the
literature nor regulatory agencies [70,88]. However, evidence supports that serum levels
of 25(OH)D of 50 nmol/L or greater may reduce mortality from respiratory diseases [89],
and levels above 55 nmol/L were linked to the greatest reduction in risk of COPD develop-
ment [72]. Indeed, multiple studies recommend considering vitamin D supplementation in
patients with COPD [11,73,75], with some studies finding optimal serum 25(OH)D levels
as those greater than 50 nmol/L [72,73,89]. Furthermore, the Global Initiative for Chronic
Obstructive Lung Diseases recommends that all patients with COPD hospitalized for ex-
acerbations are evaluated for severe vitamin D deficiency and treated with appropriate
supplementation [2]. The specific dosing of vitamin D should be determined based on the
individual patient’s serum 25(OH)D levels and their risk factors that may affect vitamin D
production, bioavailability, and/or catabolism [88]. Although vitamin D toxicity is rare [90],
it is not recommended to exceed serum 25(OH)D levels greater than 374 nmol/L [88]. Given
the decreased risk of COPD development and the potential decreased risk of COPD disease
progression, individuals at risk for COPD and those with COPD may consider vitamin D
supplementation with a goal serum 25(OH)D level equal or greater than 55 nmol/L.

6. Vitamins A, B, C, and E

Multiple types of vitamins have been shown to have beneficial pulmonary effects in
the general population [8]. However, it has recently been identified that people with COPD
consume fewer vitamins than recommended [91,92] and present with lower circulatory
concentrations of vitamins A, C, and E when compared to the general population [93].

6.1. Health Outcomes

There is minimal research available on the health benefits of vitamin supplemen-
tation in patients with COPD. However, dietary intakes of vitamin A [94,95], vitamin
C [96], and vitamin E [97,98] have been associated with better lung function in the general
population [99].

The effect of vitamin A supplementation on COPD symptomatology and disease
progression is not well understood. Early evidence has suggested that vitamin A deficiency
may contribute to, or even increase, the severity of respiration dysfunction in COPD [100],
with low serum concentrations of vitamin A identified in patients with COPD experi-
encing an exacerbation [101]. Additionally, a randomized control trial of oral vitamin A
supplementation for 30 days in patients with mild-to-moderate COPD identified improve-
ments in lung function (FEV1) [95], supporting the relationship between vitamin A and
pulmonary health.

Regarding vitamin B, it has been suggested that deficiencies in vitamin B6 may be
associated with a higher risk of frailty in patients with COPD [102], although no associ-
ations have been identified with other vitamins from the B family, including B1, B2, B3,
B9, or B12 [102]. In this line, evidence also supports that a combination of pulmonary
rehabilitation with daily oral B12 supplementation in people with moderate-to-severe
COPD led to minor improvements in exercise time [103].

Other vitamins such as C and E have also been proposed to exert a beneficial effect
in people with COPD. For example, an increase in dietary vitamin E has been positively
associated with a lower risk of COPD [104] and better lung health (FEV1 and FVC) [104,105].
However, conflicting evidence also exists [105,106], with some studies identifying no im-
provements in lung health when compared to traditional treatments [107]. In regard to
vitamin C, multiple studies have shown a positive association between vitamin C intake
and pulmonary health, specifically FEV1 [108–111]. Similarly, people that use combustible
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tobacco and consume a diet rich with vitamin C exhibit slower rates of pulmonary de-
cline (FEV1) when compared to those with low vitamin C intake [112]. This finding was
confirmed in patients with COPD, with daily doses of 400 milligrams of vitamin C asso-
ciated with better lung function (FEV1 percent predictive and FEV1/FVC) [15], and daily
doses of 2 g/day were associated with fewer pulmonary exacerbations over a six-month
period [113]. Additionally, significant improvements in antioxidant capacity and vascular
function were also observed in patients with COPD (GOLD stage I–IV) after an acute dose
of a combination of vitamin C, vitamin E, and α-lipoic acid [114].

6.2. Mechanisms

Considering the connection between air pollution, tobacco smoke, oxidative stress,
and COPD, it is not surprising that vitamins, due to their antioxidant properties helping
to mitigate free radicals and minimize oxidative stress [115,116], would exhibit beneficial
effects in this population. For example, supplementation with vitamin B6 has been linked
to reduced oxidative damage and, therefore, has been suggested as beneficial for the
treatment of chronic pulmonary diseases [117]. Similar properties have been associated
with vitamin A, which may play a role protecting lung epithelial cells from irritants [118].
Additionally, vitamin C may also have positive effects on vascular health [114,119,120],
which is frequently impaired in patients with COPD. Thus, vitamin supplementation may
be beneficial in patients with COPD by restoring antioxidant balance, reducing oxidative
stress, and preventing further tissue damage [121].

