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Abstract: Synbiotics modulate the gut microbiome and contribute to the prevention of liver diseases
such as metabolic-dysfunction-associated fatty liver disease (MAFLD). This study aimed to evaluate
the effect of a randomized, placebo-controlled, double-blinded seven-week intervention trial on
the liver metabolism in 117 metabolically healthy male participants. Anthropometric data, blood
parameters, and stool samples were analyzed using linear mixed models. After seven weeks of
intervention, there was a significant reduction in alanine aminotransferase (ALT) in the synbiotic
group compared to the placebo group (−14.92%, CI: −26.60–−3.23%, p = 0.013). A stratified analysis
according to body fat percentage revealed a significant decrease in ALT (−20.70%, CI: −40.88–−0.53%,
p = 0.045) in participants with an elevated body fat percentage. Further, a significant change in
microbiome composition (1.16, CI: 0.06–2.25, p = 0.039) in this group was found, while the microbial
composition remained stable upon intervention in the group with physiological body fat. The
7-week synbiotic intervention reduced ALT levels, especially in participants with an elevated body
fat percentage, possibly due to modulation of the gut microbiome. Synbiotic intake may be helpful
in delaying the progression of MAFLD and could be used in addition to the recommended lifestyle
modification therapy.

Keywords: synbiotics; prevention; ALT; microbiome; gut–liver axis; MAFLD; randomized controlled
trial; metabolic healthy participant
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1. Introduction

Because the gut is directly connected to the liver via the portal vein, known as the
gut–liver axis, the gut microbiome and its modulation in the prevention of MAFLD are
of particular interest [1,2]. MAFLD, characterized by excessive accumulation of fat in the
hepatic tissue, is the most common liver disease in Western populations. Its prevalence
ranges from 17–46% depending on sex, age, ethnicity, and method of diagnosis [3], and
is steadily increasing—as are its underlying risk factors, especially visceral obesity, and
type 2 diabetes mellitus (DMT2) [4]. MAFLD includes a number of diseases, such as simple
steatosis, also termed non-alcoholic fatty liver disease (NAFLD), non-alcoholic fatty liver
(NAFL), and non-alcoholic steatohepatitis (NASH), which can progress to fibrosis, cirrhosis,
and hepatocellular carcinoma (HCC) [5].

Several recent studies have demonstrated correlations between bacterial composition
and distinct taxa and MAFLD or NASH and explored the potential mechanisms by which
the gut microbiota may regulate MAFLD and NASH [6–8], as it has been shown in the
development of obesity [9] and DMT2 [10,11]. The suggested mechanisms are as follows:
the microbiome might regulate MAFLD and NASH by contributing to obesity and microbial
dysbiosis as underlying risk factors [9,12,13], and microbial dysbiosis leads to increased
gut permeability [14], allowing dysbiotic bacteria and their metabolites to translocate
to the liver through a disrupted gut barrier [15,16]. Therefore, it is essential to further
characterize the role of the microbiome–gut–liver axis in the development and prevention
of MAFLD [17].

The microbiome can be modulated by synbiotics [18,19], prebiotics, and probiotics [20],
or at present, even postbiotics [21]. Synbiotics are known to have positive effects on the
host’s health, with synergistically greater effects than pro- or prebiotics alone [22]. Further-
more, previous studies have shown that synbiotics may also have therapeutic potential for
obesity [23–25], insulin resistance [26], DMT2 [27], inflammatory bowel syndrome [5,28,29],
and MAFLD [23–25,30–32]. Additionally, synbiotics have been used as adjuncts before
and after bariatric surgery [6]. Despite their microbiome-modulating properties [33,34], it
remains unknown whether synbiotics can be used to prevent obesity and MAFLD.

Although the use of synbiotics as supportive therapy for a variety of non-communicable
diseases is being increasingly investigated, only a few studies to date have examined the
preventive effects of synbiotics. Therefore, the aim of our study was to investigate the
preventive potential of synbiotics in metabolically healthy participants and to examine
their possible association with microbiota composition in a 7-week human intervention
study. Because of the direct link between the gut and the liver, we focused on the effects of
liver enzymes as biomarkers of MAFLD.

