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Abstract: Amino acids are essential for normal pregnancy and fetal development. Disruptions in
maternal amino acid metabolism have been associated with various adult diseases later in life, a phe-
nomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we
examine the recent evidence highlighting the significant impact of amino acids on fetal programming,
their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes,
particularly in the context of cardiovascular–kidney–metabolic (CKM) syndrome. Furthermore, we
delve into experimental studies that have unveiled the protective effects of therapies targeting amino
acids. These interventions have demonstrated the potential to reprogram traits associated with CKM
in offspring. The discussion encompasses the challenges of translating the findings from animal
studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose
potential solutions to overcome these challenges. Ultimately, as we move forward, future research
endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the
optimal dosage and mode of administration. This exploration is essential for maximizing the repro-
gramming effects, ultimately contributing to the enhancement of cardiovascular–kidney–metabolic
health in offspring.

Keywords: amino acid; cardiovascular disease; chronic kidney disease; metabolic syndrome;
hypertension; developmental origins of health and disease (DOHaD); pregnancy

1. Introduction

Appropriate morphology and the normal functional development of the cardiovas-
cular system, kidneys, metabolic organs, and other tissues are crucial for fetal growth
and development [1]. Maternal nutrition must be adequate during pregnancy in order
to accommodate placental formation and support fetal development [2,3]. Imbalances in
maternal nutrition have been associated with the development of many adult diseases later
in life [4–7]. Recognized globally as the notion of the developmental origins of health and
disease (DOHaD) [8,9], this idea has garnered a widespread consensus. In contrast, an
increasing body of evidence indicates that intervening during the early stages of develop-
mental plasticity can improve, or even reverse, the negative effects linked to developmental
programming through a process of reprogramming [10,11]. Placing increased emphasis
on the application of nutritional interventions for reprogramming strategies, recent re-
search studies have begun to address the prevention of disorders associated with DOHaD,
including cardiovascular–kidney–metabolic (CKM) syndrome [7,12,13].

Characterized as a systemic disorder within its first definition in a new American
Heart Association scientific statement [14], CKM syndrome involves pathophysiological
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interconnections among metabolic risk factors like obesity and diabetes, kidney disease,
and diseases impacting the cardiovascular system. This intricate interplay leads to multi-
organ dysfunction and an elevated risk of adverse cardiovascular and kidney outcomes.
Comprising four well-defined stages from stage 0 to stage 4, CKM syndrome exhibits a
classification system wherein different key constituents manifest at various stages, con-
tributing to the diverse progression and severity observed within the intricate spectrum of
CKM syndrome [14,15]. Despite the recommendation for a holistic approach to manage
the entire syndrome, rather than concentrating on individual diseases, there is still a lack
of comprehensive therapeutic guidelines [15]. Recognizing the impact of maternal nutri-
tion on offspring health and disease, prioritizing early nutritional interventions holds the
potential to alleviate the future burden of CKM syndrome.

Amino acids assume a pivotal role in diverse physiological functions within the
human body. Of particular significance is the existence of essential amino acids, which
the body is unable to produce independently and must acquire through dietary intake.
Consequently, ensuring a sufficient supply of amino acids during all trimesters is imperative
for promoting normal pregnancy and fostering optimal fetal development [16,17]. While
guidelines for protein intake during pregnancy are articulated through recommended
dietary allowance (RDA) values and estimated average requirement (EAR) [18], the lack of
specific recommendations for individual amino acids in the context of pregnant women
is worth noting [16]. Despite indications from human and animal studies suggesting
that certain amino acid supplementation during prenatal stages could be a promising
approach to enhance healthy fetal growth [19], there is limited knowledge regarding their
reprogramming effects on offspring with CKM syndrome.

Recent studies have honed in on the impact of the gut microbiome in CKM traits [20–22].
As nutrients interact with gut microbes, crucial secondary metabolites are released, which
are subsequently absorbed by the host. Various proposed mechanisms connect the gut
microbiota and derived metabolites to CKM syndrome, including alterations in the gut mi-
crobiome, the dysregulation of short-chain fatty acids (SCFA), increases in trimethylamine-
N-oxide (TMAO), and microbiota-derived uremic toxins [23–26]. Maternal nutrition has
demonstrated the capacity to alter the balance of the gut microbiome, implicating offspring
health and disease [27]. However, there is limited information available on whether and
how maternal amino acid supplementation might impact the gut microbiota, potentially
playing a role in programming and reprogramming CKM syndrome in adult offspring.

2. Materials and Methods
2.1. Data Sources and Search Strategy

The objective of this review is to consolidate recent findings and underscore the impact
of amino acids during pregnancy on fetal programming, the modulation of the gut micro-
biota, and the intricate interplay among these elements in the developmental programming
of CKM syndrome. We adhered to the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines throughout our review process. The study selection
process is documented in Figure 1.

