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Abstract: Sodium is an essential micronutrient and, via salt taste, appetitive. High 

consumption of sodium is, however, related to negative health effects such as hypertension, 

cardiovascular diseases and stroke. In industrialized countries, about 75% of sodium in the 

diet comes from manufactured foods and foods eaten away from home. Reducing sodium 

in processed foods will be, however, challenging due to sodium’s specific functionality in 

terms of flavor and associated palatability of foods (i.e., increase of saltiness, reduction of 

bitterness, enhancement of sweetness and other congruent flavors). The current review 

discusses the sensory role of sodium in food, determinants of salt taste perception and a 

variety of strategies, such as sodium replacers (i.e., potassium salts) and gradual reduction 

of sodium, to decrease sodium in processed foods while maintaining palatability. 
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1. Introduction 

Sodium chloride (NaCl) is the prototypical stimulus for salty taste [1]. Sodium improves the 

sensory properties of foods, by increasing saltiness, decreasing bitterness, and increasing sweetness 

and other congruent flavor effects [2]. Factors which determine an individual’s liking and acceptance 

of salty foods are poorly understood, however it is thought that environmental factors such as the level 

of sodium in foods and habitual diet play a significant role [3,4]. While sodium is essential for normal 

human functioning, current sodium intakes far exceed recommendations for good health [5]. Excessive 
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sodium intake is associated with an increase in blood pressure, which is a major cause of 

cardiovascular diseases. It has been estimated that 62% of stroke and 49% of coronary heart disease is 

caused by high blood pressure [6]. Excess sodium consumption has also been associated with 

numerous other negative health effects, including gastric cancer [7], decreased bone mineral 

density [8] and possibly obesity [9]. 

A report by Asaria et al. [10] calculated that a modest 15% reduction in population sodium intake 

could prevent 8.5 million cardiovascular-related deaths worldwide over 10 years. A meta analysis 

prepared by the WHO concludes that there is strong evidence for the cost effectiveness of national 

sodium reduction strategies [10,11]. For example, cardiovascular diseases are the most expensive 

health issue accounting for 11% of total health expenditure around the world [12]. The average sodium 

reduction strategy is expected to cost only 0.3% of the current expenditure on hypertension control 

program in conjunction with other cardiovascular-associated costs worldwide [10]. Lowering sodium 

intake is beneficial for hypertensive and normotensive people although it affects hypertensive people 

to a greater degree.  

Despite the negative health consequences and associated health care costs of high sodium 

consumption, humans consume well above the recommended levels in most developed nations, 

making sodium reduction a priority for public health [11,13]. For this reason, a range of strategies to 

reduce sodium in different foods have been applied. However, success is often limited as sodium 

reduction has adverse affects on taste quality and flavor perception [14]. The objective of this paper is 

to (1) review the role sodium plays in the flavor of food, (2) to assess strategies to reduce sodium in 

processed foods. 

2. Physiological Role of Sodium in the Body, Recommended Sodium Intake, and Sodium 

Consumption Trends 

Within the body, sodium regulates extracellular volume, maintains acid-base balance, neural 

transmission, renal function, cardiac output and myocytic contraction [1]. World Health Organization 

(WHO) recommendations indicate that, in order to prevent chronic diseases, an adult upper daily limit 

intake of sodium should be less than 87 mmol Na/day (<5 g NaCl/day) [15]. The average US sodium 

intake is estimated to be 140–160 mmol Na/day (8.2–9.4 g NaCl/day) [13], United Kingdom  

161 mmol Na/day (9.4 g NaCl/day) [16] and Asian countries higher than 206 mmol Na/day  

(12.0 g NaCl/day) [15]. These studies illustrate consumption levels well in excess of sodium required 

for optimum health. In westernized countries, approximately 75% of sodium in the diet comes from 

processed foods, and foods eaten away from home [15,17]. The processing of foods often involves 

adding sodium to foods for a variety of flavor or processing reasons. For example chick peas, sweet 

corn and peas, which have naturally very low sodium content, have 10 to 100 times more sodium  

post-processing (Table 1) [15]. 

