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Abstract: (1) Background: Numerous elements of the Mediterranean diet (MD) have antioxidant and
anti-inflammatory qualities. (2) Methods: We present a narrative review of the potential benefits of
the Mediterranean dietary pattern (MD) in mitigating aging-related inflammation (inflamm-aging)
associated with childhood obesity. The mechanisms underlying chronic inflammation in obesity
are also discussed. A total of 130 papers were included after screening abstracts and full texts.
(3) Results: A complex interplay between obesity, chronic inflammation, and related comorbidities is
documented. The MD emerges as a promising dietary pattern for mitigating inflammation. Studies
suggest that the MD may contribute to weight control, improved lipid profiles, insulin sensitivity, and
endothelial function, thereby reducing the risk of metabolic syndrome in children and adolescents
with obesity. (4) Conclusions: While evidence supporting the anti-inflammatory effects of the MD in
pediatric obesity is still evolving, the existing literature underscores its potential as a preventive and
therapeutic strategy. However, MD adherence remains low among children and adolescents, necessi-
tating targeted interventions to promote healthier dietary habits. Future high-quality intervention
studies are necessary to elucidate the specific impact of the MD on inflammation in diverse pediatric
populations with obesity and associated comorbidities.
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1. Introduction

Aging is characterized by a gradual and continuous progression of natural changes
across biological, physiological, immunological, environmental, psychological, behavioral,
and social processes [1]. Inflamm-aging (IA) is characterized by chronic, low-grade in-
flammation that exacerbates the aging process and related chronic diseases. Immune
dysregulation, starting from childhood [2], is a crucial factor in the development of chronic
inflammation [1]. A number of environmental insults, lifestyles, and nutritional factors
may play an important role in immuno-modulation and IA in non-communicable chronic
disease (NCD) pathogenesis, including obesity and related metabolic risk. Specifically,
children with obesity are individuals with a high cumulative biological risk. In this risk
group, cellular senescence can occur due to various types of cellular stress and is character-
ized by a pro-inflammatory secretory phenotype, potentially leading to premature aging
mechanisms [2].
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In 2019, about 38.2 million children under the age of 5 worldwide were overweight or
obese [3], and it seems the SarsCov2 pandemic exacerbated the situation. A recent study
analyzed the electronic health records from March 2019 to January 2021 of 191,509 American
citizens aged 5 to 17; it found an increase in overweight and obesity, especially among
children aged 5 to 11, where the rate rose by 8.7% during the pandemic. Currently, 45.7%
of children aged 5 to 11 are overweight. Compared to pre-pandemic levels, overweight
rates in teenagers aged 12 to 15 increased by 5.2% [4]. This rise in childhood obesity
has contributed to the global increase in chronic diseases associated with excess weight,
including adult obesity, cardiovascular disease, high blood pressure/hypertension, renal
comorbidities, gastrointestinal diseases like non-alcoholic fatty liver disease (NAFLD), non-
alcoholic steatohepatitis (NASH), cholelithiasis, hepatocellular carcinoma, and pulmonary
diseases such as asthma and obstructive sleep apnea [5].

An important link between obesity and its comorbidities is the pro-inflammatory
nature of obesity [6]. Indeed, obesity is associated with chronic low-grade inflammation,
stemming from metabolic issues resulting from cells’ heightened exposure to fatty acids [7].
When adipose tissue’s storage capacity is surpassed, free fatty acids accumulate in ectopic
locations, potentially leading to cellular dysfunction, cell death, and inflammation [8]. This
leads to the increased secretion of hepcidin by the liver, a small peptide hormone that serves
as a homeostatic regulator of systemic iron metabolism and also acts as a mediator of host
defense and inflammation [9]. Furthermore, inflammation is characterized by alterations in
the levels of cytokines and acute-phase reactants in the blood. The inflammatory cascade
is primarily executed by M1 macrophages and the Toll-like receptor family, notably Toll-
like-receptor 4 (TLR4). TLR4 binds to the ligands’ lipopolysaccharides (LPSs), initiating a
signaling pathway that results in the production of nuclear factor κB (NFκB) and cytokines,
predominantly IL-6, IL-1, and TNF-α, as well as serum amyloid A3, alpha 1-acid glycopro-
tein, lipocalin 24p3, and plasminogen activator inhibitor-1 (PAI-1). The Mediterranean diet
(MD) is recognized as an effective diet for maintaining a healthy weight and preventing
obesity. It is characterized by a high intake of vegetables, fruits, whole-grain products, nuts,
seeds, olive oil as the primary fat source, a moderate consumption of dairy products daily,
and some servings of poultry or fish weekly [10]. Moreover, numerous elements of the
MD have antioxidant and anti-inflammatory qualities. Among them, there are biologically
active nutrients, including polyphenols, which are important for the management and pre-
vention of chronic non-communicable illnesses thanks to their advantageous anti-oxidative
and anti-inflammatory properties [11]. Few studies have revealed a statistically significant
difference in body mass index (BMI) or other adiposity measures between the diet inter-
vention and the control group. However, an MD can support the maintenance of healthy
body weight and prevent obesity through a variety of plausible mechanisms [12].

In this review, we revised the mechanisms underlying chronic inflammation in obesity
and the benefits of Mediterranean dietary patterns on IA in childhood obesity, focusing on
the effectiveness of the diet in the treatment of excess weight and related complications.
Even though IA is usually described in elderly subjects, this concept may be extended to
pediatrics with respect to subjects with high cumulative biological risk, such as obesity
and/or other chronic conditions [2]. The MD can not only be supported and proposed as
an effective dietary pattern for treatment but can also prevent inflamm-aging and related
comorbidities from early life stages and onwards. The sharing of opinions provides the
power to create opportunities for debates on the topic and can reflect in the strategies for
managing obesity and obesity-related complications using a nutritional approach.