To compile a comprehensive literature review, relevant studies published in English
were identified through a search of the MEDLINE, Embase, and Cochrane Library databases.
The search employed pertinent keywords related to DOHaD, amino acids, gut microbiota,
and CKM syndrome. The utilized search terms comprised the following: “obesity”, “di-
abetes”, “metabolic syndrome”, “dyslipidemia”, “insulin resistance”, “hyperglycemia”,
“liver steatosis”, “kidney disease”, “cardiovascular disease”, “hypertension”, “atheroscle-
rosis”, “heart failure”, “cardiorenal syndrome”, “developmental programming”, “DO-
HaD”, “offspring”, “progeny”, “mother”, “prenatal”, “pregnancy”, “reprogramming”,
“gut microbiota”, “short-chain fatty acid”, “trimethylamine-N-oxide”, “uremic toxin”, and
“amino acid”.
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2.2. Eligibility Criteria

Peer-reviewed studies fulfilled the search terms that were involved. Our inclusion cri-
teria encompassed studies published from January 2000 to January 2024, written in English.
We broadened our scope to include epidemiological investigations, clinical trials, and ani-
mal models. Editorials, conference abstracts, letters, notes, and comments were excluded.
Additionally, we scrutinized the reference lists for supplementary relevant sources.

2.3. Data Extraction and Synthesis

Initially, we conducted comprehensive searches across various databases using specific
search terms, resulting in the retrieval of 1824 articles. All duplicate papers were double
checked and excluded. Additionally, we identified 176 relevant articles through citation
lists. From these combined sources, a total of 1098 studies were screened for inclusion based
on the predefined criteria. A total of 52 articles remained eligible for inclusion in this study.
Subsequently, a secondary manual screening was performed, resulting in the exclusion of
studies that did not meet the inclusion criteria. Following this process, 44 studies remained
for inclusion in our review.

3. Impact of Amino Acids on Pregnancy and Fetal Development
3.1. The Impact of Amino Acids on Pregnancy

As pregnancy progresses, there is typically an increase in the overall concentration of
amino acids, which is, at least in part, due to the higher demand for protein synthesis. The
current RDA for protein, part of the Dietary Reference Intake (DRI), is set at 1.1 g/kg/day
for pregnant individuals. This represents a higher value compared to the non-pregnant
state, where the RDA is set at 0.8 g/kg/day [18]. Hypoaminoacidemia during fasting is
associated with pregnancy, a phenomenon that is evident in the early stages of gestation and
continues throughout the entire pregnancy [28,29]. Notably, there is a more pronounced
decline in glucogenic amino acids, including serine, alanine, glutamine, threonine, and
glutamate, during pregnancy, particularly in the early stages [28]. While it is commonly
asserted that the amino acid levels should rise proportionally with increased protein
requirements during pregnancy, the specific amino acid needs in human pregnancy are
scarcely reported [16]. For instance, a 27% rise in lysine requirements has been reported
during late pregnancy compared to that of early pregnancy [30]. Similarly, during late
gestation in human pregnancy, there may be a 40% higher demand for phenylalanine
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compared to that of early gestation [31]. Swine models demonstrate elevated requirements
for threonine (55%), lysine (45%), isoleucine (63%), and tryptophan (35%) in late pregnancy,
as opposed to those of the early stages [16]. The adaptive increase in isoleucine, a branched-
chain amino acid (BCAA) serving as the primary nitrogen source for ureogenic amino
acids, is hypothesized to target the overall nitrogen conservation and heightened protein
synthesis. However, it remains unclear whether other BCAA requirements also increase
and the precise mechanism behind this adaptation. These discoveries indicate possible
implications for dietary amino acid recommendations specific to the gestational stages.

3.2. The Impact of Amino Acids on Fetal Development

The amino acid levels are higher in fetal circulation as a result of active transport
mechanisms across the placenta and are essential to afford the essential building blocks for
protein synthesis and cellular development [32,33]. Influencing the pool of amino acids
accessible for transport to the fetal circulation is an active role played by the placenta [34].
The placenta features the following three distinct types of amino acid transport systems:
accumulative, exchange, and facilitated transporters [34] (Figure 2).
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Facilitating the transfer of amino acids in the placenta is predominantly governed
by nutrient-sensing signaling, including the mechanistic target of the rapamycin (mTOR)
pathway [35]. Studies have previously indicated reduced placental amino acid transfer,
mTOR activity, and activity of amino acid transporters in cases of intrauterine growth
retardation (IUGR) [36–38]. Furthermore, the substantial reduction in the activity of system
A, system L, and taurine amino acid transporters is a notable consequence of mTOR
inhibition induced by rapamycin [38]. These findings highlight the placenta’s precise
regulation of amino acid concentrations in fetal circulation, a critical factor for ensuring
normal fetal development.

Total amino acid levels have shown associations with fetal outcomes, particularly
infant birth weight. In a prior investigation, positive correlations were observed among the
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concentrations of ornithine, serine, lysine, arginine, proline, and neonatal birth weight [39].
Arginine, acting as a shared substrate for both nitric oxide (NO) and polyamines, plays a
crucial role in fetal development and placental angiogenesis [40], illustrating the signifi-
cance of this association. In contrast, serine is not significantly transported to the fetus [41].
Therefore, these correlations do not necessarily imply key roles for these amino acids in
fetal growth. Considering the fact that alterations in a specific amino acid may influence
the metabolic processes of others, further studies have shifted their focus to exploring both
individual amino acids and the equilibrium of the amino acid pool in fetal development.
Urgent exploration is warranted to delve deeper into these aspects.

