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Abstract: The requirement for vitamin A in reproduction was first recognized in the early 

1900’s, and its importance in the eyes of developing embryos was realized shortly after. 

A greater understanding of the large number of developmental processes that require 

vitamin A emerged first from nutritional deficiency studies in rat embryos, and later from 

genetic studies in mice. It is now generally believed that all-trans retinoic acid (RA) is the 

form of vitamin A that supports both male and female reproduction as well as embryonic 

development. This conclusion is based on the ability to reverse most reproductive and 

developmental blocks found in vitamin A deficiency induced either by nutritional or 

genetic means with RA, and the ability to recapitulate the majority of embryonic defects in 

retinoic acid receptor compound null mutants. The activity of the catabolic CYP26 

enzymes in determining what tissues have access to RA has emerged as a key regulatory 

mechanism, and helps to explain why exogenous RA can rescue many vitamin A 

deficiency defects. In severely vitamin A-deficient (VAD) female rats, reproduction fails 

prior to implantation, whereas in VAD pregnant rats given small amounts of carotene or 

supported on limiting quantities of RA early in organogenesis, embryos form but show a 

collection of defects called the vitamin A deficiency syndrome or late vitamin A 

deficiency. Vitamin A is also essential for the maintenance of the male genital tract and 

spermatogenesis. Recent studies show that vitamin A participates in a signaling mechanism 

to initiate meiosis in the female gonad during embryogenesis, and in the male gonad 

postnatally. Both nutritional and genetic approaches are being used to elucidate the vitamin 

A-dependent pathways upon which these processes depend. 
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1. Background 

It has been nearly 100 years since the essential micronutrient, vitamin A, was first described. 

In 1913 McCollum and Davis reported that the addition of an ether extract from egg yolk or butter, but 

not lard or olive oil, could reinstate growth in rats maintained for several months on a purified ration of 

casein, carbohydrates and salt mixtures [1]. We now know that this essential accessory article in 

foodstuffs is vitamin A. Using dietary manipulation to induce deficiency in rats, the importance of 

vitamin A in both male and female reproduction was soon discovered [2,3]. For a time, there was 

confusion over how both yellow-colored foods and those that were colorless, for example extract from 

pork liver or cod liver oil, could both yield vitamin A activity [4]. This problem was solved when 

Moore fed carotenoids to vitamin A-deficient (VAD) rats in amounts that enabled the animals to 

resume normal growth, and showed that only the ―colorless‖ form of vitamin A was found in the livers 

collected from these animals [5]. Thus, it was realized that carotenoids (at least a subset) could be 

converted to vitamin A, a fact that was fully appreciated when Karrer et al. published the chemical 

structures of both carotene and vitamin A [6,7]. In 1946, Arens and van Dorp synthesized vitamin A 

acid (retinoic acid), and reported it was as potent as vitamin A in supporting the growth of VAD rats 

but could not be converted back to vitamin A [8–10]. The metabolic scheme in which vitamin A 

(retinol) generates the vitamin A aldehyde (retinaldehyde) to support synthesis of the visual pigments, 

and its further irreversible oxidation to the vitamin A acid (all-trans retinoic acid, RA) that supports 

growth and tissue maintenance was first reported in the landmark paper by Dowling and Wald and this 

metabolic scheme stands essentially unchanged today (Figure 1A) [11].  

All-trans retinol (retinol, vitamin A) is obtained in the diet from plant sources (carotenoids with 

vitamin A activity) or as retinyl esters from animal sources. Retinol has two major fates:  

(1) esterification and tissue storage, and (2) oxidative metabolism to all-trans retinaldehyde and further 

oxidation to RA. The enzyme lecithin:retinol acyltransferase (LRAT) is responsible for esterifying the 

majority of retinol into retinyl esters [12]. The first and rate-limiting step in the production of RA from 

retinol results from the action of cytosolic alcohol dehydrogenases (ADH) and microsomal retinol 

dehydrogenases (RDH) yielding all-trans retinaldehyde [13]. The irreversible oxidation of all-trans 

retinaldehyde to all-trans retinoic acid is catalyzed by several aldehyde dehydrogenases (RALDH),  

of the ALDH1A class (ALDH 1A1, 1A2, and 1A3 also known as RALDH 1, 2 and 3) [14,15].  

RALDH-independent generation of RA from retinol by CYP1B1 has also been reported [16].  

The metabolism of RA at the C4 and C18 positions to oxidative metabolites including 4-hydroxy-RA, 

18-hydroxy-RA, and 4-oxo-RA occurs by the action of cytochrome P450 enzymes of the CYP26 

family (A1, B1 and C1) [17–23]. Vitamin A and metabolites are lipophilic compounds that are 

generally found in association with serum and cellular binding proteins [24]. Retinol-binding protein 

(RBP or RBP4) carries the majority of retinol in the circulation [25], and a membrane receptor, STRA6, 

binds to RBP to enable efficient retinol uptake by a number of cells [26]. In addition, cellular proteins 

that bind to retinol (CRBP I, II, and III), and RA (CRABP I and II) have been studied in null mutant 
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mice; some have been found to be dispensable, while roles for others have been revealed when animals 

are fed a vitamin A-restricted diet [12,27,28]. 

Figure 1. Metabolism of vitamin A (retinol) to all-trans retinoic acid (RA), and the 

mechanism of RA action. (A) Metabolic scheme proposed by Dowling and Wald in 

1960 [11]; (B) Mechanism ca. 2011. Vitamin A (retinol, ROL) circulates bound to the 

plasma retinol-binding protein (RBP4) and transthyretin (not shown). RBP4 binds to the 

membrane receptor STRA6 to facilitate the cellular uptake of retinol in some cells. 

Vitamin A circulating as part of a chylomicron remnant (CMRE) can also serve as a source 

of vitamin A for the cell. Note that cellular retinol and RA binding proteins have been 

omitted for simplicity. Retinol is either esterified by lecithin:retinol acyltransferase (LRAT) 

and stored, or is oxidized reversibly to retinaldehyde (RAL) by retinol dehydrogenases 

(RDH/ADH), and further oxidized in irreversible fashion to RA by retinaldehyde 

dehydrogenase (RALDH 1, 2, or 3). In the nucleus, the RAR/RXR complex is bound to a 

specific sequence of DNA called the retinoic acid response element (RARE). Binding of 

RA to the RAR leads to release of the corepressor complex (CoRep) and association with 

coactivator proteins (CoAct), followed by altered transcription of downstream target genes 

and ultimately changes in cellular function. RA also undergoes further oxidation by the 

cytochrome P450 (CYP) 26 family to more polar metabolites. The lipophilic molecule, 

RA, can act within the same cell in which it is synthesized (autocrine) or can diffuse 

through the cell membrane to act in nearby cells (paracrine). Abbreviations: ADH, alcohol 

dehydrogenase; RDH, retinol dehydrogenase; REH, retinyl ester hydrolase; RE, retinyl ester. 
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RA is a ligand for the nuclear retinoic acid receptor (RAR) proteins. There are three major subtypes 

of RAR protein (α, β and γ) with additional isoforms resulting from alternate promoter usage and 

splicing [29]. The nuclear RARs act as ligand-activated transcription factors to regulate gene 

transcription in a cell-type and tissue-specific manner [30]. The all-trans isomer of RA is the highest 

affinity endogenous ligand for the RAR [31]. Members of a second protein family, the retinoid 

(rexinoid)-X receptors (RXR) heterodimerize with RAR to confer high-affinity binding to DNA. The 

DNA to which the RAR/RXR heterodimer binds is called a retinoic acid response element (RARE). 

The consensus RARE is composed of two direct repeats of PuG(G/T)TCA separated most often by 

5 bases [32]. However, more complex elements that do not adhere to this rule have been described [33]. 

RAREs serve as enhancer elements and when occupied by the RA/RAR/RXR complex, facilitate 

chromatin opening and changes in RA target gene transcriptional activity [34,35]. A large number of 

genes are altered when cells or tissues are exposed to RA, however, only a small subset are primary 

(direct) targets via RARE-mediated transcription, with the remainder representing downstream 

targets [36,37]. A schematic summarizing the metabolism of vitamin A and the cellular mechanism of 

RA action is shown in Figure 1B. Note in this review retinoid is a term that refers to compounds 

structurally-related to retinol, and in this review, is used to refer to vitamin A and its metabolites. 