2. Material and Methods
2.1. Ethical and Open Science Consideration

Written informed consent was obtained from all participants at the beginning of
the study. The study protocol was approved by the Ethics Committee of the University
Clinic Bonn (number 347/18, Approval Date: 17 December 2018) and was conducted in
accordance with the guidelines of the 1964 Declaration of Helsinki and its later amendments.
The trial was pre-registered at Open Science Framework (https://osf.io/utsn4 (accessed
on 5 March 2024)), with a detailed description of the overall protocol.

2.2. Study Design and Intervention

A 1:1 randomized, placebo-controlled, double-blinded longitudinal study was con-
ducted between March and November 2019 at the University Hospital Bonn, Germany.
Participants and investigators were not aware of the allocated group, outcome assessors.
The participants attended two sessions in which anthropometric data, blood, and fecal
samples were collected. Blood samples were analyzed for parameters of lipid and glucose
metabolism as well as liver enzymes, inflammation markers, serotonin, and amino acids.
The fecal samples were used to analyze the microbiome.

https://osf.io/utsn4
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After the first session, the participants were randomly assigned to two groups (synbi-
otic (SYN) vs. placebo (PLA)). The synbiotic group received a dietary synbiotic supplement
containing 2 × 109 cfu probiotic bacteria of five strains (Bifidobacterium lactis, Lactobacillus
acidophilus, Lactobacillus casei, Lactobacillus salivarius, and Lactococcus lactis) and inulin from
agave as a prebiotic. The placebo group received microcrystalline cellulose (MCC) that was
identical in packaging, form, and taste. The participants were instructed to consume 2 g of
their supplement dissolved in water each day at the same time for seven weeks without
otherwise changing their dietary habits and physical activity.

2.3. Participants

The study population consisted of 117 male participants (20–60 years old, with a body
mass index [BMI] of 20–34 kg/m2) (see Table S1 for details), according to the inclusion
criteria as listed in the pre-registration (https://osf.io/utsn4 (accessed on 5 March 2024)).
Only participants without dietary restrictions (such as being vegetarian or vegan), without
food allergies and intolerances, and who did not take any hormonal medication or antibi-
otics (as these have an independent impact on the human gut microbiota) were included in
this study.

Of the initial 117 participants, 31 were excluded based on pre-registered exclusion
criteria. Reasons for exclusion were antibiotic treatment at any time during the intervention
(n = 8), changes in medical conditions (e.g., gastroenteritis) or treatment that potentially
impacted the gut microbiota or blood parameters (n = 6), reporting a change in dietary
habits (n = 1), and not attending the post-intervention session (n = 1). In contrast to the pre-
registration, we changed the minimum compliance criterion for supplement intake during
the intervention from 50% to 95%, which is more conservative and in line with the standards
in nutrition science. Thus, an additional 15 participants were excluded because they took
the supplement less than 95% of the intervention time (Figure S1). All criteria were assessed
using self-reporting. Analysis was based on a sample of 86 participants. The synbiotic
group included 45 participants, whereas the placebo group included 41 participants.

For the analyses stratified by body fat percentage, additional participants (n = 5) were
excluded due to technical issues with body fat assessment, leaving 81 participants. Table 1
shows the baseline characteristics of the study population. Follow-up measurements were
planned at 6, 12, 18, and 24 months. However, due to the COVID-19 pandemic, it was
possible to carry out follow-up measurements only in one in-person visit, which caused
a delay of assessment by half a year. In total, 45 participants completed the follow-up
measurements (Table S2).

Table 1. Baseline characteristics of the study population.

Total
n = 86

SYN
n = 45 (52.3%)