The maternal low-protein diet serves as a commonly employed experimental model
for investigating the effects of early nutrition on the adult offspring’s health [42]. Adult rat
offspring born to dams fed low-protein diets displayed a reduced body weight, elevated
blood pressure (BP), and metabolic abnormalities [42]. Nevertheless, epidemiological
research on the outcomes of either insufficient or excessive intake of specific amino acids
on fetal development and subsequent outcomes in the offspring is currently insufficient.

4. The Connection between Dietary Amino Acids and Gut Microbiota

Currently, the proposed mechanisms behind nutritional programming include epige-
netic regulation, dysregulated nutrient sensing, glucocorticoid programming, the aberrant
renin–angiotensin system (RAS), oxidative stress, and dysbiotic gut microbiota [5–7,43–45].
Among them, gut microbiota stands out as the pivotal mechanism connecting amino acids
to the developmental programming of CKM syndrome.

Within the human gut, a multitude of microbial species, numbering in the thousands,
collectively constitute the gut microbiota. This vast microbial community exerts consid-
erable influence over the uptake, processing, and retention of dietary nutrients, thereby
significantly shaping host’s physiology [46]. The gut microbiota holds a crucial role in gov-
erning the digestion and absorption of amino acids. It is essential to differentiate between
the total amino acid reservoir and the amino acid composition, which examines the specific
distribution of individual amino acids. The presence of resident bacterial species in the gut
intricately influences the distribution of free amino acids within the gut [47].

Examining the resident bacterial species within the human colon has revealed signifi-
cant findings concerning substantial populations of bacteria adept in the fermentation of
proteins and amino acids [48]. Specifically, the key drivers of amino acid fermentation in the
large intestine are bacteria belonging to the Clostridium genus, which are particularly crucial
for proline or lysine use. Additionally, the genus Peptostreptococcus plays a pivotal role in
the utilization of tryptophan or glutamate. It is crucial to acknowledge that various species
may assume prominent roles in amino acid metabolism within the large intestine, including
bacteria from the genera Bacteroides, Fusobacterium, and Veillonella, as well as the species
Selenomonas ruminantium and Megasphaera elsdenii. Apart from consuming amino acids, the
gut microbiota plays a crucial role in the generation of amino acids, encompassing de novo
biosynthesis. Various species, including Streptococcus bovis, Selenomonas ruminantium, and
Prevotella bryantii, have been identified as actively participating in the de novo synthesis of
amino acids [49].

SCFAs are important microbial-derived metabolites formed during the bacterial fer-
mentation of carbohydrates, mainly consisting of acetate, propionate, and butyrate. In the
gut, microbial protein fermentation yields numerous amino acids that serve as synthetic
precursors to SCFAs [50,51]. Certain anaerobic bacteria have the capability to metabolize
specific amino acids to produce acetate, and this group includes glycine, threonine, glu-
tamate, and ornithine [51]. Additionally, threonine, lysine, and glutamate can contribute
to the synthesis of butyrate. Another SCFA, propionate, is primarily derived from the
metabolism of threonine [52]. These findings underscore the remarkable adaptability of
threonine among the amino acids used for SCFA synthesis, as it contributes to the produc-
tion of each of the three fundamental SCFAs. In light of these findings, it is paramount
to acknowledge that the intake and synthesis of amino acids by the gut microbiota play a
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significant role in shaping the amino acid reservoir. Additionally, amino acids can undergo
catabolism through distinct pathways in the gut. The diverse characteristics of amino
acid catabolism within the indigenous species of the gut microbiota have the potential to
generate both favorable and unfavorable effects on the host [53].

5. Amino Acids and CKM Syndrome

Apart from serving as the building blocks for proteins, amino acids play crucial roles
in the essential pathways that regulate cell growth, metabolism, biosynthesis, neurotic
transmission, and immunity [54]. Disturbances in the amino acid metabolism have been
associated with various pathological conditions [54], containing significant components of
CKM syndrome [14,15]. The subsequent sections delve into each of these aspects in detail.

5.1. Hypertension and Cardiovascular Disease

Numerous amino acids have roles in the regulation of BP. As an example, intracis-
ternal injections of serine, alanine, taurine, and glycine in conscious rats result in de-
pressor responses, while arginine, proline, glutamate, cysteine, aspartic acid, and as-
paragine lead to pressor responses [55]. In blood vessels, arginine, homocysteine, branched-
chain amino acids (BCAAs), and tryptophan are known to influence the development of
atherosclerosis [56]. While there is an identified increased risk of CVD in pregnant women
associated with inadequate levels of certain amino acids like alanine and glycine [57], there
is still a lack of specific recommendations regarding individual amino acids and their
precise dosage requirements for pregnant women. Several arginine-related amino acids
may contribute to NO bioavailability, including arginine, methylated arginine, citrulline,
and its homolog L-homoarginine. Arginine serves as a precursor for NO, a key player
in endothelium-dependent vasodilation within the blood vessels [58]. Arginine has the
potential to undergo methylation, resulting in either monomethylated arginine or dimethy-
lated arginine. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric
oxide synthase (NOS), holds the ability to markedly diminish NO production, thereby
contributing to the development of CVD [59]. Patients with hypercholesterolemia, coronary
artery disease, and peripheral vascular disease usually have raised ADMA [60,61].