6.3. Recommendations

At this time, not enough research has been conducted on vitamin A, B, and E sup-
plementation to define dosage recommendations. The role of these vitamins in COPD
should be further investigated due to their potential benefits such as reducing oxidative
stress [122] and protecting the airways [118,119,123]. In regard to vitamin C, a meta-analysis
of ten randomized controlled trials including nearly 500 participants showed a significant
improvement in lung function in individuals that supplemented 400 milligrams of oral
vitamin C per day [15]. Additional benefits with fewer pulmonary exacerbations have been
described in patients with COPD that received two grams of daily oral vitamin C supple-
mentation [113]. In general, vitamin C poses few health risks and has been deemed safe
to consume with no lasting health consequences, even in circumstances where extremely
high concentrations are ingested in a single dose [124]. However, regular oral intake of
greater than one gram of vitamin C per day is not recommended due to an increased risk
of renal calculi formation [124]. Therefore, based on the current literature, oral vitamin
C supplementation may be incorporated into COPD management at a dose between 400
and 1000 milligrams per day to balance the benefits of supplementation with the risks of
toxicity. Recommendations regarding vitamins A, B, and E cannot be made at this time
given the paucity of available data.

7. Iron

Non-anemic iron deficiency is common in people with COPD [125–128] and has been
linked to reduced exercise tolerance [129]. It is well known that exercise tolerance is
diminished in patients with COPD [2,3,6,125,128], negatively impacting their quality of
life [6,125]. Indeed, iron supplementation should be of interest in COPD, as it has been
shown to increase exercise tolerance in other chronic conditions such as heart failure [130].
However, there remains a paucity of clinical trials establishing the utility of iron replacement
in patients with COPD [127].

7.1. Health Outcomes

Iron deficiency has been established as common in patients with obstructive pul-
monary disease [125–128] and has even been identified as a risk factor for the develop-
ment of COPD [131]. Once pathology is established, iron deficiency without anemia in
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moderate-to-severe COPD is connected to more hypoxemia/dyspnea [126,129], higher
levels of inflammatory markers such as C-reactive protein [126], and decreased exercise
tolerance [129] when compared to patients with COPD who are iron replete [126,129]. To
note, few studies have investigated the effects of iron repletion on patients with COPD.

7.2. Mechanisms

The exact mechanism linking iron supplementation and improved outcomes in COPD
is unknown. The prevailing theory involves a reduction in systemic inflammation [125,
126,128], diminishing iron deficiency, and skeletal muscle dysfunction [127,129,132], which
are all contributors to reduced exercise tolerance [127,128,132]. Of note, systemic inflam-
matory diseases elevate hepcidin levels, a peptide hormone involved in the regulation of
iron [125,133], which cause a decrease in serum iron [126] due to decreased dietary iron
absorption [133] and by sealing iron away in macrophages during inflammatory states [133].
Indeed, hepcidin levels were significantly higher in patients with iron deficiency and COPD
compared to people with iron deficiency without COPD [126], illustrating the role of sys-
temic inflammation in increasing hepcidin levels [126]. Decreased serum iron and dietary
iron absorption [126,133] can also lead to iron deficiency, affecting exercise tolerance, as
iron is critical to skeletal muscle function [127–129,132]. In this line, one study showed
better exercise tolerance after intravenous iron supplementation in patients with COPD as
independent of hemoglobin [128].

7.3. Recommendations

Given the scarcity of trials investigating the effects of iron supplementation on COPD,
recommendations cannot be made at this time [128]. However, a growing body of literature
is encouraging the need for larger-scale trials to investigate the effect of iron supplementa-
tion on exercise tolerance in COPD [127,128,132]. To the best of our knowledge, all studies
to date used intravenous iron [125,127,128,132] which was well tolerated [125,127,128,132],
although hypophosphatemia [132], a well-known side effect of intravenous iron ther-
apy [132], was reported in one of the trials. Overall, iron supplementation in non-anemic
iron-deficient patients with COPD may have the ability to improve exercise tolerance
with a good safety profile. Although promising, no recommendations at this time can be
suggested regarding intravenous iron therapy as part of COPD’s standard of care given a
paucity of data, documented side effects, the burden of infusions, and the risk of repeated
intravenous access needed for infusions.