PLA
n = 41 (47.7%) p Value

Age (years) 32 (20, 60) 33 (20, 58) 32 (20.4, 60.1) 0.953
Height (cm) 181.38 (166.5, 198.4) 180.44 (166.5, 192.0) 182.41 (167.1, 198.4) 0.162
Weight (kg) 84.67 (64.3, 124.3) 84.18 (68.7, 124.3) 85.22 (64.3, 123.1) 0.607
BMI (kg/m2) 25.74 (20.5, 33.7) 25.84 (20.6, 33.7) 25.62 (20.5, 33.6) 0.747
Fat mass (%) 19.49 (11.6, 33.2) 19.41 (11.6, 33.2) 19.57 (12.5, 32.1) 0.888
Physiological body fat 49 (57.0%) 25 (51.0%) 24 (49.0%) 0.853Elevated body fat 32 (37.2%) 17 (53.1%) 15 (46.9%)
TG (mg/dL) 99.57 (36.0, 292.0) 95.04 (36.0, 292.0) 104.54 (40.0, 283.0) 0.149
Total chol (mg/dL) 172.51 (107.0, 300.0) 166.80 (107.0, 300.0) 178.78 (108.0, 300.0) 0.051
LDL chol (mg/dL) 108.06 (47.0, 237.0) 103.69 (47.0, 237.0) 112.85 (56.0, 237.0) 0.119
HDL chol (mg/dL) 49.51 (28.0, 85.0) 49.69 (28.0, 74.0) 49.32 (28.0, 85.0) 0.872
AST (U/L) 24.59 (12.0, 72.0) 25.49 (12.0, 72.0) 23.61 (13.0, 47.0) 0.983
ALT (U/L) 29.76 (12.0, 72.0) 31.07 (13.0, 144.0) 28.33 (12.0, 119.0) 0.411
GGT (U/L) 21.21 (8.0, 72.0) 22.71 (8.0, 72.0) 19.56 (10.0, 54.0) 0.232
PAL (U/L) 64.13 (35.0, 110.0) 65.49 (37.0, 110.0) 62.63 (35.0, 95.0) 0.369
Glucose (mg/dL) 91.67 (75.0, 136.0) 92.00 (76.0, 136.0) 91.32 (75.0, 105.0) 0.832
HbA1c (%) 5.05 (4.3, 6.7) 5.08 (4.3, 6.7) 5.02 (4.6, 5.5) 0.856
Insulin (mU/L) 8.98 (2.8, 19.9) 8.80 (2.9, 19.9) 9.19 (3.1, 18.3) 0.557
HOMA-IR 2.08 (0.6, 5.7) 2.05 (0.5, 5.7) 2.11 (0.6, 4.2) 0.565
GLP-1 (pM) 17.14 (7.0, 48.0) 17.42 (7.0, 48.0) 16.83 (8.0, 28.0) 0.979
hs-CRP (mg/L) 0.90 (0.3, 5.1) 0.81 (0.3, 3.7) 1.00 (0.3, 5.1) 0.258
IL-6 (pg/mL) 1.90 (1.5, 4.4) 1.93 (1.5, 3.8) 1.87 (1.5, 4.4) 0.882

Continuous data are expressed as mean (min, max) and categorical variables as frequencies (%).

https://osf.io/utsn4
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2.4. Anthropometrics and Categorization

Weight and height were measured, and BMI was calculated using the standard formula:
BMI = weight [kg]/height [m]2. Body weight and body fat proportion were determined
using a medical-grade bioimpedance scale (Tanita Europe BV, Amsterdam, The Nether-
lands). The participants were classified as having a physiological or elevated body fat
percentage depending on age and body fat percentage, based on Gallagher et al. [35], with
the following criteria for stratification:

Age 20–39: physiological body fat mass: ≤20%, elevated body fat mass: >20%.
Age 40–59: physiological body fat mass: ≤22%, elevated body fat mass: >22%.
Age 60–79: physiological body fat mass: ≤25%, elevated body fat mass: >25%.

2.5. Dietary Intake

Dietary intake was recorded by the participants who were instructed to fill in a
food journal for three consecutive days before their first and second sessions. Data were
transferred to the nutritional software EBISpro 2016.

2.6. Blood Sample Processing and Analysis

Blood samples were collected after 12 h of over-night fast. The samples were cen-
trifuged within 30 min of blood collection, and plasma/serum aliquots were stored at
−80 ◦C until further use. All biochemical analyses were performed according to manu-
facturer’s instructions. Briefly, blood parameters were analyzed using the Roche/Hitachi
Cobas c system (Roche Diagnostics, Mannheim, Germany).