The synthesis of arginine faces challenges in situations where there is a decline in the
functioning of the small intestine and kidneys, resulting in a dietary need for arginine.
Citrulline is a precursor for de novo arginine synthesis. The addition of citrulline can in-
crease renal NO production and prevent hypertension in spontaneously hypertensive rats
(SHRs) [62]. Homoarginine, a nonproteinogenic amino acid structurally similar to arginine,
has been reported to be a substrate in NO synthesis, akin to arginine [63]. In rat models
of heart failure, the administration of homoarginine demonstrates a capacity to enhance
cardiac function and mitigate remodeling in response to pressure overload [64]. Methio-
nine, homocysteine, cysteine, and taurine are the four common sulfur-containing amino
acids. Homocysteine is a sulfur-containing amino acid formed during the metabolism
of methionine, an essential amino acid obtained from dietary sources. Elevated levels of
homocysteine have been associated with an increased risk of CVD [65]. Hyperhomocys-
teinemia may stimulate ADMA production, damage endothelial function, elevate BP, and
cause atherosclerosis [65,66]. Another sulfur-containing amino acid, cysteine, functions as
a precursor for hydrogen sulfide (H2S) and is an integral component of glutathione, which
is a crucial antioxidant. Due to the interconnected roles of glutathione and H2S signaling in
BP regulation [67,68], cysteine is recognized for its potential antihypertensive effects [69]. In
a comparable manner, taurine, another amino acid containing sulfur, exhibits vasodilatory
effects [70]. Numerous studies, as outlined in reviews elsewhere [71], have explored the
potential antihypertensive benefits of taurine supplementation in diverse hypertensive rat
models. Likewise, the BCAAs—leucine, isoleucine, and valine—are related to CVD [72].
The essential amino acids known as BCAAs are primarily obtained from the diet, even if
they can also be synthesized by intestinal microbes [72].
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Elevations in plasma BCAA levels, particularly isoleucine, are associated with hy-
pertension and CVD in numerous epidemiological cohorts, as reviewed elsewhere [73].
Furthermore, tryptophan and its metabolites have been linked to atherosclerosis and
hypertension [74,75]. Tryptophan, an essential amino acid necessitating dietary intake, un-
dergoes metabolism through three primary pathways in the gut, as follows: (1) the kynure-
nine pathway, active in both immune and epithelial cells; (2) the indole pathway, facilitated
by the gut microbiota; and (3) the serotonin pathway, working in enterochromaffin cells [76].
The kynurenine pathway accounts for over 95% of the absorbed tryptophan catabolism,
with only 1–2% and 2–3% of dietary tryptophan being transformed into the serotonin and in-
dole pathways, respectively [77,78]. Despite the vasodilatory properties of tryptophan [79],
the activation of the kynurenine pathway has been linked to hypertension [80]. In patients
with CKD, gut-microbiota-produced uremic toxins derived from tryptophan, primarily
through the indole and kynurenine pathways, are associated with CVD [81,82]. The role of
serotonin in the control of BP is intricate and remains unclear [83]. While serotonin induces
acute arterial constriction [83], prolonged serotonin administration leads to a sustained
decrease in BP [84]. These findings indicate that disruptions in amino acid metabolism
could potentially play a role in the development of hypertension and CVD. Nevertheless,
the precise mechanisms and interplay among the amino acids remain subjects of ongoing
research, and the individual responses to these factors may differ.

5.2. Obesity

The amino acid metabolism contributes to the overall energy balance in the body, and
an imbalance in energy homeostasis is implicated in the onset of obesity. Certain amino
acids, like BCAAs, methionine, tryptophan and its metabolites, and glutamate have been
studied for their potential role in promoting muscle protein synthesis and maintaining lean
body mass [85]. The plasma levels of BCAAs are increased in patients with obesity [86]. A
growing body of evidence indicates that the supplementation of leucine in the diet has a
beneficial impact on parameters related to obesity [87]. In rodent models of diet-induced
obesity, methionine restriction has shown improvements in body weight gain, glucose
metabolism, and insulin sensitivity through a communication mechanism between the
adipose tissue and the skeletal muscle, involving the release of the adiponectin [88,89].
A recent systematic review focusing on pediatric obesity revealed abnormal levels of
several amino acids, notably those belonging to tryptophan metabolism, including the
kynurenine pathway [90]. Tryptophan restriction could modulate energy balance and
induce weight loss in animal models of obesity [91,92]. Glutamate is another amino
acid linked to obesity. Circulating glutamate levels are positively associated with central
obesity [93]. However, the underlying pathophysiological pathways responsible for this
association are still unclear.

5.3. Diabetes

A comprehensive meta-analysis indicated elevated levels of various amino acids,
including BCAAs, aromatic amino acids, and glutamine, in individuals with type 2 diabetes
compared to their control counterparts [94]. The rise in BCAA levels can be linked to a
decline in the flow of metabolic processes through the citric acid cycle within muscle
tissues [95]. Experimental studies utilizing rodent models have demonstrated that reducing
BCAA levels through a BCAA-restricted diet or by activating the rate-limiting enzyme
in BCAA catabolism yields clear beneficial effects on glucose homeostasis [96]. Although
high aromatic amino acids levels are attributed to elevated levels of BCAAs, their precise
impact on diabetes remains uncertain. Glutamine has emerged as a pivotal amino acid
in the ruling of insulin sensitivity and glucose stability. Supplementation with glutamine
has been shown to forestall the onset of insulin resistance by mitigating inflammation
and fostering insulin sensitivity in skeletal muscle, as evidenced in a mouse model of
obesity [97]. Glycine levels exhibit a negative correlation with obesity and insulin resistance
in diabetes patients. Evolving evidence suggests that supplementing the diet with glycine
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increases insulin levels, reduces systemic inflammation, and enhances glucose tolerance in
diabetes patients [98]. Nevertheless, the exact role of glycine in glucose regulation, beyond
its potential as a biomarker, remains less evident.