2. Vitamin A and Reproduction 

2.1. Male Reproduction 

Vitamin A is required for male reproduction. Early work in the laboratories of Wolbach and Howe 

as well as Mason showed that in vitamin A deficiency, the epithelia of the epididymis, prostate, and 

seminal vesicle is replaced with stratified squamous keratinizing epithelium, and spermatogenesis 

ceases [2,38]. Later work showed that in the VAD rat testes, undifferentiated spermatogonia, Sertoli 

cells and a small number of preleptotene spermatocytes remain [39–41], whereas in the mouse, 

spermatogenesis is arrested at the spermatogonia stage [42]. Upon addition of vitamin A, 

spermatogenesis can be reinstituted by stimulating A to A1 spermatogonial differentiation in a 

synchronized manner [42–44]. The block in adult spermatogenesis resulting from vitamin A deficiency 

is shown in Figure 2. Recent work supports the conclusion that the vitamin A metabolite, RA, is 

needed both for adult male spermatogonial differentiation (transition to A1) and the entrance into 

meiosis [45–47].  

In 1991, Van Pelt and de Rooij determined that a large dose of RA (5 mg) given by injection twice 

a week, when combined with a RA-containing diet, supported the development of spermatocytes, and 

their subsequent development into spermatids in VAD rats supporting that RA is the active form of 

vitamin A in male reproduction [48]. A CYP26-mediated catabolic barrier comprised of peritubular 

myoid cells surrounds the seminiferous tubule, and may prevent RA in the general circulation from 

reaching cells in the interior of the tubule, thus explaining why such high doses of exogenous RA were 

required [49,50]. Within the normal tubule, the Sertoli cell is believed to generate RA by the action of 

Raldh1 [49,51,52], and possibly Raldh2 [50]. Raldh2 is also found in late pachytene and diplotene 

spermatocytes, and early stage spermatids.  
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Figure 2. Spermatogenesis in the adult. Spermatogenesis takes place in the seminiferous 

epithelium of testis tubules from puberty through adulthood. Undifferentiated (A-type) 

spermatogonia at the base of the seminiferous epithelium divide mitotically until they enter 

the differentiation pathway to become A1 spermatogonia. A1 spermatogonia undergo 

division to A1–A4 and finally B spermatogonia. B spermatogonia divide to produce 

preleptotene (primary) spermatocytes that migrate away from the base of the seminiferous 

tubule to undergo meiosis. The first meiotic division produces secondary spermatocytes, 

and after the second meiotic division, spermatids (haploid cells) begin the differentiation 

process (spermiogenesis) to spermatozoa. In vitamin A deficiency, the transition from A to 

A1 spermatogonia is blocked [42–44].  

 

RARγ null males are sterile and exhibit squamous metaplasia of the seminal vesicles and prostate 

glands [53]. RARα null mutants are sterile and show a reduction in spermatozoa, indicating that 

nuclear RAR is needed for spermiation [54]. RARα is expressed primarily in the Sertoli cell, Rarβ in 

spermatids and RARγ in A spermatogonia [49]. Expression of RARα is needed for differentiation of 

the spermatogonia during prepuberty [55]. However, RAR signaling in the Sertoli cell cannot account 

for the VAD-induced arrest in spermatogonia differentiation, as deletion of all RARs in the Sertoli  

cell does not cause arrest of spermatogonia differentiation in the adult mouse. The cell types  

in which RA and its receptors act to support spermatogenesis continues to be a subject of active 

investigation [45,49,55–57].  

2.2. Female Reproduction 

In the female, the effect of vitamin A deficiency on reproductive outcome is dependent upon the 

time when deficiency is imposed, as well as its severity [58]. When severe vitamin A deficiency is 

imposed prior to mating, cornified cells are continuously present in vaginal smears [59,60] and 

reproduction fails prior to implantation [3]. VAD female rats continue to ovulate and form corpora 
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lutea irregularly or at normal intervals, however, degenerated eggs are found in the last portion of the 

tube, and there is no evidence that blastogenesis has occurred. 

Warkany and Schraffenberger showed that when limited amounts of provitamin A carotenoid are 

provided to VAD female rats prior to mating, a less severe maternal vitamin A deficiency is produced 

which enables fertilization and implantation to occur, but embryonic death at midgestation often 

results [61]. If provided in adequate amounts, retinol will support reproduction and embryonic 

development in full [62]. RA in amounts ranging from 2 to 12 mcg/g diet or 40 to 230 mcg/rat/day 

given to a VAD female rat is sufficient to maintain normal fertilization, implantation and early 

embryogenesis. However, pregnant animals maintained on this level of RA will invariably resorb all 

the fetuses. Higher amounts of RA (250 mcg/g diet or approximately 4.5 mg/rat/day) or retinol is 

needed by embryonic day 8.5 (E8.5) (late gastrula/early neurula) to support normal embryonic 

development and overcome midgestational resorption [63–67]. 

Maternal vitamin A also plays a role in placental development and/or maintenance, as the 

chorioallantoic placenta undergoes widespread necrosis by E15.5 in VAD rats supported on 

insufficient amounts of RA [68]. Microscopic analysis of the placenta from E14 to E17 reveals 

changes in the central region of the junctional zone and the labyrinthine zone of VAD rats supported 

on insufficient vitamin A acid, whereas addition of retinyl acetate to the diet prevents these 

changes [69]. Microscopic findings suggest the differentiation of the parenchymal cells of the 

junctional zone to glycogen cells, and of the chorionic trophoblast cells to the inner trophoblastic 

lamina of the trichorial placenta is affected. In summary, the relative vitamin A status of the female, 

both at the time of conception and throughout pregnancy, is a critical determinant in reproductive 

outcome, and deficiency can lead to either a complete failure of reproduction prior to implantation or 

fetal resorption or malformation. 

2.3. Germ Cell Development 

The generation of sperm and oocytes requires germ cells to undergo meiosis, the process in which 

diploid cells give rise to haploid cells. In the female, germ cells enter meiosis I during embryogenesis, 

whereas in the male, this process occurs postnatally (Figure 3A). It has been proposed that access of 

primordial germ cells (gonocytes) to RA plays an important role in determining when they will enter 

meiosis, with female germ cells entering into meiosis after exposure to embryonic RA, whereas, in the 

male embryo, this pathway is blocked by the action of CYP26B1, but is enabled after birth [70–73]. 

However, a report appearing when this manuscript was under review raises questions concerning a role 

for RA in this model [74]. 

The culture of embryonic rat ovaries with RA promotes meiotic entry [75], whereas murine 

embryonic ovaries (E11.5) cultured in the presence of the RAR panantagonist BMS-204493 for 2 days 

do not express the RA-responsive gene Stra8 [70], a gene that is required for meiotic initiation in 

female gonocytes [76]. However, a recent report shows that female RALDH2 and RALDH2/3 

knockout gonads express Stra8 and undergo meiosis in the absence of detectable RA activity as 

assessed using a β2-RARE-lacZ (RARE-lacZ) reporter [74]. If the reporter accurately detects all RA 

activity, this new work indicates that meiotic initiation can occur independently of RA signaling.  
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Figure 3. (A) Germ cell development and gametogenesis. Primordial germ cells colonize 

the gonad in both male and female embryos. The first morphological marker of sex-specific 

germ cell development is seen in the female embryo when the oogonia enter meiosis. 

Primary oocytes proceed through the leptotene, zygotene and pachytene stages of meiotic 

prophase before birth, when they arrest in diplotene of meiosis I. At ovulation, meiosis I is 

completed, and the secondary oocytes enter meiosis II and arrest again in metaphase. 

Meiosis II is completed after fertilization. In the male embryo, germ cells are committed to 

the spermatogenic program but arrest in G0/G1, and do not complete mitosis and enter 

meiosis until after they are born. Primary spermatocytes entering meiosis I are seen during 

the first week of life; secondary spermatocytes complete meiosis II forming spermatids and 

functional gametes called spermatozoa or sperm. In the male, waves of meiosis continue 

throughout life. (B) In the female embryo access to RA or alternatively, another factor 

indicated as (?), promotes entry into meiosis whereas embryonic male germ cells are 

maintained in a pluripotent state. Either RA or another factor acts in the embryonic female 

germ cell to increase Stra8, essential for entry into meiosis. In the ovary, Fgf9 levels are 

low. In the male embryo, entry into meiosis is prevented by the action of CYP26B1; high 

levels of Fgf9 in the testes antagonize Stra8 expression and maintain germ cells in a 

pluripotent state. (Adapted from [77,78]). 

 

There is clear in vivo evidence that vitamin A is required for the normal onset of meiotic prophase 

in ovarian germ cells [79]. While fetal ovarian germ cell number is unaffected by vitamin A 

deficiency, the germ cells in embryos with the most severe vitamin A deficiency fail to enter meiosis 

as evidenced by a lack of immunostaining for SYCP3 (a gene that encodes a component of the 
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synaptonemal complex), and the critical RA-responsive gene, Stra8 is nearly undetectable.  

When RA is included in the maternal diet at a slightly higher level, but one insufficient to support most 

other vitamin A-dependent embryonic processes, a small number of cells undergo meiosis (30%) 

compared to 75% of cells in the vitamin A-sufficient group. Thus, it is possible that only a very low 

level of RA is needed to initiate meiosis, or alternatively, vitamin A may support meiotic entry by an 

alternative mechanism. 