8. Nitrates

Dietary nitrate supplementation has been shown to have beneficial effects, primarily
related to physical performance in both healthy [134] and disease states [3,4,6,135], in-
cluding peripheral artery disease [136], hypertension [137], and heart failure [137–139],
although limited information is available with regard to COPD. Nitrate supplementation,
primarily through beetroot juice, has been tied to improvements in vascular function [140]
and exercise tolerance [136], two cardinal features of COPD.

8.1. Health Outcomes

Beetroot juice supplementation has been shown to increase exercise tolerance [3,4,6,135]
and vascular endothelial function [6,135] in patients with COPD (GOLD stage I–IV and
II–IV, respectively). Although the value of beetroot juice supplementation has been debated
in the literature due to contradictory findings [12,141,142], a recent trial showed the positive
effects of beetroot juice supplementation on exercise tolerance in patients with COPD
(GOLD stage II–IV) [6]. Of note, results regarding beetroot juice supplementation may be
partially attributable to the length of supplementation. Studies finding beneficial effects of
beetroot juice supplementation on exercise tolerance used short-term usage (acute [4,135]
or at least two weeks of supplementation [3,6]), whereas studies not identifying beneficial
effects of beetroot juice supplementation had subacute supplementation (schedules not
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defined by acute or chronic) [143–145]. This discrepancy emphasizes the need for further
studies on the effect of the duration and timing of beetroot juice supplementation on
vascular function and exercise tolerance in patients with COPD.

8.2. Mechanisms

The effects of beetroot juice supplementation are associated with its high organic
nitrate (NO3

−) content [146] that, once consumed, is reduced to nitrite (NO2
−) in the oral

cavity and then to nitric oxide (NO) in the stomach, where it is then absorbed [146]. NO
is a potent vasodilator [141,146] that plays a role in the regulation of blood flow [3,4],
mitochondrial biogenesis [146], mitochondrial respiration [146], glucose uptake [135,146],
and muscle relaxation [141,146]. Although the exact mechanism linking the benefits of
dietary nitrate supplementation and exercise tolerance is unclear [4], it is thought that the
etiology is multifactorial and includes some or all the effects described above [4,146].

Endothelial dysfunction is defined by a reduced vasodilatory state [147], characterized
by an imbalance of vasodilation and vasoconstriction [147,148]. An important component
of vascular endothelial-dependent vasodilation is NO synthesis and bioavailability, and re-
ductions in this vasodilator are associated with poor dilatory response [148]. Therefore, it is
plausible that dietary nitrate supplementation may enhance vascular function via increasing
the availability or synthesis of NO [135]. Indeed, both acute and chronic supplementation
with beetroot juice increases plasma nitrate levels in patients with COPD [3,4,143].

8.3. Recommendations

Beetroot juice supplementation in patients with COPD has the potential to benefit both
vascular dysfunction [6,135] and exercise tolerance [3,4,6,135]. The largest trial of beetroot
juice supplementation in patients with COPD (GOLD stage II–IV) provided 12.9 millimolar
of nitrate, twice weekly, for eight weeks, in combination with pulmonary rehabilitation with
no adverse events identified [6], as confirmed by other trials [141]. Considering the low risk
of this type of supplementation and the potential to increase exercise tolerance [3,4,6,135]
and vascular function [6,135], beetroot juice may exert positive effects in patients with
COPD, although further trials are warranted to identify the dosage, timing, and frequency
that would allow patients to gain maximal benefit. Thus, weekly supplementation with
beetroot juice at 12.9 millimolar of nitrate for eight weeks may offer benefits to patients
with COPD. Recommendations about longer supplementation with beetroot juice cannot
be made at this time due to a lack of long-term studies.