5.4. NAFLD and Dyslipidemia

Non-alcoholic fatty liver disease (NAFLD) arises as a result of metabolic disorders,
encompassing obesity, insulin resistance, and metabolic syndrome. Dyslipidemia is pivotal
in the progression of NAFLD. The gathering of free fatty acids and lipid metabolites within
hepatocytes disrupts insulin-triggered cell signaling, ultimately initiating the develop-
ment of NAFLD [99]. In the liver, the amino acid metabolism can impact the synthesis of
glutathione, insulin resistance, oxidative stress, and inflammation [100]. In patients with
NAFLD, changes in the circulating amino acids can be noted, with increases in BCAAs
and aromatic amino acids and decreases in the amino acids associated with glutathione
synthesis (glutamine, serine, and glycine) [101]. Increased amino acid availability (e.g.,
BCAAs and aromatic amino acids) could result in intrahepatic fat accumulation by interfer-
ing with fat and glucose metabolism. Prior work indicates that attenuating experimental
NAFLD is observed with a glycine-based treatment, which stimulates hepatic fatty acid
oxidation and glutathione synthesis [102]. Similarly, glutamine supplementation could
reduce oxidative stress in the liver, which was shown to inhibit inflammation and improve
hepatic steatosis in a rat model of NAFLD [103]. Although methionine deficiency has been
used in a methionine- and choline-deficient diet mouse model to study NAFLD [104], the
role of methionine in NAFLD remains less clear.

5.5. CKD

The human kidney plays a crucial role in maintaining the homeostasis of amino
acid levels within the body. The kidney serves as the primary organ for the elimination
of glutamine and proline, as well as the net release of certain amino acids like arginine,
tyrosine, and serine, which are newly synthesized within the kidney for export to other
tissues [105]. The insufficient production of tyrosine in the kidneys is observed in patients
with CKD, potentially resulting in protein depletion and the impaired synthesis of aromatic
amine modulators [106]. Furthermore, recent observations suggest that, in patients with
CKD, low arginine availability and elevated ADMA are associated with reduced de novo
arginine and NO synthesis [107].

Uremic toxins, primarily derived from tryptophan, are not only a consequence of renal
dysfunction, but also contributors to the progression of CKD [108]. Indoxyl sulfate (IS)
and p-cresyl sulfate (PCS) are well-known uremic toxins originating from tryptophan. In
patients with CKD, there is a reduced urinary excretion of various microbial tryptophan
metabolites, such as IS and PCS. These tryptophan metabolites serve as ligands for the
AHR [109]. The activation of AHR can induce oxidative stress, initiate inflammation, and
modulate the Th17 axis, contributing to the progression of CKD [110].

It is important to highlight that maternal amino acid levels not only influence fetal
growth but also impact postnatal growth trajectories [111]. These trajectories are intri-
cately linked to various components of CKM syndrome, such as obesity, diabetes [112],
hypertension [113], and cardiovascular disease [114]. As outlined above, there are intricate
associations between the imbalances in maternal amino acid metabolism, fetal program-
ming, and CKM syndrome in the later stages of life (Figure 3).
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6. Effects of Perinatal Amino Acid Supplementation on Offspring CKM Syndrome

Considering the importance of amino acids in fetal programming, the perinatal sup-
plementation of amino acids may be an effective therapeutic option to improve perinatal
and long-term offspring health (Figure 1). Currently, several amino-acid-targeted therapies
have been examined to improve pregnancy outcomes and fetal growth in both human and
experimental research [115].

Forming three intriguing supplementation groups, due to their impact on fetal growth,
are the arginine family, BCAAs, and methyl donors. Although a meta-analysis indicated
the efficacy of this approach for the arginine family, the difficulty in determining the most
efficient amino acids was exacerbated by the limited number of studies conducted in com-
plicated pregnancy settings compared to those in normal growth conditions, particularly
concerning BCAAs and methyl donors [115]. Less research has been conducted on perinatal
amino acid supplementation in relation to its effects on the offsprings’ long-term outcomes.
In the present review, our focus is solely on amino acid supplementation starting during
pregnancy and/or lactation as a reprogramming strategy to prevent CKM traits in rodent
animal models, as summarized in Table 1 [62,116–138].

Table 1. Perinatal amino acid supplementation to prevent cardiovascular–kidney–metabolic (CKM)
phenotypes.

Amino acid
Supplementation Dose Period Experimental Model Species

Age at
Evaluation

(Weeks)
Protective Effects Ref.

Arginine

200 mg/kg/day Lactation Maternal protein
restriction SD rat/M 8

Hepatic insulin signaling
and gene expression were

prevented
[116]
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Table 1. Cont.