The mesonephros has been proposed as the source of RA that initiates the entry of primordial 

gonocytes into meiosis [71]. Raldh2 is largely responsible for RA synthesis in the mesonephros, with 

some contribution from Raldh3 in the region of the mesonephric duct [71,80]. Expression of Raldh1 

mRNA is reported in the adjacent male gonad from E11.5 to 13.5, and to a lesser extent in the female 

gonad by E13.5 [81]. The gene encoding the RA-metabolizing cytochrome P450 enzyme, Cyp26b1, is 

expressed early in the genital ridge, but is decreased after E12.5 in the female mouse embryo, thus 

enabling access of the gonocyte to RA [71]. In contrast, the expression of Cyp26b1 persists in the male 

embryonic gonad, and has been proposed to prevent RA from stimulating the gonocytes to undergo 

meiosis [70,71]. Embryonic male germ cells undergo G0/G1 mitotic cell cycle arrest and do not enter 

meiosis until a week after birth. In CYP26B1 null mutant male embryos, RA levels in the testes are 

increased and germ cells prematurely enter meiosis at embryonic day 13.5, and this is followed by 

apoptosis [73]. CYP26B1 is also required later in embryogenesis to maintain cells in an 

undifferentiated state [82]. However, a new report shows that inhibition of CYP26 activity with 

ketoconazole results in a similar increase in Stra8 mRNA in cultured wild-type and RALDH2 null 

mutant testis/mesonephros complexes, whereas no expression is seen in testes cultured in isolation [74]. 

This suggests that some factor other than RA from the mesonephros may be affected by CYP26, and 

thus control entry into meiosis. Thus, either a very low level of RA that is undetectable by the  

RARE-lacZ reporter and that is generated by an enzyme other than RALDH2 is responsible for meiotic 

entry, or alternatively, CYP26B1 functions by degrading an unknown inducer of Stra8 or participates 

in the synthesis of a factor that inhibits Stra8 expression.  

Recently, Li et al. showed that vitamin A is required in the male neonate for germ cells to enter the 

first round of spermatogenesis [83]. Vitamin A deficiency was produced in prepubertal life by 

maintaining LRAT
−/−

 female mice on a diet devoid of all vitamin A during pregnancy and lactation.  

It was possible to generate deficiency at this time because LRAT
−/−

 mice cannot store retinol in the 

form of retinyl esters in most tissues, and thus the mothers and pups can be more rapidly depleted of 

their vitamin A stores than wild-type mice. In the wild-type mouse, Stra8 begins to increase in the 

testis by postnatal day 6 [84] and spermatogenesis begins shortly thereafter [85]. However, in the VAD 

LRAT
−/−

 gonad the expected increase in Stra8 did not occur. Germ cells, although present in normal 

numbers, did not undergo meiosis as was observed in the vitamin A-sufficient controls and instead 

remained undifferentiated [83]. The addition of retinol to VAD LRAT
−/−

 pups at postnatal day 5 

prevented meiotic failure. Thus, it appears that an environment depleted of vitamin A maintains germ 

cells in an undifferentiated state, and vitamin A sufficiency enables entry into meiosis I in both the 

developing female and male gonad.  
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3. Vitamin A and Embryonic Development 

3.1. Embryonic Vitamin A Deficiency Studies 

Very early evidence that vitamin A is required for embryonic development came from reports of 

abnormalities in pigs born to gilts on a VAD diet [86,87]. A range of reproductive outcomes were 

reported in gilts fed a vitamin A-free ration from 160 days before breeding and for 30 days thereafter. 

Some gilts on the deficient diet failed to show the symptoms of estrous, whereas others became 

pregnant, but resorbed all the fetuses. The remaining offspring from litters that survived to term 

showed a lack of eye development or no eyes. Cleft palate, accessory ears and arrested ascension of 

the kidneys were also observed, but at a lower frequency. In the 1940’s, Warkany and colleagues 

published their landmark studies describing a syndrome of defects in rat embryos from VAD mothers 

given limited amounts of carotene [61,88–95]. Approximately 70% of the VAD female rats 

supplemented in this fashion conceived, however, the majority of pregnancies did not continue beyond 

midgestation [61]. Ocular defects were most frequently observed in offspring from the few 

pregnancies that progressed to term. In order to understand how maternal vitamin A deficiency 

affected development, fetuses ranging from embryonic days 12.5 to 20.5 (near term) were taken by 

cesarean section whenever evidence of maternal bleeding was observed, and histology was performed. 

Of the fetuses recovered in this fashion, defects in eye development were most frequent (49% with one 

or more abnormality) and included coloboma, retinal eversion, penetration of the retina by mesodermal 

tissue, low insertion of the optic stalk and the cup, and defects in the iris. Defects at lower penetrance 

were noted in other systems including the genitourinary tract (42%), kidney (38%), diaphragm (31%), 

lung (4%), aortic arch (9%) and heart (4%) [95]. The low penetrance of many of these defects likely 

resulted from variation both in the timing and severity of maternal vitamin A deficiency.  

Taking advantage of the fact that RA will support early fetal development in VAD rats [65],  

See et al. was able to generate the previously described vitamin A deficiency syndrome in 100% of 

fetuses (with the exception of cardiovascular defects) from mothers supported on a sufficient amount 

of RA up to E10.5, and fed a suboptimal amount of RA thereafter (late VAD rat model, Table 1) [67]. 

Rapid initiation of VAD is possible using this approach because RA, unlike retinol, is not stored and 

has a very short biological half-life. The low penetrance of cardiovascular defects was due to 

institution of deficiency after aortic arch and septal development had largely been completed. The 

addition of retinol after E10.5 prevented all fetal anomalies from appearing, and the addition of a 

higher level of RA led to either a complete or partial rescue of fetal anomalies, supporting the idea that 

RA is the functional form of vitamin A in embryonic development. Using nutritional models in which 

RA deficiency is imposed either early, or after the 12–15 somite stage, a number of defects have been 

added to the original fetal vitamin A deficiency syndrome. Nervous system, cardiovascular, and axial 

patterning defects result from early deficiency [63–66,96], whereas a less well-developed nasal region, 

salivary gland hypoplasia, agenesis of the Harderian glands, hypoplasia of the intestinal villi and a 

number of skeletal abnormalities arise if RA is limiting at later times [67]. 
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Table 1. Summary of abnormalities in VAD rat embryos given insufficient RA (late  

VAD) * [67], insufficient carotene (VAD syndrome) [95], or observed in RAR null 

mutants [97–99]. 

 Late VAD VAD syndrome 
Observed in RAR 

null mutants 

Ocular 100% 49% Yes 

Types    

Eversion of retina 100% 27% Yes 

Fibrous retrolenticular membrane 100% 49% Yes 

Coloboma 100% 18% Yes 

Heart—interventricular septal defect 17% 4% Yes 

Lung—hypoplasia 100% 4% Yes 

Diaphragmatic hernia 100% 31% Yes 

Intestinal villi hypoplastic 83% Not reported Not reported 

Kidney 100% 38% Yes 

Types    

Kidneys too close or fused 100% 20% Not reported 

Ectopia 100% 4% Yes 

Ureter—ectopic termination 100% 36% Yes 

Undescended testes 100% 54% Not reported 

Skeletal defects 100% Not reported Yes 

Glandular defects 100% Not reported Yes 

Nasal region less developed 100% Not reported Yes 

* Dietary RA restricted after E10.5 (12–15 somite stage) of development. 

3.2. Role of the Retinoic Acid Receptors  

The Rars are widely expressed in development [100]. A series of genetic experiments revealed the 

importance of the RAR in mediating the actions of RA in developing embryos [99,101,102]. These key 

experiments showed that compound RAR mutants die either in utero or shortly after birth, and 

recapitulate most of the defects described as part of the vitamin A deficiency syndrome [61,88–95,103] 

and the late VAD rat embryo model [67,104]. These genetic studies provide clear evidence that  

the vitamin A metabolite, RA, acts through a RAR signaling mechanism in support of normal 

embryonic development.  

RAR/RXR heterodimers form the functional unit that transduces the RA signal, with one genomic 

copy of the Rxrα sufficient to support RXR function in embryogenesis [105]. Ocular defects are 

present in some RXRα mutants lacking only the AF-2 domain (activation function) in the  

ligand-binding domain [99,106,107]. However, work from the Duester group indicates that ligand 

binding to the RAR is sufficient to transduce the signal, as a RAR- but not a RXR- selective ligand is 

able to rescue the developmental defects in RALDH2 null mutant embryos [108]. Thus, the need for a 

RXR ligand in RAR-driven events remains to be established. 
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3.3. Transport of Retinoid from Maternal to Fetal Compartment  

There are at least two ways in which retinoid is transferred from the maternal blood to the fetus. 