2. Methods

We performed a narrative review to revise the mechanisms driving low-grade in-
flammation in obesity and investigate the impact of the Mediterranean dietary pattern on
inflamm-aging in pediatric populations with obesity, with a specific focus on the positive
effects of weight control and comorbidities associated with inflammation. The main focus
of the research was children and adolescents; studies involving adults were also included to
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establish the context and highlight the potential impact of MD. We conducted an extensive
literature search on PubMed, with the language being restricted to English. The most perti-
nent original scientific papers, clinical trials, meta-analyses, and reviews published over the
past 15 years were taken into account. We incorporated original research articles, reviews,
meta-analyses, and clinical practice guidelines. Case reports and case series were excluded
due to their typically low level of evidence. The research terms adopted were “childhood
obesity” and/or “Mediterranean diet” and/or “Chronic inflammation”. The initial search
retrieved 629 records, and we assessed 232 abstracts; we excluded 186 studies based on
their abstracts, and 46 full texts were evaluated. Furthermore, references concerning the
role of adipocyte dysfunction in the inflammatory process associated with obesity and
the reference lists of all articles were examined to identify relevant studies (n = 84), and
ultimately, 130 papers were included. Figure 1 illustrates the paper selection and exclusion
process.
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3. Relationship between Aging, Low-Grade Inflammation, and Pediatric
Obesity-Related Complications
3.1. Aging and Chronic Low-Grade Inflammation

Aging is a physiological process that occurs in all organisms, and it is characterized
by a gradual decline in molecular and biological functions. At this stage, cells and tissues
respond less efficiently to stress and damage, exhibiting increased vulnerability relative to
death and disease. The resulting oxidative damage and metabolic imbalances, together with
immunological impairment, essentially cause a reduced capacity to manage persistent types
of inflammation. The molecular basis of inflammation has been described, and different
molecules are reported to be linked to related chronic diseases [13,14]. Pro-inflammatory
(i.e., tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, interferon (IFN)-α, transforming
growth factor (TGF)-β) and anti-inflammatory cytokines (IL-1 receptor antagonists: IL-4,
IL-10, IL-13, and IL-33) are important components of the immune system, and their age-
associated dysregulation may adversely affect the immune response. While the release of
cytokines in acute inflammation induces a systemic response, resulting in the destruction
of pathogens and tissue repair, in chronic inflammation, the persistent signal disturbs the
restoration of damaged tissues.
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Chronic low-level inflammation, associated with the aging process, has been reported
to be a risk factor for several chronic diseases [15].

The possible causes of chronic inflammation have been ascribed to genetic susceptibil-
ity, chronic infections, changes in gut microbiota and permeability, and obesity [16].

Genetic susceptibility is responsible for inter-individual variations through a network
of factors.

Single-nucleotide polymorphisms (SNPs) have been described to be associated with
the development of age-related diseases. For example, SNPs in the C-reactive protein (CRP)
gene increase the risk of myocardial infarction in cardiovascular disease (CVD) [17]. In
contrast, an SNP in the promoter region of IL-6 (174G > C), enhancing IL-6 production in
response to inflammatory stimuli, increases the risk of Alzheimer’s disease, non-insulin-
dependent diabetes mellitus, and juvenile chronic arthritis [18–20].

There is evidence that suggests that epigenetic changes, such as DNA methylation
and histone modifications, are connected with aging, resulting in the overexpression of
pro-inflammatory genes. On the other hand, a persistent inflammatory state leads to the
accumulation of DNA damage [21].

Some cellular changes have been described to be mediated by microRNAs (miRNAs),
which are non-coding, single-stranded RNAs that are involved in gene expression modula-
tion via the reduction of mRNA stability or mRNA translation [22]. An association between
miRNAs and age-related pathologies was reported, and low levels of miR-126–3p were
found in patients with cardiovascular disease (CVD) and diabetes, while miR-21–5p levels
were higher in patients with CVD than in age-matched controls [23–27].

Chronic infections—for example, those due to cytomegalovirus (CMV), hepatitis C
virus (HCV), or human immunodeficiency virus (HIV)—also play a role in IA. In these
pathological conditions, the immune system is continuously stimulated and induced to
produce high levels of pro-inflammatory cytokines that cause a chronic inflammation
state [28,29].

In recent years, increasing evidence has demonstrated the linkage between low-grade
chronic inflammation and intestinal dysbiosis: the intestinal flora continuously stimulates the
immune system in order to ensure rapid and effective defense against pathogens [30–32].

The composition of gut microbiota is heterogeneous throughout the intestinal tract
and is particularly sensitive to external insults. The intestinal homeostasis represented
by the balance of different bacterial species is indeed fundamental [31,33]. However, age-
related changes in human intestinal microbiota are physiological and depend on individual
characteristics and lifestyles [34–36].

Intestinal dysbiosis, demonstrated in elderly people, has been described as a cause of
local inflammation and T-cell activation in the systemic compartment [37–43].

Moreover, lifestyle and environmental factors, such as obesity, radiation, alcohol,
tobacco, or toxicants, are to be taken into account [44,45].

Currently, obesity is considered a pathological condition that is strongly associated
with a variety of age-related inflammatory diseases, including cardio-metabolic disorders
and cancer [46,47].