Triglyceride (TG) and total cholesterol (TC) levels were measured using enzymatic
colorimetric assays. Low-density lipoprotein (LDL) cholesterol and high-density lipopro-
tein (HDL) cholesterol levels were determined by homogenous enzymatic colorimetry.
Aspartate aminotransferase (AST) and ALT were measured using a photometric assay,
gamma-glutamyl transferase (GGT) was measured using a homogenous enzymatic assay,
and alkaline phosphatase (PAL) was measured using a colorimetric assay. High-sensitivity
C-reactive protein (hs-CRP) levels were determined using a particle-enhanced turbidi-
metric immunoassay. Glucose was measured using the hexokinase method, and insulin
and interleukin-6 (IL-6) levels were measured using an ElectroChemiLuminescence Im-
munoAssay. HbA1c levels were determined using ion-exchange high-performance liquid
chromatography (Bio-Rad, Hercules, CA, USA). The homeostasis model assessment index
for insulin resistance (HOMA-IR) was calculated using the following formula: HOMA-
IR = Fasting insulin (mU/L) × fasting glucose (mg/dL)/405. Serotonin levels were mea-
sured by HPLC (Chromsystems Instruments & Chemicals GmbH, Gräfelfing, Germany).
Glucagon-like peptide-1 (GLP-1) levels were measured using radioimmunoassay. Amino
acids were analyzed using high-performance liquid chromatography, according to standard
operating procedures.

2.7. Gut Microbiome Sample Processing and Analysis

Fecal samples were collected within 24 h before each session according to a standard
operation procedure and immediately stored at −80 ◦C until further analysis. DNA was
prepared from stool samples using the QIAamp PowerFecal DNA Kit according to the
manufacturer’s instructions (Qiagen, Hilden, Germany). In brief, mechanical lysis of stool
samples was performed using Bead Tubes with a 0.7 mm Dry Garnet. High-throughput
16S amplicon sequencing was performed on 233 samples from the 16S V3V4 region using
the primer combination 341f-806bR.

2.8. Statistical Analysis

All statistical analyses were performed using R Studio (version 3.6.2, Boston, MA,
USA). For all analyses, a p value < 0.05 was considered statistically significant. Contin-
uous data were expressed as mean ± standard deviation (SD), and categorical variables
were expressed as frequencies. The distribution of continuous variables was tested using



Nutrients 2024, 16, 1300 5 of 14

the Shapiro–Wilk test. To test for differences between the treatment groups at their first
appointment, an unpaired Student’s t-test was conducted for continuous variables, the
Mann–Whitney test for non-parametric variables, and Pearson’s chi square test for cate-
gorical variables. To rule out the possibility that changes in blood parameters were due to
differences in dietary intake, the t-test or Wilcoxon test was used to compare the relative
change in the intake of energy, carbohydrates, protein, and fat, as well as body weight,
BMI, and fat mass between the groups. To confirm the intervention effect on ALT, a linear
model (effect of group) was used on the relative change in ALT. Relative change is defined
as ((Session 2 − Session 1)/Session 1) × 100. Age and fat mass have been shown to affect
ALT concentrations significantly and have been included as covariates.

An additional analysis was performed to check the absolute change in ALT concen-
tration using linear mixed models (effect of group, visit, and group × visit interaction at
each time-point in the time-course analysis). If the model assumptions were not met, data
was log-transformed. Age and fat mass were included as covariates. The first session and
placebo groups were selected as references. Moreover, in all the regression analyses, the
residuals were checked for deviations from the normal distribution and homoscedasticity.
A post hoc analysis on the ALT parameter showed a power of 100%.

For the gut microbial compositional analysis and to confirm the intervention effect
on the gut microbiome, a linear mixed model was used to test the differences between
the groups regarding microbial α-diversity (Shannon index and Faith phylogenetic diver-
sity). Analyses of β-diversity (Bray–Curtis Distance) additionally included the baseline
α-diversity and the two-way interactions (group × α-diversity). The placebo group served
as the reference group.