The major form of transport is the binding of retinol to a specific binding protein (RBP or 

RBP4) [109,110]. Retinyl esters can also be transported in the form of chylomicron remnants or as a part 

of very low-density and low-density lipoproteins. During early placentation, RBP is localized in the 

endoderm of the yolk sac visceral wall surrounding the embryo, and after definitive placentation, in the 

yolk sac membranes as well as in the uterus (decidua basalis) [111,112]. RBP does not cross the placenta 

into the fetal circulation [113]. Maternal retinol must be transferred to fetal RBP [114], or alternatively, 

retinol may be esterified in the placenta, and delivered to tissues in lipoproteins [115,116]. Although 

RBP null mutant embryos from null mutant mothers develop normally on a vitamin A-sufficient diet, 

embryogenesis is perturbed when maternal vitamin A intake is restricted [110]. Thus, when RBP is not 

present, circulating retinyl ester appears to represent the main pathway for the provision of retinoid 

from mother to embryo, provided maternal vitamin A intake is adequate [113]. 

3.4. Embryonic RA Synthesis and Catabolism 

It is clear that RA is essential for embryonic development. However, too much RA at critical stages 

can result in embryo lethality or malformation [117–120]. Thus, regulation of the amount of RA that is 

available to the embryo at specific times and to a given tissue site is of critical importance. Both the 

distribution and function of enzymes involved in RA synthesis and degradation have been studied 

intensively in developing embryos. Interestingly, both the levels and domains of Cyp26 gene expression 

in the developing embryo are affected by retinoid status, whereas the Raldhs are unaffected [121].  

Of the retinol dehydrogenase enzymes, RDH10 plays a key role, as loss results in embryonic 

lethality by approximately E13.0 [122]. These embryos (trex mutants) show a spectrum of defects 

consistent with vitamin A deficiency, although they do not die as early in gestation as severely  

RA-depleted embryos [65,123], indicating that one or more additional enzymes must also be active in 

generating retinaldehyde for RA synthesis. Supplementation with RA rescues the abnormalities, 

supporting a role for RDH10 in RA biosynthesis. A recent detailed examination of Rdh10 in the avian 

embryo shows that the expression domain is often smaller than that of the corresponding Raldh, 

leading the authors to suggest that retinaldehyde may be transferred between cells [124]. Recent work 

in Xenopus shows that RA down regulates XRDH10 transcripts, and this may serve as an additional 

mechanism to regulate endogenous retinoid levels [125]. Adh 1, 3 and 4 enzyme family members are 

also expressed in developing embryos [126,127], however, mutation does not result in embryo 

lethality [128,129]. It should be noted, that ADH3 and ADH4 null mutant mice do undergo early 

postnatal lethality if maintained for two generations on a VAD diet [129]. Thus, to date, RDH10 is the 

only retinol dehydrogenase shown to be indispensable for embryonic development under normal 

dietary conditions. 

Numerous retinaldehyde dehydrogenase single and compound deletion mutants have been 

generated and studied [123,130–135]. Deletion of RALDH2 is lethal early in development, whereas 

RALDH3 null mutants die at birth [131], and RALDH1 mutants are viable [133]. Thus, RALDH2 is 

the earliest expressed family member to produce RA in the embryo, and is believed responsible for all 
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RA signaling activity from E7.5–E8.5 in the mouse [136]. Shortly thereafter, RALDH1 and RALDH3 

contribute to RA synthesis in the eye and olfactory pit. Cyp1B1 can also generate RA and is expressed 

at known sites of RALDH-independent retinoid signaling [16], however, null mutant mice for this 

gene are viable [137]. Recent work in zebrafish indicates that the availability of retinaldehyde for RA 

synthesis may represent another point of control, with a short-chain dehydrogenase/reductase family 

member, DHRS3a, which catalyzes reduction of retinaldehyde to retinol serving as a RA-induced 

feedback inhibitor of RA biosynthesis [138]. 

The importance of CYP26 enzymes in restricting RA distribution and availability is illustrated by 

studies in which one or more is genetically ablated. Mutation of Cyp26A1 is embryonic lethal and 

mutants die during mid- to late gestation with symptoms mirroring those observed in RA toxicity 

including caudal defects and occasionally exencephaly [139–141]. CYP26B1 null mutants die 

immediately after birth and exhibit limb, male germ cell, and craniofacial abnormalities [73,142,143]; 

whereas loss of CYP26C1 alone does not produce an overt phenotype [144]. Deletion of both mouse 

CYP26 A1 and C1 is lethal at E9.5 to E10.5 [144], and deletion of all three CYP26 family members in 

the mouse is also lethal early in embryonic life, and produces a duplication of the body axis [145]. 

Thus, CYP26 enzymes play a very early and important role in regulating access of the embryo to RA. 

3.5. RA in the Early Embryo 

Using direct identification by HPLC, all-trans retinaldehyde is detected in embryos as early as the 

egg cylinder or pre-primitive streak stage, whereas RA is detected between the mid-primitive streak 

stage and the late allantoic bud stage [146]. Expression of a β2-RARE-lacZ (RARE-lacZ) transgene that 

is activated in reporter mice when retinoid interacts with the RAR, has been used extensively as a 

marker of retinoid-signaling activity in vivo [147]. In the post-implantation embryo, definitive staining 

is noted throughout the length of the primitive streak and the appearance of staining is coincident with 

formation of the neural plate. The time of initiation of RA synthesis within the embryo proper has also 

been deduced from studies of retinaldehyde dehydrogenase mRNA (Raldh2). It is first detected at the 

mid-primitive streak stage adjacent to the node and primitive streak [148,149]. The early activity of 

Raldh2 in the embryo, along with expression in the visceral endoderm (extraembryonic) is required for 

vascular development in both the embryo proper, as well as the yolk sac [150–152]. Prior to this time 

RA in the embryo is believed to be of maternal origin [145]. HPLC studies of embryonic tissues at 

later times confirm that all-trans retinol and RA are the primary retinoids detected, with retinol clearly 

the most abundant [153–155]. 

The importance of protecting the embryo from RA at times when it is not needed is highlighted by 

recent work on embryos null for all three CYP26 family members. RA is available from the maternal 

circulation, and Raldh2 is expressed in the endometrial stroma and decidua [156]. Raldh2 is highly 

expressed in the endometrial stroma by E2.5, remains high after implantation, and expression is 

reduced as stromal cells undergo decidualization. Uehara et al. report that the developing embryo is 

protected from maternal sources of RA by Cyp26 family members expressed in extraembryonic cell 

types including extraembryonic endoderm and ectoderm, visceral endoderm and ectoplacental cone 

that surround the murine embryo proper at E5.5 and E6.25 [145]. When all three CYP26 family 

members are deleted, embryos show a duplication of the body axis resulting from expanded Nodal 



Nutrients 2011, 3  

 

397 

expression driven by RA throughout the epiblast. LacZ staining that results from RA-driven expression 

of the RARE-lacZ reporter is not normally detected in wild-type embryos at E6.25, but is abundantly 

expressed in CYP26A1/B1/C1 triple knockout embryos. Thus, the CYP26 catabolic enzymes play a 

key role in regulating the exposure of the early embryo to maternal RA. 

3.6. Early Nervous System Development 

Vitamin A is required for many aspects of nervous system development including patterning and 

neural differentiation [157,158]. One of the best-studied functions of RA is in the developing hindbrain 

where it contributes to the anteroposterior patterning of the neural plate [159]. When induced, the 

neural plate is initially anterior or forebrain-like. Induction of more posterior domains occurs by the 

actions of RA, Wnts and FGFs, with RA specifying the posterior hindbrain and cervical spinal 

cord [160]. Patterning in the vertebrate hindbrain involves segmentation, a strategy that is used to direct 

the diverse range of nerves and craniofacial structures essential to hindbrain function [161]. Hindbrain 

segments called rhombomeres (r), are transient structures that express a distinct set of cellular and 

molecular properties, including an ordered pattern of Hox gene expression. Using the VAD quail 

model, the Maden and Zile laboratories first observed that the posterior region of the hindbrain 

(rhombomeres 4–7) does not develop in VAD embryos [162]. The effect of depleting vitamin A by a 

number of means in a variety of organisms was then studied in great detail. Loss of function mutation 

of RALDH2 in both mice and zebrafish results in anteriorization of the hindbrain [163–165]. VAD rat 

embryos generated by severely restricting the amount of RA fed to deficient mothers at the beginning 

of pregnancy results in a loss of posterior rhombomere segmentation, with a significant shortening of 

the hindbrain [65]. In addition, ectopic otic-like vesicles appear posterior to the orthotopic vesicle. By 

varying the amount of RA added back to the maternal diet, this study provided evidence that an 

increasing amount of retinoid is needed for the correct specification of more posterior rhombomeres.  