In obesity, adipose tissue is characterized by both the increase in adipocyte size
(hypertrophy) and number (hyperplasia). Adipocyte hypertrophy results in the reduced
uptake and storage of fatty acids and an increase in lipolysis, inflammatory cell infiltration,
and adipokine secretion, determining the so-called “lipotoxicity” [45]. Under lipotoxic
conditions, these fatty acids are stored as lipid cells, or fat, in ectopic tissues, such as the
liver, pancreas, heart, and skeletal muscle, and they are not designed to support excessive
fat [46]. Intracellular accumulation and the cell’s inability to use fatty acids lead to cellular
dysfunction, with an increase in reactive oxygen species (ROS) production and alterations
in lipidic cellular membrane composition [48].

Chronic low-grade inflammation, often observed in patients with obesity, could be
ascribed to adipocyte organelle dysfunction or adipose tissue hypoxia. An excess of energy
causes mitochondria malfunction, with an increase in ROS production. The subsequently
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induced redox-sensitive transcription factors, such as NF-κB, stimulate adipokine secre-
tion [48]. On the other hand, the “hypoxia theory” renders localized hypoxia the primary
catalyst for adipokine dysregulation in obesity [49].

Additionally, adipokines—including adiponectin, leptin, resistin, visfatin, apelin,
vaspin, hepcidine, IL-1, IL-6, IL-8, IL-10, transforming growth factor β-1 (TGF-β1), TNF-α,
chemerin, omentin, monocyte chemoattractant protein-1 (MCP-1), retinol-binding protein-4,
and plasminogen activator protein (PAI)—have been described to cover different roles in
metabolic and inflammatory responses that change with respect to the site of fat depots.
All these observations render the AT an endocrine organ, and its functional dysregulation
leads to low-grade chronic inflammation diseases [50].

In obesity, the infiltration of macrophages, monocytes, and T and B lymphocytes is
observed in the adipose tissue, and the accumulation of immune cells is correlated with the
body mass index [51]. In particular, an increase in T lymphocytes that secrete IFN-α and
TNF-α, which are related to insulin resistance, has been documented [52,53].

Despite all reported aspects, more efforts must be carried out to understand the
alterations caused by obesity in order to better treat this pathological condition, particularly
in pediatric settings.

3.2. Inflammation and Its Role in Complications Related to Pediatric Obesity

Little evidence suggests that the inflammation state is implicated in clinically impor-
tant childhood obesity complications, including IR, diabetes, cardiovascular, respiratory
and gastrointestinal disorders, and NAFLD [54]. Low-grade chronic inflammation can
already be observed in preschool children [55].

As previously described in detail, the enlarging adipose tissues in subjects with obesity
synthesize and secrete hormones and proteins such as leptin, adiponectin, TNF-α, and other
cytokines, which modify insulin secretion and sensitivity, resulting in insulin resistance [8]
and increasing the risk of developing T2D.

A significant connection between autoimmune illnesses and low-grade chronic in-
flammation has been described; a significant study found that children with obesity had a
higher prevalence and worse prognosis for a number of autoimmune disorders, including
psoriasis, inflammatory bowel disease, and systemic lupus erythematosus [56].

Obesity and correlated chronic low-grade inflammation are also strictly associated with
increased cardiovascular risk, and this is mainly due to hypercholesterolemia, hypertension,
endothelial dysfunction, and/or non-nocturnal dipping blood pressure [55].

Additionally, inflammation can contribute to NAFLD, which is currently the most
prevalent liver disease in children with obesity [57]. The liver plays a crucial role in glucose
regulation, and liver dysfunction, coupled with inflammatory factors, heightens the risk
of diabetes [58]. However, the relationship is bidirectional, as diabetes is also linked to
impaired liver function and an increased likelihood of NAFLD progressing to fibrosis and
non-alcoholic steatohepatitis [59].

Childhood obesity also affects bone health. Although bone mass is positively as-
sociated with body weight, it has been reported that it may be negatively influenced
by endocrine and/or paracrine factors that are associated with obesity and affect bone
synthesis and vitamin D levels [60].

The hormonal and pro-inflammatory effects of adipose tissue have also been suggested
to account for the observed association between obesity and asthma [61]. Considering the
epidemiological link between the two diseases and the common feature of the abnormal
activation of inflammation pathways, it is reasonable to hypothesize a common mechanism
of action, although the exact mechanisms are still unknown [62].

To summarize, evidence in the literature strongly suggests that chronic low-grade
inflammation has a key role in obesity pathogenesis and its major complications. However,
more studies are needed to expand on the association between the two conditions.

The main chronic low-grade inflammation types discussed are summarized in Figure 2.
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4. Mediterranean Diet (MD) and Inflamm-Aging
4.1. Anti-Inflammatory Properties of the Mediterranean Diet (MD)

The MD is an environmentally sustainable dietary pattern characterized by a high
intake of plant-based foods, including vegetables, fruits, whole-grain cereals, legumes,
nuts, and seeds. It also emphasizes a moderate-to-high consumption of fish and seafood,
a moderate intake of eggs, poultry, and dairy products (milk, yogurt, and cheese), and
limited consumption of red meat. Olive oil, abundant in unsaturated n-9 fatty acids, serves
as the primary source of added fat [63]. Both animal and human studies have elucidated
the biological mechanisms underlying the beneficial effects of the traditional MD, including
lipid-lowering, anticancer, antimicrobial, and anti-inflammatory properties [64].