The 16S rRNA sequencing data preprocessing was carried out as follows: QIIME2
(Quantitative Insights into Microbial Ecology; version 2023.5) [36] was used for all pre-
processing steps. The resulting 300 bp paired-end reads from the MiSeq analysis were
assembled using DADA2 [37]. DADA2 was also used for quality filtering of paired-end
reads, which is based on a quality score of >30 and the removal of mismatching bar-
codes. ASVs (amplicon sequence variants) generated from DADA2 were used for further
analysis. A phylogenetic tree was created using these ASVs. Finally, the silva taxonomy
database [38,39] was used for the taxonomic assignment of sequences at all taxonomy levels
and their relative abundances were estimated for each level. For the diversity analysis,
rarefaction at a sampling depth of 42,251 sequences was performed. Thus, 24 samples
were dropped for the diversity analysis. The QIIME2 package was used to calculate alpha
diversity metrics such as the Shannon index and Faith and beta diversity metrics, such as
Jaccard distance.

A longitudinal taxonomy analysis was performed on the gut microbiome of 86 partici-
pants. For the taxonomy analysis, we considered 121 adequately abundant taxa using the
criterion that each taxon is present in at least 20% of the samples [40]. For the regression
analysis of the gut bacterial taxa, a negative binomial and zero-inflated mixed model [41]
was used. This model addresses zero-inflation issues in some microbiome taxa. The model
consists of two steps: the first part is a logistic model for predicting excess zeros, and the
second is a negative binomial distribution for over-dispersed counts. We used this model
(effect of group, session, and group × session) to identify the microbial taxa that were
significantly changed by the intervention. Age and fat mass were used as the covariates.
The model was adjusted for the different numbers of sequences in each sample. The model
includes random effects that correlate with repeated sampling of microbiota in the same
individual. The model was applied individually to each taxon. To correct for multiple
testing, a false discovery rate (FDR)-adjusted p < 0.05 was selected for the associated genus.

3. Results

A total of 86 male participants with an average age of 32 ± 11 years were included
in the analysis (Table 1). There were no significant differences at baseline between the
synbiotic and placebo groups in terms of anthropometric data, liver enzymes such as ALT,
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and other metabolic parameters of glucose or lipid metabolism. Furthermore, there were
no significant differences in dietary intake between the two groups at baseline or after the
intervention (Table 2). Since participants were instructed to adhere to an isocaloric diet,
after the seven-week intervention period, there were no differences in the relative change
in weight, BMI, or fat mass. Likewise, no significant differences in the relative change in
energy intake, carbohydrate intake, protein intake, or fat intake were observed (Table 2).

Table 2. Mean relative change ± SD of anthropometric measures and macronutrient intake from
session 1 to session 2.

SYN
n = 45

PLA
n = 41 p Value

Weight (%) −0.02 ± 1.92 0.03 ± 1.84 0.894
BMI (%) −0.02 ± 1.92 0.03 ± 1.84 0.894
Fat mass (%) −2.34 ± 8.15 −1.51 ± 8.54 0.597
Energy intake (%) −5.50 ± 27.16 −6.54 ± 20.98 0.845
Carbohydrate intake (%) −1.43 ± 33.45 −8.55 ± 22.42 0.250
Protein intake (%) −4.45 ± 33.23 −7.38 ± 26.43 0.979
Fat intake (%) −8.26 ± 32.08 −3.81 ± 28.68 0.413

Forty-five participants completed a one-year follow-up. No significant differences
were observed between the synbiotic and placebo groups at the follow-up appointment.
Since many participants reported changes in their dietary and/or exercise behaviors due to
the COVID-19 pandemic during follow-up, the data are not representative and were not
used for further analyses (Table S2).

After the 7-week intervention, the ALT concentration was significantly lower in the
synbiotic group than in the placebo group (Figure 1A), while the body weight remained
stable (Table 2). This effect was driven by the participants in the elevated body fat sub-
group, as their ALT concentration was significantly lower than that in the placebo group
(Figure 1B), while the ALT concentration in participants with physiological body fat re-
mained stable. An additional analysis on ALT concentration using absolute change showed
similar results. The ALT concentration was significantly lower in the synbiotic group than
in the placebo group as well. This effect was also driven by the participants in the elevated
body fat subgroup, while the ALT concentration in participants in the physiological body
fat subgroup remained stable.

Nutrients 2024, 16, 1300 7 of 14 
 

 

the elevated body fat subgroup, while the ALT concentration in participants in the physi-
ological body fat subgroup remained stable. 