RARα/γ compound mutants show a hindbrain phenotype similar to that seen in vitamin A 

deficiency [166], whereas the RARα/β compound null mutants present a less severe phenotype [167], 

indicating that RARα and RARγ play an important role at early stages of hindbrain patterning. 

Elimination of all RARs in zebrafish severely disrupts hindbrain patterning [168]. Using cultured chick 

embryos treated with RAR antagonist at various stages of development, distinct developmental time 

windows were identified when RA specifies specific rhombomeres in a rostrocaudal sequence [169].  

The RA needed for antero-posterior patterning is produced in the anterior paraxial mesoderm by 

RALDH2 and diffuses into the adjacent central nervous system (Figure 4A). After this, Raldh2 mRNA 

is found in somitic as well as presomitic mesoderm, but not in the node [170]. The generation and 

diffusion of RA has been proposed to form a gradient (higher caudal/lower rostral) that patterns the 

hindbrain. However, the ability of exogenous RA to rescue development implies that mechanisms 

other than simple diffusion of RA from a localized posterior source must be involved in generating 

differential responsiveness along the hindbrain anterior to posterior axis.  
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Figure 4. Schematic showing the location of RA and Cyp26 expression in a presomitic 

mouse embryo undergoing (A) patterning of the neural plate and (B) later during the 

course of hindbrain patterning. (A) RA generated by RALDH2 in the posterior mesoderm 

forms an early anterior boundary of activity in the neural plate at presumptive rhombomere 

(pr) 2/pr3, whereas Cyp26A1 and Cyp26C1 are expressed rostral to the pr2 border;  

(B) By E8.0 to E8.5, RA is being expressed by the somites and anterior presomitic 

mesoderm, and acts on the overlying hindbrain and spinal cord. The activity of the CYP26 

enzymes regulate access of the neuroepithelium to RA (Adapted from [139]). 

 

The importance of CYP26 family members in restricting access of the developing hindbrain to RA 

was first exemplified by genetic ablation of CYP26A1, resulting in hindbrain posteriorization. The 

rhombomere-specific expression pattern of the Cyp26 mRNAs led to the proposal that boundaries of 

RA activity are created by their expression [23,141,171] (Figure 4B). For example, Cyp26A1 is 

initially expressed in the anterior epiblast and neural plate [18] and forms a boundary at presumptive 

r2/r3 [141]. This is followed by the later expression of Cyp26A1 in r2 and Cyp26C1 in r2 and 

r4 [18,21,139,144]. Accordingly, CYP26A1 mutants show hindbrain abnormalities just rostral  

to the region affected by retinoid deficiency, including posterior transformation of r2/3 to a r4-like 

character [139,140], however, individual CYP26B1 and CYP26C1 mutants develop normally [143,144]. 

A series of detailed studies using mouse embryos carrying the RARE-lacZ transgene led to a further 

posit that the initial gradient of RA entering the posterior hindbrain is converted into RA boundaries 

that shift over time [172]. It was proposed that CYP26C1 could play a role in restricting RA activity to 

the rhombomere 4/5 border, although CYP26C1 null mutants reportedly do not show abnormalities at 

this boundary as assessed by HoxB1 and RARE-lacZ staining [144]. However, CYP26A1/C1 double 

knockouts do exhibit even more severe hindbrain abnormalities than CYP26A1 mutants alone, 

including a grossly enlarged posterior hindbrain at the expense of anterior structures [144]. 

Interestingly, in Cyp26 morpholino studies in zebrafish, restriction of the RA-responsive gene, Vhnff1, 

is determined by the posterior limit of Cyp26C1 at the r4/r5 boundary, a function that can be 

compensated for by CYP26B1 [173]. Thus, the combined action of these enzymes along with the 

dynamic changes in where they are expressed during development must prevent RA from reaching 

specific anterior structures. Although not identical, recent models explaining how RA patterns the 
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developing hindbrain all include an important role for CYP26 family members in regulating the 

formation of waves or pulses of RA in this dynamic process [23,144,172,173].  

When hindbrain patterning is underway, exposure of the anterior brain to RA is prevented by the 

action of CYP26A1 and CYP26C1, and loss of CYP26A1 renders embryos more sensitive to the 

teratogenic effects of excess exogenous RA on head truncation [174]. By regulating levels of RA in 

the anterior brain, the CYPs may enable a ligand independent function of the RARs. Based on studies 

in Xenopus embryos, unliganded RARs in the head region at this early time are proposed to function as 

transcriptional repressors, that if activated inappropriately by RA, lead to activation of target genes that 

should remain off [175]. Thus, teratogenesis may result from over activation of genes that are normally 

upregulated by RA and/or a loss of gene repression by unliganded RAR. 

A role for RA in forebrain patterning was initially proposed based on studies in chick embryos 

exposed to RAR and RXR antagonists [176] and from the VAD quail model in which the size of the 

telencephalic vessel is reduced and the diencephalon is abnormally patterned [177]. Additional studies 

in VAD quail indicated that the vitamin was needed to correctly position anterior and dorsal 

boundaries in the forebrain via modulation of FGF8 and Wnt signaling [178]. RA was also reported in 

chick to contribute to regionalization of the telencephalon along the dorsoventral axis, and RALDH3 

produced by the head ectoderm was proposed as the retinoid source [179]. However, RALDH2/3 

compound null mutant mice reportedly do not show defects in the early molecular determinants of 

forebrain patterning [178,180]. Instead, Molotkova and colleagues propose that RA functions at later 

times in forebrain development, and provide evidence that RA generated by RALDH3 in the lateral 

ganglionic eminence is required for normal expression of the dopamine D2 receptor in the nucleus 

accumbens and medial striatum [180]. 

Additional roles for RA in later development of the central nervous system (CNS) are beginning to 

emerge [181]. McCaffery’s group found that RA is produced by RALDH2 in the meninges overlying 

the hindbrain at mouse embryonic day 13, and that RA activity as assessed by RARE-lacZ is present in 

precerebellar neurons migrating around the hindbrain circumference to form the inferior olive and 

pontine nuclei [182]. This group went on to show that RA is required for the generation of posterior 

neurons in the inferior olive, as the posterior inferior olive is significantly smaller in late VAD rat 

embryos compared to vitamin A-sufficient controls [183]. In the meninges covering the cortex, levels 

of Raldh2 increase in the mouse embryo from E13 to E14 onward, to a maximal level in the newborn 

brain [184]. Recently, RA from the meninges was reported to function in cortical development by 

regulating the switch of radial glia cells in the ventricular zone from symmetric to asymmetric 

division, resulting in the formation of neurons or intermediate progenitor cells [185]. It will be 

important to determine whether RA regulates stem cell division/differentiation in any other areas of 

the CNS. 

3.7. Spinal Cord and Other Neuronal Development 

RA plays a role in the development of caudal structures, including the neural tube that forms the 

spinal cord and in somite development. These tissues arise from the node-streak border, a region that 

comprises the caudal end of the node and the rostral end of the primitive streak [186]. Although primary 

neurulation occurs in both RALDH2 mutant mice and VAD chick and rat embryos [65,123,187], the 
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RALDH2 mutant is reported to have a thinner neuroepithelium [149] and VAD quail embryos have 

fewer spinal cord neurons and smaller somites [162,188]. Raldh2 is first expressed during gastrulation 

in the mesenchyme adjacent to the node and the primitive streak [148]. In the mouse and chick 

embryonic axis, RA from the anterior presomitic mesoderm and somites promotes neural 

differentiation by inhibiting the expression of Fgf8 [189]. In RALDH2 mutants, primitive streak and 

mesodermal markers are expanded at the expense of those representative of the prospective 

neuroepithelium [149].  

RA from the adjacent somites is needed to generate certain interneurons and ventral spinal cord 

motor neurons [190,191]. RA generated from within the spinal cord is required for the differentiation 

of a subset of lateral motor column (LMC) neurons that extend axons into the limb [192,193]. 

Interactions between HOXD10, which defines rostral boundaries of the lumbosacral LMC, and 

HOXD11, which opposes the effects of HOXD10, influence the distribution of motor neuron subtypes 

along the rostrocaudal axis. HOXD11 may also serve to restrict RALDH expression to regions where it 

is needed to support LMC neuron survival and maturation [194].  

There is evidence that RA promotes the survival of sympathetic neurons by inducing 

responsiveness to neurotrophins [195–197]. RA is also linked to the promotion of neurite 

outgrowth [157,162]. Recently, a number of genes including neuron navigator 2 (Nav2) and Nedd9 

were discovered in a screen for RA-responsive genes in a neuroblastoma cell line that elaborates 

neurites in response to RA [198–200]. Nedd9 is a direct downstream target of RA, whereas a 

functional RARE has not yet been identified in the Nav2 gene [33]. When NAV2 is knocked down, the 

neuroblastoma cell is no longer able to extend neurites in response to RA [201]. The human Nav2 gene 

can rescue defects in axonal elongation in the C. elegans mutant, UNC-53 (the homolog of Nav2 in the 

worm), and a mouse mutant hypomorphic for NAV2 also shows defects in cranial nerve development 

and general neurite density [202]. NAV2 may function as a link between actin remodeling and 

microtubule dynamics during neurite outgrowth. 