The interaction between nutrition and the immune system is highly intricate. Specifi-
cally, at each phase of the immune response, certain micronutrients play pivotal and often
synergistic roles. Deficiency in even a single essential nutrient can compromise the immune
system [65]. The possible mechanism behind the pro-health effect of the MD could be due to its
immunomodulatory and anti-inflammatory properties [66–69]. The MD is rich in components
such as monounsaturated fatty acids (MUFAs), omega-3 fatty acids, polyphenols, flavonoids,
phytosterols, vitamins (b-carotene, vitamin C, and vitamin E), and minerals with antioxidant
and anti-inflammatory activity (such as selenium and micronutrients).

A high vegetable and fruit intake is associated with a lower hs-CRP [70,71] and
IL-6 [72]. Moreover, data from the 1999 to 2002 National Health and Nutrition Examination
Survey (NHANES)‘s cross-sectional study show that children and adolescents with higher
levels of CRP had significantly lower intakes of grains and vegetables [73].

Extra virgin olive oil, a cornerstone of the MD, is abundant in antioxidant, anti-
inflammatory, and immune-modulating compounds. These are primarily monounsaturated
fatty acids, especially oleic acid, and constituents of the unsaponifiable fraction, comprising
about 2% of the oil’s weight. This fraction includes polyphenols, phytosterols, tocopherols,
and pigments [74]. Among these compounds, polyphenols seem to mitigate inflammation
by functioning as antioxidants, inhibiting the production of pro-inflammatory cytokines;
suppressing inflammatory diseases; inducing metabolic gene expression; or activating
transcription factors that counteract chronic inflammation [75] In addition, oleocanthal,
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a polyphenol found in olive oil, contributes to inhibiting the activity of cyclooxygenases
1 and 2 (COX1 and 2), which are key enzymes of the inflammatory process, catalyzing the
synthesis of prostaglandins and suppressing the lipopolysaccharide-mediated upregulation
of pro-inflammatory factors, such as IL-1, IL-6, and TNF-a [76]. Moreover, wine, especially
red wine, has specific polyphenols with antioxidant properties, including resveratrol,
procyanidins, and monophenols [77].

The current mechanisms that underpin the beneficial effects of the Mediterranean
diet (MD) encompass enhanced lipid profiles, insulin sensitivity, and endothelial function,
along with anti-thrombotic properties [78]. These effects are most likely due to bioactive
ingredients like polyphenols, mono- and polyunsaturated fatty acids—particularly oleic
acid found in olive oil—and dietary fibers [79].

Omega-3 polyunsaturated fatty acids (PUFAs), which are prevalent in the Mediter-
ranean diet (MD), exhibit immunomodulatory effects. They influence leukocyte chemotaxis,
adhesion molecule expression, and leukocyte-endothelium adhesive interactions. They also
affect the production of eicosanoids like prostaglandins and leukotrienes from arachidonic
acid and promote the production of anti-inflammatory cytokines. Specifically, they diminish
the expression of pro-inflammatory factors such as IL-1, IL-6, TNF, VCAM-1, and MCP-1;
reduce levels of reactive oxygen species (ROS) and nitrogen species; and simultaneously
elevate anti-inflammatory cytokines like IL-10 [80,81]. Moreover, they modulate T-cell
function both directly, by inhibiting the differentiation of Th1 and Th17 cells, and indirectly,
by impeding the function of antigen-presenting cells like monocytes/macrophages and
dendritic cells [82].

Sured et al. found that greater adherence to the MD among adolescent girls was associated
with lower levels of C-reactive protein (CRP) and leptin [83]. A cross-sectional analysis involving
1462 adolescents (aged 9–18) yielded similar results [84]. Additionally, the MD has been reported
to reduce levels of IL-1, IL-2, IL-6, and TNF-α [85]. Lastly, in a study involving 44 children with
asthma following the MD, a reduction in IL-17 levels was observed [86].

In addition, other research studies conducted in the adult population suggest that the
long-term consumption of an MD may be an effective strategy for protection against metabolic
syndrome, a risk factor for type 2 diabetes mellitus, and cardiovascular diseases [87,88].

Bioactive compounds in the MD also seem to play an epigenetic role by modifying molec-
ular parameters like methylation profiles and microRNA expression, which are linked to
inflammation modulation [89,90]. Specifically, polyphenolic compounds have been linked to
DNA methylation changes in various cancer-related genes, as well as in key tumor suppres-
sors and promoters [91]. Anthocyanins, pigments found in berries, eggplants, black grapes,
pomegranates, and cruciferous vegetables, have demonstrated an ability to influence the cell cy-
cle in vitro through epigenetic modifications, thereby stimulating DNA repair mechanisms [92].

Fisetin, a flavonoid found in apples, cucumbers, strawberries, onions, and persimmons,
has been shown to inhibit cancer cell growth, leading to changes in various signaling path-
ways, including cell division, angiogenesis, metastasis, oxidative stress, and inflammation [93].
Quercetin, another flavonoid present in berries, cruciferous vegetables, red grapes, red onions,
tomatoes, and citrus fruits, has been associated with the inhibition of tyrosine kinase Janus
kinase 2, which is known to induce apoptosis and autophagy in cancer cells [94]. In Table 1,
evidence from the literature on the bioactive compounds present in the foods characteristic of
the MD is shown.