  
Figure 1. Intervention effects on ALT. (A) Box-plot showing relative change in ALT (%) in each in-
tervention group. (B) Intervention effects on ALT stratified by body fat. Box-plot showing relative 
change in ALT (%) in each intervention group. Significance of effect on ALT is determined by linear 
mixed model. *: significant (p < 0.05); n.s.: non-significant (p > 0.05). 

As expected, the gut microbiome composition at baseline showed individual variation 
(Shannon index: 0.57 min., 0.89 max.) but was similar between intervention groups (Jaccard 
distance: 0.9 ± 0.1). Upon the intervention, the gut microbiome composition remained stable 
and was not affected by age, fat mass, or baseline microbiome diversity (Figure 2A). 

The taxonomic analysis at the genus level revealed changes in some genera within 
each group upon intervention (synbiotic: 22 genera, placebo: 27 genera), whereas the most 
abundant genus, the core microbiome, remained stable (Figure 2B). Furthermore, the in-
tervention led to a significant increase in nine genera belonging to the phyla Firmicutes 
(Merdibacter, Lactobacillus, Lactococcus, the Eubacterium eligens group, the Eubacterium rumi-
nantum group, and Veillonella), Actinobacteria (Adlercreutzia), and Proteobacteria (Oxalo-
bacter) in the symbiotic group compared to the placebo group (Figure 2C). Additionally, a 

*
Total Study Population

Placebo Synbiotic

−100

−50

0

50

100

C
ha

ng
e 

in
 A

LT
 (%

)

A

n.s. *
Physiological Body Fat Percentage Elevated Body Fat Percentage

Placebo Synbiotic Placebo Synbiotic

−100

−50

0

50

100

C
ha

ng
e 

in
 A

LT
 (%

)

B Figure 1. Cont.



Nutrients 2024, 16, 1300 7 of 14

Nutrients 2024, 16, 1300 7 of 14 
 

 

the elevated body fat subgroup, while the ALT concentration in participants in the physi-
ological body fat subgroup remained stable. 

  
Figure 1. Intervention effects on ALT. (A) Box-plot showing relative change in ALT (%) in each in-
tervention group. (B) Intervention effects on ALT stratified by body fat. Box-plot showing relative 
change in ALT (%) in each intervention group. Significance of effect on ALT is determined by linear 
mixed model. *: significant (p < 0.05); n.s.: non-significant (p > 0.05). 

As expected, the gut microbiome composition at baseline showed individual variation 
(Shannon index: 0.57 min., 0.89 max.) but was similar between intervention groups (Jaccard 
distance: 0.9 ± 0.1). Upon the intervention, the gut microbiome composition remained stable 
and was not affected by age, fat mass, or baseline microbiome diversity (Figure 2A). 

The taxonomic analysis at the genus level revealed changes in some genera within 
each group upon intervention (synbiotic: 22 genera, placebo: 27 genera), whereas the most 
abundant genus, the core microbiome, remained stable (Figure 2B). Furthermore, the in-
tervention led to a significant increase in nine genera belonging to the phyla Firmicutes 
(Merdibacter, Lactobacillus, Lactococcus, the Eubacterium eligens group, the Eubacterium rumi-
nantum group, and Veillonella), Actinobacteria (Adlercreutzia), and Proteobacteria (Oxalo-
bacter) in the symbiotic group compared to the placebo group (Figure 2C). Additionally, a 

*
Total Study Population

Placebo Synbiotic

−100

−50

0

50

100

C
ha

ng
e 

in
 A

LT
 (%

)

A

n.s. *
Physiological Body Fat Percentage Elevated Body Fat Percentage

Placebo Synbiotic Placebo Synbiotic

−100

−50

0

50

100

C
ha

ng
e 

in
 A

LT
 (%

)

B

Figure 1. Intervention effects on ALT. (A) Box-plot showing relative change in ALT (%) in each
intervention group. (B) Intervention effects on ALT stratified by body fat. Box-plot showing relative
change in ALT (%) in each intervention group. Significance of effect on ALT is determined by linear
mixed model. *: significant (p < 0.05); n.s.: non-significant (p > 0.05).