It is believed that the relatively high sodium intake of almost all societies today became common 

beginning between 5000–10,000 years ago [18,19]. It is generally thought that food preservation was 

the main driver of high sodium consumption in the early days [20]. This early use of sodium is likely 

to be the origin of the current high consumption of sodium. Interestingly, sodium consumption did not 

change dramatically over time. For example, in 300 B.C. the average daily sodium intake in certain 
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parts of China was approximately 3000 mg Na/day (7.6 g NaCl/day) for women and 5000 mg Na/day 

(12.7 g NaCl/day) for men [21]. In his book ―Neptune’s gift: a history of common salt‖,  

Multhauf estimated that the average salt consumption in 1850 in Britain and France was about  

4000–5000 mg Na/day (10.2–12.7 g NaCl/day) [20], which is rather similar to the current intake of 

sodium [22]. In 2010, Bernstein and Willett [23] analyzed 38 studies, published between 1957 and 

2003, which investigated sodium consumption, and found that individuals consistently consumed 

about 3700 mg Na/day (9.4 g NaCl/day) throughout this period. Despite the absence of any great 

increase in sodium consumption in the past centuries, salt intake has remained too high as people 

transitioned from preserved foods to modern processed foods [23]. 

Table 1. Comparison of the sodium content of some of the ―natural‖ and processed foods [15]. 

Food item Description Sodium content (mg/100 g) 

Beef Topside, roast, lean and fat 

Corned beef, canned 

48 

950 

Bran Bran, wheat 

Bran Flakes 

28 

1000 

Cheese Hard, average 

Processed 

620 

1320 

Chick-peas Dried, boiled in unsalted water 

Canned, re-heated, drained 

5 

220 

Potato Raw, boiled in unsalted water 

Canned, re-heated, drained 

9 

250 

Peas Raw, boiled in unsalted water 

Canned, re-heated, drained 

Trace 

250 

Potato 

chips 

Homemade, fried in blended oil 

Oven chips, frozen, baked 

12 

53 

Salmon Raw, steamed 

Canned 

Smoked 

110 

570 

1880 

Sweet corn On-the-cob, whole, boiled in unsalted water 

Kernels, canned, re-heated, drained 

1 

270 

Tuna Raw 

Canned in oil, drained 

Canned in brine, drained 

47 

290 

320 

Cereals and cereal products such as bread, breakfast cereals, biscuits and cakes, contribute  

about 30–50% of the estimated total intake of sodium in UK and US (see Figure 1). In Asian countries, 

such as Japan, a large proportion of dietary sodium comes from sodium added in cooking  

(i.e., soy sauce) [15,24]. Fast foods also contribute a significant amount to the daily sodium intake, 

e.g., one large slice of pizza alone contributes 1000 mg sodium or 43% of upper daily limit intake of 

sodium (2300 mg Na/day; 5.8 g NaCl/day) [25].  

  



Nutrients 2011, 3  

 

 

697 

Figure 1. Percentage contribution of food types to average daily intake of sodium [15,24]. 

 

3. Flavor Perception 

Flavor is a unitary percept, however what we perceive as an unitary whole is a combination of 

inputs from independent sensory systems: taste, smell and chemical irritation (part of the sense of 

touch) [14]. For example, when we consume an orange flavored soft-drink, the sense of taste is activated 

by non-volatile sugars and acids, the sense of smell by volatile aromas added to characterize the  

soft-drink (orange), and the chemical irritation by carbon dioxide. We do not perceive sweetness 

independently of orange aroma or carbon dioxide tingle; we perceive the sensations simultaneously as 

an orange flavored soft-drink. This central integration of taste, smell and chemical irritation ensures 

that there is ample opportunity for interactions between the senses. Removing or reducing one 

component of flavor, for example sweet taste can have effects beyond simply loss of sweetness; it can 

influence the entire flavor profile [2]. 

4. Taste Perception 

The sense of taste presumably evolved to detect both toxins and nutrients in foods. To perform this 

task the taste system is subserved by five taste qualities: sweet, elicited by sugars indicating 

carbohydrates in foods; umami, elicited by glutamic acid and other amino acids indicating protein in 

foods; sour, elicited by protons indicating acidic foods; bitter indicating toxic foods; and salt, elicited 

by sodium content of foods [26]. 

Taste receptor cells, which mediate the sense of taste, are located throughout the oral cavity.  

Most taste receptor cells are components of taste buds, which are clustered on three types of papillae  

(i.e., fungiform, foliate, and circumvallate) located on the tongue [27]. Papillae contain several 

hundred taste buds, each of which is composed of 50 to 150 taste receptor cells. The taste receptors at 

the apical end of the taste receptor cells are exposed to the internal environment in the oral cavity. 

When food or drink enters the mouth, chemicals from those foods may activate taste receptors. The 

chemical signal is converted to an electrical signal and sent via the seventh, ninth and tenth cranial 

afferent nerve fibers to the gustatory processing regions of the brain [2,26]. 