Recent studies have shown that the consumption of an MD is strongly associated with a re-
duction in subclinical intestinal inflammation through the modulation of the gut microbiota [95].
These findings are consistent with studies in humans, where increased levels of SCFAs have
also been described. In particular, the abundance of Enterorhabdus, Lachnoclostridium, Prevotella
Parabacteroides, and fiber-degrading firmicutes, as well as lower Escherichia coli counts, has been
reported [96]. A high fiber intake also promotes the release of metabolites, such as short-chain
fatty acids (e.g., acetate, propionate, butyrate), which regulate immune functions, as mentioned
previously [97].
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Table 1. Literature evidence on the bioactive compounds present in the food characteristic of the Mediterranean diet.

Sources Foods Metabolic Properties References

PUFAs
Omega-6 linoleic acid

Vegetable oil (grapeseed, wheatgerm, soya, corn, sunflower seed,
sesame, rice, canola, peanut, almond); frying oil, walnuts, margarine,
cod liver oil, and pork fat)

• Positive modulation of leukocyte and T- cell function
• ↑ Anti-inflammatory cytokines (IL-10)
• ↓ Pro-inflammatory cytokines (i.e., IL-6, IL-1, TNF-a, NF-kB)
• ↓ ROS, nitrogen species, platelet-activating factor (PAF),

adhesion molecules (ICAM-1, VCAM-1, and selectins) and
chemokines (IL-8 and MCP-1)

[80,97–99]
Omega-6 arachidonic acid Beef, bone marrow, lard, chicken, and cod liver oil

Omega-3 alpha-linolenic
acid (ALA)

Linseed, vegetable oil (canola, rapeseed, soya, wheatgerm, and
palm), walnut, and seeds

EPA and DHA Cod liver oil, mullet, salmon, mackerel, tuna, grouper, anchovies,
and sardines

MUFAs
Vegetable oil (olive, almond, canola, rapeseed, macadamia, peanut,
pecan nut, sesame, rice, and palm), cod liver oil, lard, beef tallow,
pistachio nuts, and margarine

• ↓ Proinflammatory cytokines (i.e., IL-6, IL-1, TNF-a) [98,100]

Polyphenols: phenolic acids, flavonoids
(fisetin and quercetin), stilbenes, phenolic
alcohols, and lignans

Fruits (grapes, berries, apples, cucumbers, strawberries, persimmons,
and citrus fruit), vegetables (onions and tomatoes), cereals, olives,
dry legumes, chocolate, beverage (tea, coffee, and red wine), and
some spices

• ↓ Proinflammatory cytokines
• Antioxidant properties
• ↑ Transcription of anti-inflammatory mediator
• ↓ COX1-2
• ↓ LPS → ↓ IL-6, IL-1, and TNF-a
• ↑ Lipid profile
• ↑ Insulin sensitivity
• ↑ Endothelial function
• Modulation of gene expression

[75,76,101]

Vitamins

Vitamin C: grape, guava, peppers, orange, blackcurrant, nettle,
parsley, lemon, tomatoes, kiwi, broccoli, and apricot
ß-carotene: paprika, parsley, tomato, seaweed, apricot, carrot, basil,
peppers, marjoram, mint, valerian, and vegetable oil

• Antioxidant properties
• Anti-inflammatory action [98,102,103]

Vitamin E: vegetable oil (wheatgerm, corn, sunflower seed, almond,
palm, rice, and mixed seeds)

• Modulate gene expression
• Protects cell membranes and supports the integrity of

epithelial barriers
• ↓ PGE2; ↑ IL-2; ↑ NK cell cytotoxic activity

[65,98,104]

Vitamin B 12: beef, horse, sheep’ liver, lamb, and clams
Vitamin B 6: wheat germ, corn and olive oil, yeast, pistachio nuts,
and tempeh
Folate: leavening agents, yeast, baker’s, active dry, chicken, and liver

• ↑ NK cell cytotoxic activity
• Modulates lymphocyte proliferation, differentiation,

maturation, and activity
[97,98]
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Table 1. Cont.

Sources Foods Metabolic Properties References

Vitamin D: cod liver oil, herring, salmon, catfish, and egg yolk

• ↑ Integrity of mucosal cells in innate barriers
• Regulates antimicrobial proteins (cathelicidin and b-defensin)
• ↓ IFNc and IL2; ↓ T-cell proliferation ↓ antibody production by

B cells
• ↑ monocytes differentiation to macrophages; ↑ movement and

phagocytic ability of macrophages

[98,105]

Minerals (Ca, P, K, Fe, Mn, Zn, Selenium)

Calcium: basil, marjoram, thyme, roe, oregano, mint, milk, cow,
shimmed, rosemary, cinnamon, and grana cheese
Phosphorus: yeast, wheat bran, sea bass, wheat germ, gilthead
bream, milk, eggs, and chicken
Iron: liver, beef, veal, spleen, pork, poultry, fish, and legumes
Magnesium: wheat bran, cocoa, coffee, grey mullet, roe, caviar, pine
nuts, and almonds
Potassium: mushrooms, leavening agents, seaweed, soya, tea, and
flour

• Anti-inflammatory and antioxidant actions [98,106]

Zinc: mollusks, oyster, eastern, canned cheese made with cow milk,
agar, and mushrooms

• Maintains or enhances NK cell cytotoxic activity
• Helps modulate cytokine release by dampening the

development of pro-inflammatory Th1 cells and influencing
the NK cell generation and cytokines (i.e., IL-2, IL-6, TNF-a)

[97,98,106,107]

Selenium: nuts, cod, beef, kidney, and tuna • Cellular antioxidants (↓ ROS produced during oxidative stress) [65,98,106]

Soluble fiber Figs, carrots, kiwifruit, nectarines, peaches, pears, melons, oranges,
lettuce, and broccoli • ↑ GUT microbiota → ↑ SCFAs (acetate, propionate, and

butyrate) [65,106]