Amino acid
Supplementation Dose Period Experimental Model Species

Age at
Evaluation

(Weeks)
Protective Effects Ref.

Citrulline

2.5 g/L in
drinking water

Pregnancy and
lactation

Maternal caloric
restriction SD rat/M 12 Kidney disease was

prevented [117]

2.5 g/L in
drinking water

Pregnancy and
lactation

Antenatal
dexamethasone

exposure
SD rat/M 16 Hypertension was

prevented [118]

2.5 g/L in
drinking water

Pregnancy and
lactation STZ-induced diabetes SD rat/M 12 Hypertension and kidney

disease were prevented [119]

2.5 g/L in
drinking water

Pregnancy and
lactation

Maternal L-NAME
exposure SD rat/M 12 Hypertension was

prevented [120]

2.5 g/L in
drinking water

Pregnancy and
lactation

Maternal
CKD SD rat/M 12 Hypertension was

prevented [121]

2.5 g/L in
drinking water

From gestational
day 7 to postnatal

week 6

Genetic hypertension
model SHR/M and F 50 Hypertension was

prevented [62]

Taurine

1.5% in drinking water Pregnancy and
lactation

Maternal high-
fat/high-fructose diet

Wistar rat/M
and F 21 Obesity was prevented in

M [122]

2.5% in drinking water Pregnancy and
lactation

Genetic hypertension
model NOD mice/M 50 Onset time of diabetes was

postponed [123]

3% in drinking water Pregnancy and
lactation

Maternal high-sugar
diet SD rat/F 8 Hypertension was

prevented [124]

3% in drinking water Pregnancy and
lactation Maternal CKD SD rat/M 12

Hypertension and renal
hypertrophy were

prevented
[125]

3% in drinking water Pregnancy and
lactation STZ-induced diabetes Wistar rat/M

and F 16 Hypertension was
prevented [126]

3% in drinking water Pregnancy and
lactation

Maternal
dyslipidemia

Wistar rat/M
and F 16

Obesity, dyslipidemia, and
hypertension were

ameliorated
[127]

3% in drinking water Pregnancy and
lactation

Genetic hypertension
model SHR/M 22

Hypertension was
prevented and diabetic

retinopathy was attenuated
[128]

5% in drinking water Pregnancy and
lactation

Genetic hypertension
model SHRSP/M 12 Hypertension was

prevented [129]

Cysteine

L- or D-cysteine,
8 mmol/kg/day Pregnancy Maternal CKD SD rat/M 12 Hypertension was

prevented [130]

NAC, 1% in
drinking water

Pregnancy and
lactation

Prenatal
dexamethasone and

postnatal high-fat diet
SD rat/M 12 Hypertension was

prevented [131]

NAC, 1% in
drinking water

Pregnancy and
lactation

Suramin-induced
preeclampsia SD rat/M 12 Hypertension was

prevented [132]

NAC, 1% in
drinking water

Pregnancy and
lactation

Maternal L-NAME
exposure SD rat/M 12 Hypertension was

prevented [133]

NAC, 500 mg/kg/day
in drinking water

From gestational
day 4 to postnatal

day 10

Maternal nicotine
exposure SD rat/M 32 Hypertension was

prevented [134]

Glycine

3% in chow Pregnancy and
lactation

Maternal protein
restriction Wistar/M 4 Hypertension was

prevented [135]

BCAAs

BCAA-supplemented
diets Pregnancy Maternal caloric

restriction SD rat/M 16 Hypertension was
prevented [136]

1.5% in chow Pregnancy and
lactation

Maternal and
post-weaning high-fat

diet

C57BL/6
mice/M 16 Obesity and glucose

intolerance were alleviated [137]
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Table 1. Cont.

Amino acid
Supplementation Dose Period Experimental Model Species

Age at
Evaluation

(Weeks)
Protective Effects Ref.

Tryptophan

200 mg/kg/day Pregnancy Maternal CKD SD rat/M 12 Hypertension was
prevented [138]

SD, Sprague–Dawley rat; SHR, spontaneously hypertensive rat; SHRSP, stroke-prone spontaneously hypertensive
rat; NOD, Non-obese diabetic; M, male; F, female; L-NAME, NG-nitro–L-arginine methyl ester; STZ, streptozotocin;
CKD, chronic kidney disease; BCAA, branched-chain amino acid; NAC, N-acetylcysteine.

Numerous developmental programming models have been investigated, encompassing
diverse approaches such as the following: the maternal protein restriction model [116,135],
the maternal caloric restriction model [117,136], antenatal dexamethasone exposure [118],
streptozotocin (STZ)-induced diabetes [119,126], the maternal NG-nitro-L-arginine-methyl-
ester (L-NAME) exposure model [120,133], maternal CKD [121,125,130,138], a maternal
high-fat/high-fructose diet [122], the genetic hypertension model [62,129,130], a combina-
tion of antenatal dexamethasone and a postnatal high-fat diet [131], the suramin-induced
preeclampsia model [132], maternal nicotine exposure [134], and a maternal and post-
weaning high-fat diet [137]. The primary focus in evaluating the components of CKM
syndrome involves hypertension, followed by kidney disease, obesity, diabetes, and dys-
lipidemia. Reprogramming effects have been observed through amino-acid-targeted ther-
apies in rats ranging from 4 weeks to 50 weeks old, coarsely equivalent to human ages
spanning from young children to middle adulthood [139]. Amino acid supplementation
utilized as reprogramming interventions includes arginine [116], citrulline [62,117–121],
taurine [122–129], cysteine [130–134], glycine [135], BCAAs [136,137], and tryptophan [138].
The subsequent sections will delve into each of these aspects in detail.