9. Other
9.1. Alcohol

Very little is known about the effects of alcohol intake on COPD. High alcohol intake
has been identified in the COPD population, with higher odds of exceeding both daily and
weekly alcohol recommendations [149]. Indeed, the heavy use of alcohol increases the risk
of COPD development when compared to moderate use [150]. In addition, heavy alcohol
intake has been associated with an accelerated decline in lung health (FEV1 and FVC) in the
general population [151]. Similar findings have been observed in people with COPD with
low overall alcohol consumption (defined as three or less drinks per day), correlating with
better lung function (FEV1 and FEV0.75) [152]. Interestingly, several studies have shown
that pulmonary function is higher in patients with COPD who occasionally or lightly
consume alcohol when compared to non-drinkers [42,152], which is potentially associated
with the antioxidant effects [150] and inhibition of proinflammatory molecules [152] by
certain types of alcohol. However, high alcohol consumption has not been shown to have
beneficial effects on COPD development nor disease course [42,150,152], and these results
should be interpreted with caution. Thus, heavy alcohol use should be avoided in those
with COPD, and no recommendations can be made at this time about low-to-moderate
alcohol consumption.
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9.2. Polyphenols

Polyphenols are plant-derived compounds with potential antioxidant and anti-
inflammatory effects [153]. Considering that COPD is characterized by a pro-oxidative [2],
pro-inflammatory state [154] and, consequently, a reduced antioxidant capacity [155],
there has been interest in exploring the potential therapeutic benefit of polyphenols on
the pathogenesis and disease course of COPD. For example, polyphenol intake has been
shown to reduce the risk of developing COPD [156,157] and, once the disease is developed,
may reduce lung inflammation [158] and markers of cardiovascular disease risk [159].
Indeed, six-month supplementation with quercetin—a plant flavonoid—significantly re-
duced proinflammatory biomarkers in the bronchoalveolar lavage of patients with COPD
(GOLD stage II–III) [158], while six-week supplementation with resveratrol—a stilbenoid
polyphenol [160]—resulted in improvements in arterial stiffness, myocardial perfusion,
and distance walked in patients with COPD (GOLD stage II–IV) [159].

Preliminary evidence supports polyphenols’ role in reducing the risk of COPD de-
velopment [156,157], as well as health benefits once the disease is established [158,159].
However, as the literature stands, there is not enough evidence to recommend the dosage
or type of polyphenol intake for patients with COPD, nor for the prevention of this dis-
ease, due to the heterogeneity of these studies and minimal information [157,159,161].
Notwithstanding, a diet rich in polyphenols may be beneficial to those at risk of developing
COPD due to their potential anti-inflammatory effects [158]. Although there is a paucity
of safety data on specific types and dosages of polyphenols, a habitual diet is unlikely to
have the dose of polyphenol intake necessary to cause adverse effects [162]. Currently, no
recommendations can be made regarding a dietary increase in polyphenols nor polyphenol
supplementation for patients with COPD due to a lack of studies and safety data.

9.3. Dietary Patterns

Some studies investigated the relationship between dietary patterns (i.e., Western- vs.
Mediterranean-style diet) and the risk of COPD. It was identified that the prudent dietary
pattern (diets rich in fruits, vegetables, and whole grains) was associated with a lower
risk of COPD [44], while Western-style diets (diets rich in processed meats, refined grains,
desserts, and sweets) were associated with a higher risk of COPD [163,164]. Additionally,
the interplay between a diet high in processed meat intake and other lifestyle behaviors,
such as smoking and an overall unhealthy diet, have been linked to yielding the highest
hazard ratio for COPD development [19]. Adhering to the Dietary Approaches to Stop
Hypertension (DASH) diet (rich in fruits, vegetables, and grains and low in sodium, fatty
meats, and sugar) was inversely associated with the risk of COPD [165], while mixed
results regarding a Mediterranean diet (high intakes of vegetables, legumes, fruits, nuts,
grains, fish, seafood, and extra virgin olive oil and a moderate intake of red wine) have been
reported [165,166]. Currently, there is not enough information available to recommend
a specific dietary pattern for patients with COPD. However, guidelines for the general
population encouraging adherence to a healthy diet can be applied to this population.