Insoluble fiber Figs, pears, broccoli, kiwifruit, carrots, oranges, and lettuce

Abbreviation: LPS (lipopolysaccharide); IL (interleukin); COX 1-2 (cyclooxygenases 1 and 2); MUFA (monounsaturated fatty acids); PUFA (polyunsaturated fatty acids); NK (natural
killer); Th (T helper cells); TNF (tumor necrosis factor); ROS (reactive oxygen species); NF-kB (nuclear factor kappa-light-chain enhancer of activated B cells); PGE2 (prostaglandin E2);
ALA (omega-3 linolenic acid); EPA (eicosapentaenoic acid); DHA (docosahexaenoic acid); ↓ decrease; ↑ increase.
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More studies in pediatric populations are needed to define the anti-inflammatory role
of the MD in even greater detail. In Figure 3, the anti-inflammatory effects of MD are
schematized.
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4.2. The Effectiveness of Mediterranean Diet Adherence in Children with Obesity

The MD has numerous beneficial effects, particularly for adults with cardiovascular
diseases. However, there are limited data on its effects in reducing the risk of obesity,
insulin resistance (IR), and metabolic syndrome (MetS) in children and adolescents [108].
Research has demonstrated that adhering to the MD is crucial for preventing childhood
obesity and maintaining a healthy body weight [109]. This diet emphasizes the consump-
tion of high volumes of low-energy foods like fruits and vegetables, which take longer
to digest, potentially increasing satiety and reducing overall energy intake. Moreover,
the MD promotes the intake of high-fiber and nutrient-rich foods, resulting in reduced
calorie consumption [110]. Additionally, the MD includes components such as phenolic
compounds in olive oil, omega-3 polyunsaturated fatty acids, vitamins, and trace elements,
which are important for shaping the composition of gut microbiota. On the other hand,
gut dysbiosis is linked to an increased risk of obesity and metabolic syndrome [109,111].
In contrast, the consumption of ultra-processed foods is associated with a higher risk of
noncommunicable diseases [112]. Numerous studies have shown that ultra-processed
foods typically have a higher energy content, more free sugars and unhealthy fats, and less
fiber, protein, and micronutrients compared to minimally processed foods. Consumption
of these products has been linked to poorer nutritional status [113,114].

One of the main problems of our time is that the traditional MD is mainly followed by
the elderly population, while a very low adherence in the pediatric population has been
reported [115,116].

Scientific evidence suggests that the MD has inverse associations with obesity and
MetS indicators, such as high BMI [117], waist circumference (WC) [118], insulin resistance,
and high lipid levels [119]. Furthermore, it has been reported that following this diet
reduces the risk of chronic diseases [119,120]. Many studies have also reported a significant
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reduction in mortality rate [121]. In contrast, low MD adherence is associated with high
risks of central obesity, hypertriglyceridemia, and insulin resistance.

Velasquez-Lopez et al. [119] reported that MD is linked to a decreased BMI; reduced
fat mass; and lower blood glucose, total cholesterol, triglyceride, HDL-C, and LDL-C levels.
Following this diet also increased the consumption of omega-9 fatty acids and various
micronutrients, such as zinc, vitamin E, and selenium, and it decreased the consumption of
saturated fatty acids, which are associated with a worse nutritional status.

A Greek study [122] investigated the link between adherence to the Mediterranean diet
(MD) and childhood overweight/obesity, considering family structure as a contributing
factor. The study found that greater adherence to the MD acts as a protective factor against
childhood overweight/obesity, particularly among children living with their biological
families. Family structure appears to be a significant determinant of weight status in
children. The authors concluded that following the MD could reduce the prevalence of
pediatric overweight/obesity.

Barandianan et al. [117] carried out both cross-sectional and longitudinal studies to
evaluate the risk of obesity in children. They discovered that there was no association between
adherence to the Mediterranean diet (MD) and overweight, obesity, or abdominal obesity at
the age of 4. However, they did find that high adherence to the MD at the age of 4 was linked
to a reduced risk of overweight, obesity, and abdominal obesity by the age of 8.

Bacopoulou et al. [118] observed a group of adolescents aged 12–17 who underwent
dietary assessments using the MD Quality Index (KIDMED), blood pressure (BP), and
obesity assessments both at baseline and after a 6-month school-based healthy diet. They
reported a significant decrease in overweight and obesity, mean systolic and diastolic BP,
WC (waist circumference), and WHtR (waist/height ratio). They also reported a decrease
in WC as the KIDMED score increased. The authors suggest that multilevel school-based
interventions may help reduce and prevent adolescent overweight and obesity.

De Santi et al. [123] conducted a cross-sectional study to assess adherence to the
Mediterranean diet (MD) and its association with weight status among a group of Italian
middle school adolescents, using the KIDMED test. The study found that 26.8% of the
adolescents were overweight, and 11.7% were obese. Adherence to the MD was high
in 13.3% of the students, average in 27.1%, and low in 59.6%. No significant differences
were observed in terms of gender and age. The authors concluded that there is very low
adherence to the MD among adolescents living in Mediterranean countries, highlighting
the need to promote the importance of the MD in reducing childhood obesity.

Seral-Cortez et al. [124] released a narrative review in which they analyzed all studies
regarding gene–MD interaction effects and their associations with changes in body compo-
sition. They found that high adherence to the MD in individuals with a limited number
of risk alleles was associated with a lower risk of adiposity and MetS. Moreover, they
observed sex-specific differences, with a higher risk in genetically predisposed females than
in males. These results were reported in the HELENA study, a cross-sectional multicentric
study of European adolescents [125]. No other studies regarding gene–MD interaction in
children were found.