6.1. Arginine

Studied in human diseases as a method of enhancing NO bioavailability, arginine
supplementation, with an oral range of 3–100 g/day, has been investigated [140]. Gas-
trointestinal disturbances have been documented when single doses exceed 9 g, or when
the daily dosing regimen exceeds 30 g [141]. As of now, the outcomes of arginine sup-
plementation in human trials are inconclusive [142]. The protection against hypertension
of adult offspring in various genetic hypertensive rat models has been demonstrated in
prior work employing perinatal arginine supplementation combined with taurine and
antioxidants [143–145]. Nonetheless, as indicated in Table 1, the examination of the pro-
tective effects of arginine supplementation alone on offspring CKM syndrome is limited
to a singular study. This study demonstrated that administering arginine at a daily dose
of 200 mg/kg during lactation effectively prevented hepatic insulin signaling and the ex-
pression of gluconeogenic enzymes [116]. While post-weaning arginine supplementation
alone has been shown to prevent hypertension in offspring rats complicated by maternal
caloric restriction or diabetes [146,147], it remains unclear as to whether perinatal arginine
supplementation alone is associated with these effects. Furthermore, the protective effects
on IUGR in ovine and swine have been demonstrated with arginine supplementation
during the gestational period [148,149]. However, the reprogramming actions of arginine
therapy during pregnancy, beyond its impact on IUGR, have not been thoroughly examined
in these species at present.

6.2. Citrulline

Recognized as a supplementary approach to increase plasma arginine levels and boost
NO generation, oral citrulline supplementation has garnered interest, due to its capacity
to circumvent hepatic metabolism and transform into arginine within the kidneys [150].



Nutrients 2024, 16, 1263 12 of 20

In the human context, the safety and tolerability of citrulline supplementation have been
demonstrated through the administration of single oral doses ranging from 2 to 15 g [151].

Used as a reprogramming intervention during pregnancy and lactation, citrulline
supplementation aims to protect adult offspring against hypertension in various rat mod-
els, covering antenatal dexamethasone exposure [118], STZ-induced diabetes [119], the
maternal L-NAME exposure model [120], and maternal CKD [121]. A study revealed that,
in the offspring of dams with STZ-induced diabetes, where a reduced nephron number and
increased ADMA contribute to adult kidney disease and hypertension, citrulline supple-
mentation during pregnancy and lactation prevented these conditions by manipulating
the ADMA–NO pathway [119]. In the maternal L-NAME exposure model, where maternal
citrulline supplementation was implemented, it successfully prevented offspring hyperten-
sion programmed by maternal NO depletion. Linked with over 300 genes, this depletion
resulted in a notable modification of the renal transcriptome in adult offspring [120]. These
observations indicate that early citrulline supplementation has a lasting influence on kidney
development, bringing about alterations in the renal transcriptome. Consequently, further
exploration is needed to fully understand the potential implications of epigenetic regulation
by citrulline during the initial stages of programming.

6.3. Taurine

The most frequently supplemented amino acid during pregnancy is taurine, as indi-
cated in Table 1, which has been extensively studied in various aspects of CKM syndrome.
As the most prevalent sulfur-containing amino acid [152], taurine is predominantly acquired
through dietary sources, although its synthesis is also possible from cysteine. The table
illustrates that maternal taurine supplementation provides protection against hyperten-
sion programmed by maternal high-sugar intake [124], maternal CKD [125], STZ-induced
diabetes [126], or maternal dyslipidemia [127]. Furthermore, perinatal taurine supplemen-
tation has demonstrated efficacy in preventing hypertension in SHRs and stroke-prone
spontaneously hypertensive rats (SHRSP) [128,129]. In addition, maternal taurine sup-
plementation can ameliorate obesity programmed by a maternal high-fat/high-fructose
diet [122] and maternal dyslipidemia [127]. Using a NOD mice model, perinatal taurine
treatment was shown to delay the onset time of diabetes from 18 to 30 weeks in female
offspring, and from 30 to 38 weeks in male offspring [123]. With respect to gut microbiota,
taurine plays a crucial role in safeguarding the host, acting as a vital energy source for
microbes, providing defense against pathogens, and regulating bacterial colonization [153].
In the context of maternal CKD, the protective effects of perinatal taurine treatment on
offspring hypertension are intricately linked to alterations in the gut microbiota. This treat-
ment results in an increased abundance of the genera Asteroleplasma, Bifidobacterium, and
Dehalobacterium, coupled with a reduction in Erisipelactoclostridium [125]. The restoration
of Bifidobacterium levels, which were diminished due to maternal CKD, through taurine
administration is attributed to its probiotic capability of preventing hypertension [125].