As expected, the gut microbiome composition at baseline showed individual variation
(Shannon index: 0.57 min., 0.89 max.) but was similar between intervention groups (Jaccard
distance: 0.9 ± 0.1). Upon the intervention, the gut microbiome composition remained
stable and was not affected by age, fat mass, or baseline microbiome diversity (Figure 2A).

The taxonomic analysis at the genus level revealed changes in some genera within each
group upon intervention (synbiotic: 22 genera, placebo: 27 genera), whereas the most abun-
dant genus, the core microbiome, remained stable (Figure 2B). Furthermore, the intervention
led to a significant increase in nine genera belonging to the phyla Firmicutes (Merdibacter,
Lactobacillus, Lactococcus, the Eubacterium eligens group, the Eubacterium ruminantum group,
and Veillonella), Actinobacteria (Adlercreutzia), and Proteobacteria (Oxalobacter) in the symbiotic
group compared to the placebo group (Figure 2C). Additionally, a significant decrease in
the abundance of ten genera belonging to the phyla Firmicutes (Faecalitalea, Agathobacter,
the Ruminococcus gauvreauii group, UCG-009, Oscillospira, Subdoligranulum, Phocea, Candidatus
Soleaferrea, and the Eubacterium brachy group) and Actinobacteria (Olsenella) were identified.
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Figure 2. (A) Estimate plots from analyses of change in gut microbiome composition. Data analyzed
using linear mixed model. (B) Relative taxonomy abundance at genus level (prevalence: 0.60,
detection threshold: 0.01) in each group/time-point. (C) Significant changes in taxonomy abundances.

Although the microbiome composition of participants with elevated body fat was
altered, that of participants with physiological body fat was unaffected by the intervention
(Figure 3A). Moreover, the alterations in the elevated body fat group due to the intervention
depended on baseline microbial diversity (Figure 3B, Table S3).

The taxonomic analysis at the genus level revealed that three genera that were signif-
icantly increased across all participants were also significantly increased in the elevated
body fat group, and two of these genera were significantly decreased in the elevated body
fat group (Figure 3C–F).

Additionally, changes in ALT were positively associated with the change in abundance
of bacterial genera such as the Ruminantium group (family: Eubacterium), the Clostridia
vadin BB60 group, UCG−009, and Negativibacillus and negatively associated with the
change in abundance of Lactobacillus, the Methylpentosum group, Merdibacter, Veillonella, the
Ruminococcos gnavus group, Faecalitalea, and Akkermansia.
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Figure 3. Estimate plots from analyses of changes in gut microbiome composition in (A) physiological
body fat percentage group and (B) elevated body fat percentage group. Data analyzed using linear
mixed model. Relative taxonomy abundance at genus level (prevalence: 0.60, detection threshold:
0.01) in each group/time-point in (C) physiology and (D) elevated body fat group. Significant
changes in the taxonomy abundance in (E) physiology and (F) elevated body fat group. *: significant
(p < 0.05).

4. Discussion

In this randomized, placebo-controlled, double-blind intervention study, a seven-week
intake of a specific synbiotic supplement resulted in a reduction in ALT concentration in
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metabolically healthy participants, highlighting the possible impact of synbiotics in the
disease prevention of obesity and MAFLD due to their potential microbiome-modulating
properties. This finding was more prominent in participants with higher body fat percent-
ages. Thus, participants at a risk of developing MAFLD and metabolic syndrome may
benefit from synbiotic interventions.