3.8. Eye Development 

Recognition of the importance of vitamin A in eye development first came from the experiments of 

Hale in which piglets from deficient mothers were born blind [86,87]. The morphologic  

consequences of vitamin A deficiency in rat embryos were examined in great detail by Warkany and 

Scharffenberger [61,88] and Wilson et al. [95]. They noted dysmorphogenesis of the anterior eye 

segment, retina and optic disc, although the penetrance of the defects was extremely variable. Using a 

model in which normal development is supported in VAD rat embryos up to embryonic day 10.5  

(12–15 somite stage) with RA and deficiency is induced thereafter, See et al. was able to produce eye 

defects in 100% of embryos which included; coloboma, absence of the anterior chamber of the eye, 

rudimentary iris or loss, fusion of the lens and cornea, thickening of the eyelid tissues, reduced size of 

the conjunctival sac, folding of the retina, absence of the vitreous body and the presence of a fibrous 

retrolenticular membrane [67,104]. The addition of retinol at E10.5 provided a full rescue of all 

defects, showing that all the defects were attributable to retinoid deficiency imposed after this time. 

The addition of a high level of RA after E10.5 dramatically improved eye development, supporting 

that vitamin A acid is the active moiety.  
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The RA synthesizing enzymes, RALDHs, show a very dynamic pattern of expression in the 

developing eye. In the mouse, Raldh2 (also called V2 activity) is transiently expressed in the optic 

vesicle neuroepithelium at E8.5 [132,148,203], after which Raldh3 (also called V1 activity) is 

expressed in the ventral neural retina and pigmented neuroepithelium [134,204–206] and Raldh1 (also 

called ADH-2) is expressed in the dorsal retina from E9.5 onward [134,207]. RARα is expressed in all 

layers of the developing murine neural retina, whereas RARβ is expressed in the inner nuclear layer 

from embryonic day 14 to postnatal day 7 [208,209]. Genetic ablation of two or more retinoid 

receptors in mice results in eye defects that are largely similar to those seen in VAD rat 

embryos [97,209–211]. A number of eye defects in RALDH3 and RALDH1/3 compound 

mutants [134,135,178] are also similar to those observed in late VAD rat embryos. 

Using the late VAD rat embryo model, it is possible to identify the times when vitamin A must be 

present to support eye development by adding back retinol at successively later times ranging from 

E11.5 to E15.5, and evaluating eye development at E18.5 [104]. A full rescue of all structures is 

achieved if retinol is added by E11.5, whereas addition on or after E14.5 is ineffective. Retinol added 

as late as E13.5 completely prevents retinal folding, formation of a fibrous retrolenticular membrane, 

and loss of the vitreous body but is ineffective in preventing anterior eye segment defects, whereas 

addition by E12.5 improves or rescues the majority of defects in anterior eye segment development 

(absence of anterior chamber, rudimentary iris, corneal-lenticular stalk fusion, and small conjunctival 

sac) and prevents coloboma of the retina and optic disc in the majority of fetuses. This study also 

revealed that the cells within the retina of late VAD embryos lose their characteristic shape and 

orientation along the apical-to-basal axis of the retina, with the appearance of gaps or holes in the 

neural retina that worsen as retinol is added at successively later times. Interestingly, the increase in 

cell adhesion proteins, N-cadherin and β-catenin, that normally occurs with development is not seen in 

VAD retinas. Additionally, a reduction in cyclin D1 labeling is observed in the retina of late VAD 

fetuses, suggesting that cell proliferation is also disrupted. These effects may contribute to retinal 

collapse seen in VAD rat embryos receiving no supplemental retinol, or retinol on or after E14.5. 

Using this temporal model, See et al. also clearly showed that a lack of optic fissure closure does not 

lead to retinal folding/collapse, as a well formed retina is produced by adding retinol at a time that is 

too late to prevent coloboma [104]. Retinal thinning and disruption of cellular organization and 

adhesion is a more likely reason for collapse of the retina seen at late stages of severe deficiency.  

RARα has been reported to be the sole receptor transducing the RA signal in the retina beyond 

E10.5 based on the inability to detect RARE-lacZ expression in the RARα null mutant mouse 

retina [212]. In the absence of this receptor, however, the mouse retina appears to develop normally 

leading to the conclusion that RARα is unnecessary for the developing mouse retina [213].  

If RARE-lacZ expression is an accurate readout of all RAR-mediated signaling in the neural retina of 

RARα null mutants, then the neural retina would appear not to be a direct target of RA and its 

receptors. If so, then it is possible that adverse effects of vitamin A deficiency on neural retina 

development could occur by a loss of paracrine action of RA in a secondary tissue, as is proposed for 

retinoid support of anterior eye segment development (Figure 5). Thus, it is unknown whether RA 

generated in the retina acts locally to regulate retina development. 
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Figure 5. Schematic showing the proposed sites of RA function during eye morphogenesis 

(left) and differentiation (right). At early stages of eye development, RA generated by 

RALDH1 and RALDH3 acts as a paracrine signal binding to RARs located in the perioptic 

mesenchyme to support anterior eye segment development and closure of the optic fissure. 

Pitx2 is a RA/RAR-regulated transcription factor that is required both for anterior eye 

segment morphogenesis, as well as closure of the optic fissure. At later stages of 

development, RA promotes differentiation of the neural retina. The mechanism is unclear, 

but could involve either a paracrine effect of RA outside of the neural retina, or a direct 

effect on the cells within the retina itself. 

 

The molecular basis for the vitamin A deficiency-induced defects in anterior eye segment 

development and in the appearance of coloboma has been the subject of several recent studies. It does 

not involve abnormalities in dorsoventral patterning genes, but rather, disruption of paracrine signaling 

from the retina to the perioptic mesenchyme. Compound deletion of both RARβ and RARγ in the 

neural crest cell-derived periocular mesenchyme using Wnt1-cre to direct excision results in eye 

defects including abnormalities of the cornea and anterior chamber [134,212]. Similarly, RALDH1/3 

compound null mutants show malformations of the anterior segment of the eye, including agenesis of 

the corneal and iris stroma, agenesis of the anterior chamber and less frequently, coloboma of the 

retina [134,135]. Thus, RA from retina is believed to signal in paracrine fashion to the perioptic 

mesenchyme to support the development of anterior eye structures. Defects result from the  

loss of control of programmed cell death in this region, and by loss of RA-mediated Pitx2,  

Foxc1, Eya2 and Dkk2 expression, and subsequent loss of repression of Wnt/β-catenin 

signaling [134,135,212,214]. Pitx2 encodes a homeodomain transcription factor that is essential for 

anterior eye segment development, and is also required for optic fissure closure [215]. Pitx2 is down 

regulated in the periocular mesenchyme of late VAD embryos that not only show defects in anterior 

eye segment development, but also retinal/optic disc coloboma at 100% penetrance [67,104]. Very 

recently it was shown that the Pitx2 gene contains a RARE located 4.3 kb upstream of the promoter, 

and thus is a direct target of RA and its receptors [214]. Duester and colleagues propose that RA 
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signaling activates Pitx2 in the perioptic mesenchyme, which in turn, induces Dkk2 and suppresses 

local Wnt signaling in the regulation of normal anterior segment development. Zacharias et al. has 

extended this model to include a role for canonical Wnt signaling in the maintenance of Pitx2 

expression after its initiation by RA, and prior to the time that Wnt signaling is suppressed [216]. 

3.9. Somites and Skeleton 

RA plays a role in the initiation of differentiation of the anterior region of the presomitic mesoderm 

from which the new somites originate [217]. VAD quail embryos have smaller somites than their  

vitamin A-sufficient counterparts, and also have an expanded FGF8 domain in the presomitic  

mesoderm [188]. In RALDH2 null mutants, the expression of Fgf8 mRNA in the primitive ectoderm 

(epiblast) is shifted anteriorly such that it enters the node ectoderm and neuroectoderm, and somite 

development is abnormal [170]. FGF signaling is important in the process of somitogenesis, and the 

opposition of FGF and RA signaling is also important in regulating somite size. A reduction in FGF in 

the presomitic mesoderm below a threshold value is needed to position the future somite 

boundary [218,219]. Higher levels of FGF8 and Wnt3a signaling maintain cells in an undifferentiated 

state, whereas exposure to RA along with lower FGF8 and Wnt3a initiates differentiation, and these 

factors are believed to control the developmental switch at this boundary [217]. Recent work in chick 

indicates that RA may also be involved in the termination of the process of segmentation [220]. 