Lopez-Gil et al. [109] made a systematic review to evaluate the effects of MD-based
interventions on anthropometric and obesity indicators in children and adolescents. They
analyzed 15 randomized controlled trials (RCTs). It was observed that the MD-based
lifestyle is linked to a small but significant reduction in BMI and the percentage of obe-
sity. However, small and nonsignificant decreases in WC, WHtR, and the percentage of
abdominal obesity were observed.

Previous systematic reviews have yielded inconclusive findings [126,127], primarily
due to the limited number of randomized controlled trials included in the meta-analyses.
Iaccarino Idelson et al. [126] reported mixed and contrasting results; out of 26 papers, only
10 indicated that higher adherence to the MD was associated with lower BMI values or
a reduced prevalence of overweight. The authors predominantly analyzed observational
studies, which could account for these inconsistent findings. Lassale et al. [127] concluded
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that the only discernible benefit of the MD lies in maintaining a healthy body weight during
childhood. Their research was solely based on the MEDLINE database, overlooking several
significant studies.

Emerging scientific evidence suggests that the MD may be effective in preventing
metabolic syndrome in children and adolescents with obesity. Yurtdaş et al. [128] conducted
a study to evaluate the efficacy of the MD in reducing metabolic syndrome indicators in
children and adolescents with obesity. They found that following an MD for 12 weeks
led to reductions in BMI, fat mass, hepatic steatosis, and insulin resistance; improved
transaminase levels; and had positive effects on inflammation and oxidative stress in
adolescents with obesity and non-alcoholic fatty liver disease (NAFLD). However, the
impact of the MD on pediatric populations remains insufficiently explored, warranting
further studies to assess its effectiveness in mitigating cardiovascular risk factors and
non-communicable diseases.

Literature evidence on the MD effects and adherence in children and adolescents with
obesity is reported in Table 2.
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Table 2. Literature evidence on the Mediterranean diet’s effects and adherence in pediatric populations with obesity.

Studies Evaluated Study Design Sample/Studies Intervention and/or Study Design MD Effects/Adherence in Pediatric Population

Velázquez-López
et al. [119] Open-label study 49 children and adolescents

24 children and adolescents were given the
Mediterranean-style diet, while 25 were given the

standard diet. Dietary calculations for children aged
3–10 and adolescents aged 10–18 were conducted using

the Schofield equation.

Decrease in BMI, fat mass, blood glucose, total
cholesterol, triglyceride, HDL- and LDL-cholesterol

levels by following MD.

Kanellopoulou et al.
[123]

Cross-section, population-based,
observational study

1728 primary-school students
(46% males, aged 10–12).

Family structure, dietary habits, and lifestyle were
evaluated using questionnaires. MD adherence was

determined using the KIDMED score. Children’s BMI
was assessed according to the International Obesity

Task Force classification.

Higher MD adherence acts as a protective factor against
childhood overweight/obesity, particularly among

children living with their families.

Notario-
Barandiaran et al.

[117]
Cross-sectional study

1801 and 1527 children who
attended follow-up visits at age

4 and 8 years, respectively,

Dietary habits were evaluated at the age of 4 using a
validated food frequency questionnaire. Adherence to
MD was evaluated by rMED score. Children’s BMI was
calculated according to the International Obesity Task

Force classification.

High MD adherence at the age of 4 is linked to a
reduced risk of overweight, obesity, and abdominal

obesity by the age of 8.

Bacopoulou et al.
[118] Cross-sectional dietary intervention 1610 adolescents (12–17 years) in

23 public high schools

Nutritional education, promotion of physical activity,
and raising awareness about body image for adolescent
participants, their parents, schoolteachers, and health

staff. Dietary assessment was evaluated using the
KIDMED score, while BP, BMI, WC, and WHtR were

measured at baseline and after a 6-month school-based
intervention.

Decrease in overweight and obesity, mean systolic and
diastolic BP, WC, and WHtR by following MD.

De Santi et al. [124] Cross-sectional study
239 adolescent Italian students

(119 boys and 120 girls, mean age:
12.1 ± 1.0)

Information on physical activity habits was gathered
through a questionnaire. Adherence to the MD was

assessed using the KIDMED score. Children’s BMI was
determined based on the Cacciari classification.

Very low adherence to the MD among adolescents
living in Mediterranean countries. association between

MedDiet adherence, healthy behavior and normal
weight status.

Seral-Cortes et al.
[125] Systematic-review PubMed database was searched and

only 1 study was included

Evaluated gene–MD interaction effects and its
relationship with changes in body composition and

metabolic parameters.

High adherence to the MD in individuals with a limited
number of risk alleles was associated with a lower risk

of adiposity and MetS.

López-Gil et al.
[109]

Systematic review with
meta-analysis

Four databases (PubMed, Scopus,
Web of Science, and Cochrane

Database of Systematic Reviews),
and 15 studies were included

Assess the impact of Mediterranean diet-based
interventions on anthropometric measurements and

obesity indicators in children and adolescents.

Compared to the control group, the MD-based
interventions showed small and significant reductions
in BMI and significant reduction in the percentage of

obesity MD-based interventions have a significant
effect on reducing BMI.
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Table 2. Cont.