No previous study has investigated the preventive effect of synbiotic administration
on liver enzymes in metabolically healthy participants, in general or specifically on ALT,
and its prospective benefit in the prevention of MAFLD. Previous studies have focused on
patients with MAFLD or, in particular, NASH [17]. In these studies, the administration of
synbiotics resulted in delayed disease progression [42], showing a reduction in ALT [32]
similar to that observed in the present trial, and there was a significant decrease in AST [32].
Thus, the present study shows that the intake of synbiotics may already reduce ALT
levels in metabolically healthy individuals, and thus represents a possibility to delay the
onset of disease in addition to delaying disease progression. These beneficial effects were
achieved without causing any side effects to the participants. Furthermore, this indicates
that an intervention with synbiotics might be used as a supportive supplement to the
recommended lifestyle modification therapies, such as diet or increased physical activity
with the goal of weight loss [3,43]. In this study, a notable reduction in ALT levels was
observed even in the absence of detectable changes in diet, body weight, and composition.
This suggests that the observed alterations in ALT levels can be attributed exclusively to
the effects of the administered synbiotic intervention. Therefore, it might be worthwhile
to investigate this effect further, especially given that no pharmacological agent has been
approved so far for the treatment of MAFLD [44], owing to insufficient improvement in
liver histology or the occurrence of adverse effects, neither of which has been reported for a
synbiotic intervention. Only recently, a study [45] found that resmetirom improved fibrosis
in 966 patients with NASH and fibrosis of stage F1B, F2, or F3.

The change in microbiome composition and the increase in probiotic strains of Lacto-
bacillus and Lactococcus during the intervention showed that the intervention modified the
gut microbiome and thus likely drives the effects on liver metabolism via the microbiome–
gut–liver axis. An increase in Lactobacillus and its negative correlation with ALT levels
indicates that Lactobacillus plays an important role in attenuating the progression of MAFLD,
as reported previously [46,47].

Furthermore, baseline microbial diversity seemed to affect the success of the interven-
tion, resulting in improved metabolism. Thus, as previously mentioned, gut bacteria such
as Veillonella and Merdibacter significantly increased after the intervention in the synbiotic
group and were associated with a decrease in ALT levels. In addition, Akkermansia was
found to be negatively correlated with ALT and has been proposed as a candidate probiotic
for the treatment of various diseases [48]. Additionally, the intake of synbiotic bacteria,
such as Akkermansia muciniphila, was used to improve the conditions of MAFLD partici-
pants [49]. This trend has also been observed in various clinical studies that have evaluated
gut microbial alterations after bariatric surgery [50].

The study has several strengths. First, this nutritional intervention study was con-
ducted according to the gold standard for a randomized, placebo-controlled, double-blind
study (RCT). Second, all blood parameters were measured, fecal microbiome analysis was
conducted using standardized methods, and measurements were part of the laboratory
routine with strict quality controls. Furthermore, for an RCT, a rather high number of
86 participants were included in the analyses. Lastly, the synbiotic used fulfilled all safety
criteria, rendering the risk of adverse effects low from the beginning of the study, which
was subsequently confirmed because no participants reported any side or adverse effects.

One limitation of this study was that the population consisted of only male participants.
Therefore, differences in the metabolism of men and women due to hormonal influences,
especially gonadal hormones and the sex chromosome complement, could be avoided.
Male hormone levels are rather stable, and results from studies with male subjects are
potentially more reliable for comparison [50,51]. An important direction for future research
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would be to test the effects of synbiotics on the gut–liver–axis in female participants, taking
the hormonal effects into account.

Another limitation might be that the participants were metabolically healthy, meaning
that long-term studies are necessary to strengthen conclusions on the preventive effects.
However, the results from participants with MAFLD showed improvement after the con-
sumption of probiotics [20,52]. Therefore, our results in metabolically healthy individuals
complement those in diseased individuals. Furthermore, we planned and conducted a
follow-up study after 6, 12, 18, and 24 months to determine long-term changes. Unfortu-
nately, owing to the COVID-19 pandemic, participants may have reported lifestyle changes,
especially regarding dietary behavior and physical activity [53–55].

5. Conclusions

In conclusion, the intake of a specific synbiotic supplement led to a reduction in ALT
levels, especially in participants with an elevated body fat percentage, and did not result in
any adverse effects. This reduction in ALT was possibly due to the potential microbiome-
modulating properties of synbiotic supplements. Since aminotransferase levels are often
elevated in MAFLD, and ALT is the most specific liver enzyme, the findings indicate
that apart from the properties shown to delay the onset, the intake of synbiotics might
be an effective supplement in MAFLD, in combination with the recommended lifestyle
modifications, helping to delay the progression of the disease. However, further studies
are needed to investigate the impact of synbiotics as well as pro- and prebiotics on liver
metabolism, the microbiome–gut–liver axis, and their potential in the prevention and
treatment of liver diseases.
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