RA signaling is involved both in the specification of the axial identity of future somites as well as in 

later stages of skeletal development. Somites, although similar by appearance, develop into distinct 

structures dependent upon their axial position. Determination of initial axial identity is believed to 

occur in mesodermal cells prior to somite formation [221]. VAD rat embryos show anterior vertebral 

transformations throughout the axial skeleton that can be rescued only if vitamin A is provided on or 

before embryonic day 8.75, a time that precedes appearance of the first somite [66]. Genetic deletion 

of several RARs produces defects in axial development with anterior cervical transformations similar 

to VAD embryos [53,97,209]. However, in these mutants, either posteriorization at the cervical/thoracic 

junction is observed, or no vertebral changes caudal to this region are reported [97,209]. Alteration of 

Hox gene expression appears to be major way in which retinoids affect positional information along 

the anteroposterior body axis [222–225]. 

Vitamin A is also required for skeletal development beyond its role in presomitic embryos. Rat 

embryos given sufficient RA up to embryonic day 10.5 (approximately the 12–15 somite stage), but 

made deficient thereafter exhibit hypoplastic cranial bones, defects of the thyroid, cricoid and tracheal 

cartilages as well as agenesis of the neural arch of cervical vertebrae 1 (C1) and ectopic bone in the 

dorsal regions of C1 [67]; defects in this region bear many similarities to those observed in RARα/γ 

compound null mutants [97,98]. Late VAD rat embryos also exhibit gross malformation of the sternal 

and pelvic regions [67]. Sternal malformations have been reported in RBP null mutant embryos from 

RBP null mothers fed inadequate vitamin A [110]. Surprisingly, late VAD rat embryos have anterior 

vertebral transformations in the cervical axial skeleton up to and including the thoracic juncture, along 

with posteriorization events at the thoracic and sacral levels of the skeleton [67]. As discussed above, a 

number of RAR mutants show both cervical anteriorizations and posteriorization at the cervical 

thoracic junction [97,209]. It is also interesting that administration of excess RA to the mouse at E7 



Nutrients 2011, 3  

 

404 

(presomitic; equivalent to E8.5–9 rat) produces posteriorizing transformations throughout the skeleton; 

however, excess RA at E8.5 (equivalent to E10–10.5 rat), produces anterior transformations starting at 

vertebrae 15 (thoracic vertebra 8, T8) whereas excess RA at even later times, yields both rostral 

posteriorizing and caudal anteriorizations [223,224]. Thus, vertebral identities, initially specified at the 

late primitive streak phase, can also be respecified at later times in mouse development when the 

vertebrae precursors (the somites), differentiate, and the sclerotome cells begin to form vertebrae. 

In summary, vitamin A plays a normal role in the maintenance of vertebral identity as well as in the 

development of skeletal elements. 

Much of the craniofacial skeleton originates from neural crest cells [226]. Frontonasal agenesis has 

been reported in compound RAR null mutant mice [97] and RBP null mutant mice on a  

vitamin A-deficiency diet [110]. Dupe and Pellerin recently showed that selective ablation of RARα 

and RARγ subtypes using the Wnt1-Cre promoter leads to agenesis of the frontonasal skeletal 

elements, but does not appear to adversely affect the early survival and migration of neural crest 

cells [227]. Deletion of all three RAR subtypes using the selective promoter produces a similar 

phenotype, indicating that RARα and RARγ act cell-autonomously in neural crest cells to direct 

morphogenesis of these skeletal elements.  

3.10. Heart Development 

Cardiac and aortic arch defects were observed as a part of the early vitamin A deficiency syndrome 

in rat embryos [93,94] and in RAR compound null mutant mouse embryos [98,102]. When severe 

VAD is imposed in quail, the initiation of heart morphogenesis is disrupted [88,228,229].  

In VAD quail embryos, vascular networks are absent and the heart appears ballooned and  

non-compartmentalized, and is randomly-positioned without an inflow tract at the posterior site [228]. 

Inability of the heart tube to undergo looping is also observed in RALDH2 mouse mutants [230]. The 

sinuatrial (venous) valve, a transient structure that flanks the orifice between the sinus venosus and 

right atrium, is not formed properly in rat embryos deprived of RA for one day (E9.5–10.5), and 

results in improper channeling of venous blood and anterior cardinal vein distension [64]. If RA 

deficiency is imposed after E10.5 in the rat embryo, a time when the cardiac primordium has 

completed looping and the primitive vasculature is established, early cardiac and aortic arch defects 

are not observed [67]. In summary, roles for vitamin A in mammalian heart development include: 

heart tube patterning and looping, chamber and outflow tract septation, ventricular trabeculation, 

cardiomyocyte differentiation and coronary vessel development [231–233]. A more in depth 

discussion of the molecular pathways involved in heart morphogenesis can be found in several recent 

reviews [229,232,234]. 

3.11. Kidney and Urinary Tract Development  

The requirement for RA in the developing kidney and urogenital tract has been illustrated in several 

animal models. In rodents, maternal vitamin A deficiency results in embryonic renal hypoplasia, the 

severity of which depends on the extent of vitamin A deprivation [67,91,110,235]. Ectopic kidneys, 

renal fusion and failure of the renal pelvis and calyx to undergo dilatation, in addition to ectopic 

ureteric openings and other genitourinary tract defects have been reported in VAD rat fetuses [67,91]. 
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RALDH2 null mutant mice lack nephric ducts [123] and in RARα/β2 double receptor mutants, 

nephron progenitors, stromal cells and ureteric bud tips are all greatly reduced or completely absent at 

birth [98,236]. These compound RAR mutants also have incorrectly positioned distal ureters, 

hydronephrosis and megaureter. 

Signaling between the ureteric bud epithelium that forms the collecting duct system, the 

metanephric mesenchyme that differentiates into nephron, and the stromal mesenchyme that 

differentiates into the renal interstitium is important during early kidney development. In the 

embryonic kidney, Raldh2 is localized in stromal mesenchyme of the outer cortex and Raldh3 is 

expressed in the ureteric bud [130,237,238]. RA and its receptors are needed to maintain Ret 

expression [237], a gene critically required for formation of the ureteric bud and its branching in the 

kidney [239–241]. The forced expression of Ret in ureteric bud cells in RARα/β2 double receptor 

mutants rescues renal development, restoring ureteric bud growth and stromal cell patterning [237]. 

Recent work shows that RA generated by RALDH2 in stromal mesenchyme acts in paracrine fashion 

to activate RA-receptor signaling and Ret expression in ureteric bud cells [242].  

In kidney, the number of embryonic branching events determines the final number of nephrons an 

individual will have for life, and it has been proposed that suboptimal nephron number at birth 

increases susceptibility to acquired renal disease and essential hypertension later in life [243–246]. 

Studies in rodents suggest that even mild vitamin A deficiency (a 50% decrease in circulating vitamin 

A concentrations) can lead to impaired branching and a 20% reduction in the number of 

nephrons [235]. Quite remarkably, a single injection of RA to a control group of pregnant rats at 

midgestation (E11) led to supernumerary nephron endowment in the kidneys of their offspring. RA 

given intraperitoneally at E11.5 is also able to increase nephron endowment in offspring exposed to 

maternal protein restriction without affecting body weight or kidney size, such that the number of 

nephrons per volume of kidney tissue is increased in these rat pups above that seen in the kidneys of 

control offspring [247]. Hence mild vitamin A deficiency in pregnancy may correlate to sub-clinical 

deficiencies in nephron number and slight nephron deficits that are not recognized at birth, but could 

possibly contribute in the long-term to renal failure and hypertension.  

3.12. Diaphragm 

The diaphragm functions as the primary muscle of respiration and forms a physical barrier between 

the thoracic and abdominal cavities. Congenital diaphragmatic hernia (CDH) occurs in approximately 

one in 3000 births, and is associated with high neonatal mortality [248]. Vitamin A is essential for 

normal diaphragm development, and it has been hypothesized that disruption of retinoid signaling may 

contribute to the etiology of the human disorder. A recent report shows that there is a relationship 

between low cord retinol and RBP levels and CDH in newborn infants [249].  

A herniated diaphragm was observed as a part of the early vitamin A deficiency syndrome [89], and 

appears at a 100% penetrance in RA-supported VAD embryos given insufficient RA after E10.5 of 

development, whereas a normal diaphragm results if the mother is supplemented with retinol after this 

time [67]. Diaphragmatic hernia is also observed at low penetrance in RARα/β compound null mutant 

mice [98]. Congenital diaphragmatic hernia in humans is linked to mutations in Stra6, which encodes 
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for a membrane RBP receptor [26,250], as well as to CDH-affected chromosome loci encoding for 

several other retinoid-related genes [251].  