6.4. Cysteine

Recognized as a rate-limiting factor in the synthesis of glutathione [69], cysteine plays
a crucial role in cellular processes. Experimental studies have employed cysteine supple-
mentation to generate endogenous H2S [154]. While early post-weaning cysteine supple-
mentation has been stated to augment the H2S signaling pathway and avert hypertension
in high-salt-treated SHRs [155], to date, only one study has evaluated the protective actions
of gestational cysteine supplementation in a maternal CKD model [130]. The findings of
this study revealed that supplementation with either L- or D-cysteine effectively prevented
hypertension in offspring primed by maternal CKD [130]. The treatment with L-cysteine
shielded the adult offspring from hypertension, promoting increased H2S production and
enhancing the presence of beneficial genera such as Oscillibacter and Butyricicoccus. It also
resulted in the depletion of indole-producing genera like Akkermansia and Alistipes, along
with a reduction in various indole metabolites.
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On the other hand, D-cysteine supplementation results in elevated levels of 3-hydroxy
kynurenine, kynurenic acid, and xanthurenic acid in the kynurenine pathway. It also
decreased serotonin and 5-hydroxytryptophan in the serotonin pathway, while enriching
the abundance of genera Odoribacter and Bacteroides. The gut microbiota’s degradation of
cysteine releases H2S, which, in turn, influences the composition of the gut microbiota [156],
therefore, supporting the idea that amino acids could serve as prebiotics to confer benefi-
cial effects on host health [157]. Cysteine, when absorbed into cells, loses its antioxidant
properties. Hence, for this purpose, N-acetylcysteine (NAC), which is a stable analogue of
cysteine, is frequently employed. Table 1 presents evidence of the antihypertensive actions
of perinatal NAC therapy in various animal models, including those involving prenatal
dexamethasone treatment and exposure to a postnatal high-fat diet [131]. Additionally, pos-
itive outcomes were observed in models of suramin-induced preeclampsia [132], maternal
exposure to L-NAME [133], and maternal nicotine exposure [134].

6.5. Others

There are other amino-acid-targeted interventions by which CKM phenotypes could be
prohibited in adult progeny, such as supplementation with glycine [135], BCAAs [136,137],
and tryptophan [138]. One study uncovered that perinatal glycine supplementation shields
the offspring from hypertension induced by maternal low-protein intake [135]. This un-
derscores the potential benefits of glycine in addressing human disorders, given its role
in glutathione synthesis [158]. In a distinct approach, BCAA supplementation during
pregnancy demonstrated efficacy in preventing hypertension primed by maternal caloric
restriction in adult offspring [136]. Additionally, another study showcased the benefits
of perinatal leucine supplementation in mitigating obesity and glucose intolerance in
adult mouse offspring exposed to a high-fat diet during the perinatal period [137]. The
inconclusive nature of previous studies addressing the association of BCAAs with hy-
pertension [159–161] highlights the need for further investigations to comprehensively
understand the reprogramming effects of perinatal BCAA use, especially in the context of
hypertension. Thirdly, the reprogramming effects of perinatal tryptophan supplementation
were assessed in a maternal CKD model [134]. The protective influence of tryptophan
supplementation against hypertension in offspring, previously predisposed by maternal
CKD, is associated with modifications in various tryptophan-metabolizing microbes and
the AHR signaling pathway. While the inclusion of maternal methionine supplementation
in a methyl-donor diet has demonstrated advantages for the later health of offspring [162],
we opted to not include methionine in the list presented in Table 1. This decision stems
from the recognition that its protective effects may be attributed to other nutrients involved
in the one-carbon cycle metabolism.

It is noteworthy that the protective effects of various amino acids against CKM syn-
drome in offspring are intricately tied to changes in gut microbiota compositions. The
chemical diversity of amino acids gives rise to numerous microbial metabolites with wide-
ranging bioactivities, potentially mediating their prebiotic properties. While some studies
have demonstrated synergistic effects of co-administering amino acids with probiotic
bacteria to enhance human and animal health [157], uncertainties persist regarding their
combined use in the DOHaD research field.

7. Conclusions and Perspectives

This review provides a thorough examination of amino acid effects during pregnancy
on offspring outcomes, focusing on CKM syndrome. It consolidates existing knowledge
and reveals new avenues for CKM syndrome prevention through targeted amino acid
interventions. Supplementation with arginine, citrulline, taurine, cysteine, glycine, BCAAs,
and tryptophan during pregnancy and/or lactation showed positive effects on CKM
phenotypes in various animal models. While the association between dietary amino acids
and gut microbiota is acknowledged, the precise mechanisms remain elusive, due to diverse
biological activities.



Nutrients 2024, 16, 1263 14 of 20

Based on this review, we propose recommendations for future research. We advocate
for improved study designs with better control, suitable animal models, standardized
dosing, and optimal timing for amino acid supplementation. Understanding the distinct
roles of individual amino acids and their interactions in CKM syndrome’s developmental
programming is crucial. Future research should explore the optimal combinations of amino
acids with potential probiotics or prebiotics.

There is limited information on translating reprogramming strategies from animal
studies to pregnant women. Therefore, bridging the gap between human and animal
research, particularly focusing on amino acid reprogramming strategies, is essential. Ad-
dressing these questions is critical, as early-life amino acid supplementation may provide
novel therapeutic opportunities to reduce the global burden of CKM syndrome.
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