Nutrients 2011, 3  

 

 

698 

Perceived taste is characterized by four separate attributes—quality, intensity, temporal and spatial 

patterns [2]. Taste quality is the most important defining feature of taste sensation and is defined as a 

descriptive noun given to categorize sensations that taste compounds elicit: sweet, sour, salty, bitter 

and umami. Perceived intensity is related to the strength of the taste sensation and, when plotted 

against tasted concentrations, creates a psychophysical function. Temporal pattern is used to describe 

the time course of the taste perception [2,14], and spatial topography relates to location and localizability 

of taste sensation. If we use sodium as an example, the taste quality elicited is saltiness, the intensity of 

saltiness varies with the concentration of sodium in a food, and the time course of saltiness varies from 

when you put the salty food in your mouth through to mastication, swallowing and aftertaste. The 

location of saltiness originates throughout the entire oral cavity where taste receptor cells are located. 

It is important to note that there is no such thing as a tongue map, saltiness can be perceived across the 

tongue, rather than by specific areas on the tongue as wrongly suggested by the tongue map [27]. 

Salt Taste Perception 

The evolutionary importance of sodium is illustrated in the fact that one taste quality is devoted to 

identifying sodium in foods. Lithium also has a pure salt taste, but due to toxicity will not be an 

approved food ingredient, however other minerals such as potassium may also have a salty component 

to their taste [28]. 

The exclusivity of sodium as a stimulus for salty taste can be explained by its unique sodium-specific 

transduction mechanism involving epithelial sodium channels (ENaCs) on the taste receptor cells [29]. 

There are two ENaCs subtypes, one specific for sodium, which is activated at low sodium 

concentrations and is believed responsible for the appetitive nature of salt taste. The second ENaCs is 

permeable to multiple cations, activated at higher sodium concentrations, and is believed responsible 

for the aversive nature of cations. The seminal research revealing putative salt taste mechanisms was 

based on a mouse model, but there is little reason to believe the mechanisms would differ in 

humans [2,26]. 

Salt taste perception begins when sodium activates ENaCs on taste receptors and an afferent signal 

is sent to gustatory processing regions of the brain. At low sodium concentrations, the afferent signal 

may be too weak and not able to produce a noticeable difference from a similar solution without 

sodium. As the concentration of sodium increases the afferent signal strength will increase and reach a 

level where an individual will be able to discriminate a sodium solution from water, but remain unable 

to identify the taste quality. This is known as the detection threshold and is often used as a measure of 

individual sensitivity to sodium. Actual identification of saltiness occurs when the concentration of 

sodium is high enough not only to activate the taste receptors, but also produce electrical impulses, 

which can be carried via sensory neurons to the brain where they are decoded and after which the taste 

quality can be identified. This is known as the recognition threshold. The sodium concentrations above 

the recognition threshold are in the range of perceived saltiness, which is termed suprathreshold 

(Figure 2) [2,26]. The concentration of sodium required to elicit saltiness will vary considerably between 

food matrices, e.g., it is easier to detect 50 mM NaCl in an aqueous solution than in a bread matrix. 
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Figure 2. Scale diagram of taste perception as concentration increases (adopted from [26]). 

 

5. Taste Interactions 

The perceived intensity of a single compound in an aqueous solution increases as its concentration 

increases. However, in everyday life we mostly consume mixtures, rather than singular taste stimuli, 

notable exceptions being sucrose (table sugar) and NaCl (sodium chloride or table salt). The perceived 

intensity of mixtures may be additive or non-additive, which result in suppression or enhancement 

outcomes. Suppression takes place when the total intensity of a mixture, existing of two or more 

suprathreshold stimuli of the same modality, is less than the sum its components (e.g., 1 + 1 < 2) [14]. 

Enhancement is the opposite of suppression (the intensity of a mixture is greater than the sum of its 

components [14]. 

5.1. Levels of Taste Interactions 

Interactions between taste compounds such as mixture suppression and enhancement can occur at 

three different levels including chemical interactions, oral physiological interactions and central 

cognitive interactions. Chemical interactions may occur in the food matrix, for example gluten in bread 

may bind sodium, making it unavailable for taste reception [14]. 

Oral physiological interactions involve one compound interfering with taste receptor cells or taste 

transduction mechanisms associated with a second compound. These are classified as peripheral 

interactions, as they occur at the epithelial/cellular level. An example of oral peripheral interaction is 
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the effect sodium salts have on bitterness, where sodium interferes with the bitter taste transduction 

prior to the taste signal being sent to processing regions of the brain [2,30]. 

To demonstrate this peripheral effect, Kroeze and Bartoshuk [31] used a split-tongue technique in 

which sodium salt and a bitter stimulus were simultaneously applied to separate parts of the tongue, or 

were applied as a mixture to the same part of the tongue. The intensity of bitterness was reduced more 

when the stimuli were applied to the tongue in a mixture together, compared to when salt and bitter 

taste stimuli were applied to separate parts of the tongue. This illustrated that sodium interferes with 

the bitter taste transduction, although the mode of action in the periphery is unknown. 