The pleuroperitoneal fold (PPF) is a transient structure formed at the union of the pleuro-pericardial 

folds and the septum transversum and represents the component of the primordial diaphragm through 

which muscle precursor cells and pioneer axons of the phrenic nerve migrate to form the mature 

diaphragm. The PPF is fully formed by E13.5 in vitamin A-sufficient rat embryos, but it is abnormal in 

late VAD embryos [252]. Similar defects in PPF development are seen in rat embryos treated with 

nitrofen and several other CDH-inducing teratogens that interfere with the synthesis of RA and RA 

signaling in vivo [253,254]. Raldh2 mRNA is expressed in the PPF, and RARs α, γ and RXRα are 

most strongly expressed in the nonmuscular mesenchymal cells of the PPF. Thus, vitamin A signaling 

in the developing PPF appears to play a key role in the developing diaphragm. 

3.13. Lung and Upper Respiratory Tract and Airways 

Respiratory defects including left lung agenesis, bilateral lung hypoplasia, and agenesis of the 

esophagotracheal septum were described in early VAD syndrome embryos but were characterized as 

rare anomalies [90,95]. Lung hypoplasia is observed with 100% penetrance in rat embryos in which 

RA deficiency is imposed after E10.5, and the severity is increased as RA in the maternal diet is 

reduced [67]. Rars are expressed throughout lung development and RAR compound null mutant mice 

(RARα/β) show left lung agenesis and hypoplasia [209]. Additionally, a wide array of RA 

synthesizing, metabolizing and binding proteins are found in developing lung [255–257]. Mice null for 

RALDH2 or RDH10, also have lung agenesis or hypoplastic phenotypes [122,258,259]. The lung is 

second only to the liver as the major retinoid storage organ [260]. 

The lung arises from foregut endoderm during early development of the embryo. RA from the 

splanchnic mesoderm surrounding the foregut endoderm has been found to be essential for primordial 

lung bud formation at E9.5 in the mouse [256,258,259,261]. It was recently shown that in the foregut 

mesoderm, RA controls the Fgf10 expression required for bud formation by balancing the activation of 

canonical Wnt signaling through direct transcriptional repression of its antagonist Dkk1, and repression 

of Tgfβ signaling [262]. This conclusion is reinforced by work showing that simultaneous activation of 

Wnt and repression of Tgfβ in RA-deficient foregut rescues lung bud formation.  

While RA signaling is required for initial budding, by E10.5–E11.5, as secondary buds form, levels 

are down regulated by the appearance of the RA-degrading enzyme CYP26A1 to enable more distal 

branching and distal airway formation to proceed to completion [256,263]. A role for RA in alveoli 

formation is supported by the finding that RARs are required for correct lung alveoli septation, and 

reports that exogenous RA can stimulate alveoli formation in immature rat and mouse lung [264–269]. 

Figure 6 summarizes the proposed functions of RA in lung development. 

A recent report in the New England Journal of Medicine showed that, in a region with endemic 

vitamin A (retinol) deficiency, children whose mothers had received vitamin A supplementation 

before, during, and for 6 months after pregnancy had better lung function when they were tested at 9 to 

11 years of age than children whose mothers had received beta carotene supplementation or placebo. 

Additionally, they found that the period during which supplementation with vitamin A was most 

important was from gestation through a postnatal age of 6 months [270]. 
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Figure 6. Schematic showing the proposed sites of RA action in lung development. In the 

developing embryo, RA is needed for primary bud formation (grey oval), but signaling is 

down-regulated during the time that lung differentiation occurs. A later role for RA in 

alveolar formation (grey oval) is also proposed. During induction of the lung buds, RA 

regulates mesodermal Fgf10 levels by negatively regulating Tgfβ and enabling induction of 

the Wnt pathway by repression of the Dickkopf homolog 1 (Dkk1) known to antagonize 

Wnt ligand-receptor binding. RA may also influence the response of the foregut endoderm 

(origin of lung progenitors) to Fgf10. (Adapted from [262]). 

 

RA acting through the RAR is also necessary for the morphogenesis of other components of the 

respiratory tract including partitioning of the primitive foregut into oesophagus and trachea, and for the 

opening between the nasal and oropharyngeal cavities [67,131,209,256,258,261]. 

3.14. Pancreas 

Although not observed either as a part of the vitamin A deficiency syndrome or in compound RAR 

null mutant mice, a requirement for RA in pancreatic development has been proposed based on studies 

in RALDH null mutant mice [271,272] and in several other organisms in which retinoid signaling is 

deficient or inhibited, including Xenopus, zebrafish, chick, and quail [273–276]. RDH10 knockout 

mice do not have a pancreas [122]. RA produced by RALDH2 is required for early development of the 

dorsal pancreas in the mouse [271,272]. Specification of dorsal pancreatic tissue can be rescued in  

RALDH2-deficient embryos by low-dose maternal administration of RA.  

The effects of RA deficiency on pancreatic lineages appear to be due to the loss of pancreatic field 

specification within the endoderm [274]. Specification of the pancreas occurs between E8.0–8.5 of 

mouse development, and is followed by the development of the dorsal and ventral pancreatic buds at 

E9.0–9.5 [271]. RALDH2 null mutant embryos do not develop a dorsal pancreatic bud. It has been 

suggested that the differential expression of retinoic acid receptors (RARs) in gastrula stage endoderm 

is at least partially responsible for the distinct responsiveness of dorsal versus ventral pancreas [277]. 

Both defects in RA signaling and RA treatment have been shown to affect the expression of  

PDX-1 [271,272,275,278] an essential regulator of early pancreas development required for the 
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pancreatic buds to grow and differentiate [279–281]. RALDH2 mutant embryos lack PDX1 expression 

in dorsal but not ventral endoderm [271,272]. Conversely, exogenous RA has been shown to expand 

the pancreatic field [273–275], and CYP26A1 has recently been shown to play a critical role in setting 

the anterior limit of the pancreas field endodermal Cyp26 expression [282]. Additional information 

regarding the role of RA in pancreas development can be found in several recent reviews [283,284]. 

3.15. Limb Development and Interdigital Cell Death 

Functions for RA in limb development have been forwarded and debated for many years. Inhibitors 

of RA synthesis and vitamin A deficiency inhibit limb outgrowth in the quail [285,286]. In the absence 

of RALDH2, murine forelimb buds do not develop and embryonic growth ceases prior to the stage 

when hindlimb buds are initiated [287,288]. Zebrafish RALDH2 mutants lack pectoral fins and fin bud 

induction does not occur [164,165,276,289]. Limb defects in mice also result from treatment with 

excess exogenous RA, or inappropriate exposure to endogenous levels of RA due to the absence of 

CYP26B1. These studies show that controlled exclusion of RA from the limb bud is essential for 

proper limb morphology [142].  

RA has been proposed to play a role in patterning the developing limb by regulating the pattern of 

expression of genes such as Hand2 (activates SHH), Shh (patterns the anterior-to-posterior axis), and 

Meis1/2 (transcription factors that mark the proximal limb bud mesenchyme) [287,290–292]. 

However, a new report from Zhao and colleagues using a RALDH2/3 double mouse knockout 

suggests that RA acts as a permissive signal at an earlier stage to allow limb bud initiation rather than 

acting in an instructive manner, and that the role of RA is to antagonize early axial FGF signals which 

otherwise inhibit the limb field [80,141,293]. According to this new model, RA signaling within the 

forelimb bud proper is not required for normal patterning to occur. A similar idea was proposed by 

Gilbert et al., who found that axial retinoic acid signals played a permissive role in the induction  

of zebrafish pectoral fins [289]. RA appears to be dispensable for hindlimb budding and 

patterning [80,287]. It is notable that trex embryos carrying a mutation in Rdh10, have small, abnormal 

forelimbs but have hindlimbs that are relatively unaffected [122]. 

At later stages of development, RA is also essential for interdigital cell death, the mechanism by 

which digit separation occurs. Webbed digits have been described in compound RAR mutant mice due 

to a loss of apoptosis [209,294]. Around E12.5 (mouse) RA signaling becomes confined to the 

interdigital zones by a combination of interdigital Raldh2 expression and Cyp26B1 expression in the 

developing digits [295]. The mechanism by which RA activates cell death is currently a subject of 

active investigation [294–297].  

4. Conclusions 

In summary, the vitamin A metabolite, RA, is essential for reproduction in both the male and 

female, as well as for many events in the developing embryo. Nutritional as well as genetic approaches 

are being used to identify the cell types and pathways that are dependent upon RA signaling in support 

of these processes. Paracrine signaling appears to play a prominent role in RA action. Regulation of 

RA synthesis as well as its catabolism is important in determining when and where RA signaling will 

be activated. Future studies are needed to develop a more detailed understanding of when in 
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development, and in what specific cell types RA and its receptors are acting. Elucidation of the 

pathways that are involved in support of vitamin A functions in stem/germ cell division/differentiation, 

patterning and tissue/organ development remain major tasks for future work.  
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