Studies Evaluated Study Design Sample/Studies Intervention and/or Study Design MD Effects/Adherence in Pediatric Population

Iaccarino et al. [127] Systematic review

Several databases were
systematically searched (PubMed,

Scopus, Clinical Trials Results,
Google Scholar and British Library
Inside) and 58 studies published in

the last 20 years were included

Compare MD adherence in children and adolescents
with demographic and anthropometric variables (body

composition, lifestyle, and diet adequacy).

10 of 26 papers reported that higher adherence to the
MD was associated with lower BMI values or

prevalence of overweight.

Lassale et al. [128] Systematic review Medline database was searched and
55 article were included

Impact of MD adherence on adiposity markers and
obesity in children and adolescents.

More than 50% of studies found no significant
association between MD adherence and adiposity.

Yurtdaş et al. [129] Single-blind, randomized, two-arm,
parallel dietary intervention

96 adolescents diagnosed with
NAFLD (aged 11–18 years) were

randomized to follow MD or
conventional LFD (control diet) for

12 weeks.

Dietary status, anthropometric measurements, body
composition, and biochemical parameters were
assessed. Hepatic steatosis was diagnosed using

ultrasonography.

Both MD and LFD decreased BMI, fat mass, hepatic
steatosis, and insulin resistance, improved elevated
transaminase levels, and had beneficial effects on

inflammation and oxidative stress.

Abbreviations: BMI (body mass index); BP (blood pressure); WC (waist circumference); WHtR (waist-to-height ratio); MD (Mediterranean diet) MetS (metabolic syndrome), KIDMED
(Mediterranean Diet Quality Index in children and adolescents), rMED score (relative Mediterranean diet score), NAFLD (non-alcoholic fatty liver disease), LFD (low-fat diet).
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5. Limitations

As Gregory et al. [129] pointed out, a narrative review provides a non-systematic overview
and analysis of the existing literature on a particular topic. Due to its non-systematic nature,
there are no formally established guidelines for conducting narrative reviews, which can lead to
potential biases in selection and often results in qualitative syntheses.

Therefore, our review methodology has inherent limitations. Specifically, our article
search was confined to publications from the last 15 years, and only articles from PubMed
were included. While the primary focus of the research was on children and adolescents, the
manuscript also incorporated studies that involve adults to set the context and emphasize
the potential impact of the MD. In our selection criteria, we decided to exclude case reports
and case series because they typically exhibit low levels of evidence. However, it cannot
be ruled out that some of these reports may include descriptions supporting the topic of
the review.

Furthermore, the scarcity of observational studies on pediatric patients underscores
the need for additional research to establish robust evidence regarding the benefits of the
MD on inflamm-aging in childhood obesity.

6. Conclusions

Most studies indicate that the MD plays a significant role in lowering the risk of
obesity in children and adolescents. Children should be offered a well-balanced diet to
minimize the risk of developing chronic diseases. The benefit of the MD is largely due to
its anti-inflammatory effect, as discussed above. The MD has a strict link with the immune
response due to its immunomodulatory and anti-inflammatory properties. Conversely, the
concept of IA is relatively new, and in pediatrics, it remains poorly established. However,
as outlined in the literature, this concept can also be applied to pediatrics, especially in
relation to individuals with high cumulative biological risk factors, such as obesity.

Overall, the dietary patterns based on the principles of the MD are recognized by
several international societies as promising approaches to obesity prevention in those of a
pediatric age; however, this recommendation is mainly based on expert opinion, as there is
a lack of evidence. Studies examining the impact of the Mediterranean dietary pattern on IA
in childhood obesity have recently emerged, and they are promising. The dissemination of
the principles of the MD should be consistently supported, focusing on its beneficial effects.

Unfortunately, despite the MD benefits, in Mediterranean countries, adherence to it
among children and adolescents is very poor. Dietary habits are shifting toward a “Western
diet” that is richer in saturated fat, simple carbohydrates, ultra-processed foods, and junk
foods [130]. Scientific evidence suggests that Mediterranean populations are changing their
traditional eating habits [115,131]. Moreover, traditional food choices in Italy, Greece, and
other Mediterranean regions are being abandoned, especially among children; this trend
could be caused by the globalization of the food supply [130].

Overall, the nutritional principles of the MD can be transcultural if an appropriate
adaptation is provided using culture-specific foods. This might be a promising strategy for
increasing the compliance of children and adolescents. Educating parents and caregivers
while adopting innovative educational approaches is crucial in order to raise awareness
about the importance of a balanced diet and the maintenance of healthy body weight,
particularly in low socioeconomic areas. Moreover, since it appears that healthy habits
are usually and more easily learned in the first years of life, although they are not directly
associated with adherence to the MD [115], it is important that children attending full-time
school have the opportunity to eat in a proper cafeteria with a variety of healthy options.
In doing so, they would be encouraged to taste new flavors, following the examples set
by their peers. This aspect would be even more important for children who do not receive
proper nutritional education at home.

Furthermore, the dissemination of MD principles can be encouraged through special-
ized and scientific-based websites or applications. These tools might promote adherence
to the MD by providing examples of healthy dietary patterns and daily menus for entire
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families. These platforms could also provide users with shopping lists, encouraging them to
purchase fresh and healthy foods at the supermarket. Children should have the opportunity
to attend cooking classes, where they can have fun while experimenting with new flavors
and learning new recipes. Lastly, for pediatric patients requiring nutritional intervention,
telemedicine could play a key role in offering innovative access to healthcare by providing
necessary and strict follow-ups in order to optimize adherence to the suggested dietary
patterns and increase the likelihood of successful treatment. Our proposed actions to spread
the MD are schematized in Figure 4.
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