9.4. Omega-3 Polyunsaturated Fatty Acids (PUFAs)

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are known for their anti-
inflammatory properties and are, therefore, of great interest in chronic inflammatory
conditions such as COPD [167]. To date, there have been few studies examining the ef-
fects of n-3 PUFAs on health outcomes in COPD; however, the available studies have
demonstrated positive effects on exercise tolerance [168–171], inflammation [170,171], and
quality of life [170]. These findings were supported in a study finding similar benefits in
patients with COPD (GOLD stage I–IV) who were already consuming n-3 PUFA supple-
mentation [172]. Despite these improvements, the mechanisms linking n-3 PUFAs and the
observed benefits in COPD are mostly unknown. It is known that n-3 PUFAs may increase
the concentration of anti-inflammatory mediators and decrease the expression of adhesion
molecules [173], which may be beneficial for patients with COPD. Additionally, n-3 PUFAs
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may exert multiple cardiovascular benefits, including reducing the risk of hypertension
and coronary heart disease [174,175]. Indeed, current recommendations by the American
Heart Association [175] and the American Dietetic Association along with the Dietitians of
Canada [176] support a daily intake of n-3 PUFAs to observe health benefits, particularly
due to the frequent low consumption of these products in many populations, including
patients with COPD [172]. Of note, excessive consumption (>2 g per day from n-3 PUFAs
supplementation) may be detrimental with potential toxic side effects [177]. In summary,
despite the overall positive benefits associated with n-3 PUFAs, no recommendations can
be made at this time for patients with COPD.

10. Practical Implications and Current Limitations

The 2024 GOLD report acknowledges the role that malnutrition and nutritional defi-
ciencies have in COPD and associated comorbidities [38]. Notwithstanding, the report does
not include dietary recommendations for the management of COPD, except for antioxidant
supplementation [38], emphasizing the limited use of “food is medicine” in COPD. This is
surprising, as there is ample literature to suggest the positive role of nutrition in the man-
agement of COPD [11], including information from the American Lung Association [178]
and the European Respiratory Society [179]. This omission further highlights the lack of
adequate nutritional research for COPD management, particularly emphasized by advance-
ments achieved in other pathologies with clearer dietary recommendations [180–182] and
even nutritional guidelines specific for the care of the patient after diagnosis [183]. Potential
barriers to nutritional management may be related to the frequent lack of registered dieti-
cians as part of the team caring for patients with COPD. Additionally, limited insurance
coverage, challenges with transportation, or socioeconomic status will likely confound the
difficulties in assessing and implementing adequate nutritional strategies in this population.
It is also important to note that there is a significant lack of knowledge regarding how
nutritional supplementation may interact with standard-of-care treatment for COPD. Con-
sidering that specific pharmacokinetics and pharmacodynamics differ between medications
within a general subclass (i.e., different brands of short-acting beta agonists), this is an
important consideration to evaluate when assessing the safety of nutritional supplements
in this population. Finally, we must also consider that most of the current findings have
been observed in demographically similar populations, and further studies are needed
in diverse cohorts that are more representative samples of the global population affected
by COPD.

11. Conclusions

COPD represents a highly prevalent condition, impacting more than 212 million people
worldwide. Despite the prevalence and increased morbidity and mortality associated
with this disease, there is a paucity of effective therapies that can treat, prevent, or even
slow down the progression of this disease. Beyond pharmacological treatments, different
preventative strategies have been explored, including the role of nutrition (Table 1). The
increased consumption of fruits, fiber, vitamins, and/or iron, among other aspects, seems
to exert beneficial effects in people with COPD, although further interventional studies are
needed to establish clear guidelines in this population. Considering that many of these
strategies can be applied in an affordable and accessible way, creating awareness about the
connection between food and health is essential to truly maximize the therapeutic benefit
for this population.
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Table 1. The relationship between diet and nutritional supplements in the prevention and manage-
ment of COPD.

Which Dietary and Nutritional Supplements May Be Beneficial for Patients with COPD?

Diet and/or Nutritional
Supplement

Risk of COPD
Development?

Intake Has Potential Benefit
Once COPD Diagnosis is

Established?
Specific Dosage

Meat ↑ <75 g/week

Fruits and Vegetables ↓ ✔

Fiber ↓ ✔ ≥26.5 g/day

Vitamin D ↑ (deficiency) ✔ Serum 25(OH)D levels ≥ 55 nmol/L

Vitamin C ? ✔ 400–1000 mg daily

Iron ↑ (deficiency) ✔
Intravenous ferric
carboxymaltose

Nitrate ? ✔ BRJ with 12.9 mmol of nitrate twice weekly

Heavy Alcohol
Consumption ↑

Polyphenols ↓ ✔

Prudent Diet ↓
Western Style Diet ↑

DASH Diet ↓
Mediterranean Diet ?

n-3 PUFAs ? ✔

↑ = increased risk. ↓ = decreased risk. ✔ = beneficial. ? = evidence inconclusive. nmol = nanomolar.
mg = milligrams. BRJ = beetroot juice. mmol = millimoles. DASH = Dietary Approaches to Stop Hyperten-
sion. n-3 PUFAs = omega-3 polyunsaturated fatty acids.
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