Cognitive interactions refer to central processing of taste stimuli after afferent signals are sent to 

taste processing regions of the brain. Mixture suppression, which takes place after stimuli were applied 

to separate parts of the tongue, is an example of cognitive interaction [31,32]. 

5.2. Taste Interactions Involving Saltiness 

When two compounds with different taste qualities are mixed, a number of interactions may occur, 

including non-monotonic (both enhancement and suppression) and asymmetrical intensity shifts [2,30]. 

In food matrices, sodium salts may influence other taste qualities independent of intensity/concentration. 

For example, it has been suggested that saltiness is suppressed at high concentrations of of NaCl and 

KCL, but enhanced at low concentrations of NaCl and KCl saltiness [2]. Salt and sour taste mixtures 

symmetrically affect each other’s intensity with enhancement at low intensities/concentrations and 

suppression or no effect at high intensities/concentrations [33,34]. Bitterness is suppressed by  

sodium at all intensities/concentrations, while salt taste is less affected by bitterness. Sodium  

enhances sweetness at low intensities/concentrations, has variable effects through the moderate 

intensity/concentration range, and is suppressive or has no effect on sweetness at higher 

intensity/concentration. Sweetness suppresses salty taste at moderate intensities [2]. Figure 3 shows a 

schematic overview of binary interactions of taste qualities at different levels of concentrations. These 

schematic reviews are just indications of what happens to taste qualities when two are mixed. 

Variations, depending on the food matrix, may occur. 

Figure 3. Schematic review of binary interactions of taste qualities at different levels of 

intensity/concentration, Adapted with permission from Elsevier [2]. 
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Figure 3. Cont. 

 

Interactions between tastes get more complex when three taste qualities interact, or when more 

complex food matrices are involved [32]. Breslin et al. [35] investigated the interaction between 

sodium (salt), sucrose (sweet) and urea (bitter) in a mixture. They found that perceived bitterness is 

suppressed when sodium is added to a bitter-sweet mixture. Due to the decreased perceived bitterness, 

perceived sweetness increased. The latter was a result of the bitterness being less able to reduce 

perceived sweetness. This interaction takes place at a cognitive level. These findings are in line with  

Gillette et al. [36], who suggested that addition of NaCl to three soups decreased bitterness and 

increased sweetness. Similarly, Fuke and Konosu [37] reported that addition of umami tasting sodium 

salts of 5′-ribonucleotides reduced bitterness and increased sweetness in an artificial prawn extract. 

Pangborn, who has been recognized as one of the most influential researchers in the area of taste 

interaction [38–40], performed a series of experiments in the early 1960s investigating sucrose, citric 

acid and NaCl taste interrelationships. Several different food matrixes were used, e.g., pear nectar [41] 

tomato juice [42] and lima bean puree [43]. The results from the food matrix mirrored those in simple 

aqueous media [38,39,44], and from other studies [35,36]. 

Overall, reduction of sodium from food will have multiple flavor effects, as shown in Figure 4. The 

primary effect will be loss of saltiness. There may also be an increase of bitterness, due to the effect of 

sodium as an effective bitterness inhibitor; removing sodium will cause bitterness to be released from 

suppression. An increase in bitterness will result in mixture suppression, thereby decreasing  

sweetness [35]. In terms of taste liking, reducing sodium may decrease appetitive salt and sweet taste, 

and increase aversive bitter taste. A reduction in appetitive salty and sweet taste, may also result in a 

decreased perception of appetitive aromas associated with those tastes [14,35]. Overall, reducing sodium 

in foods not only reduces perceived saltiness, but is also associated with a wide range of complex taste 

interactions, which may negatively impact the liking of foods. Without sufficient knowledge about 

taste interactions the search for sodium replacers and other strategies to decrease sodium in industry 

sourced foods will be challenging. 
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Figure 4. Influence of sodium reduction on flavor. The height of the boxes making up total 

flavor reflects intensity of the named attribute in standard or reduced sodium  

food [14,35]. 

 

6. Factors Affecting Sensitivity and Preference for Salt Taste in Foods 

Supermarket shelves contain very few low sodium processed foods, which makes it difficult for 

consumers to follow a low sodium diet [45]. Individuals continue to consume large amounts of sodium 

and liking is preferentially directed to sodium-rich foods despite knowledge of the negative health 

effects [6,46,47]. Little is known about the factors which affect an individual’s salt taste sensitivity, 

liking and selection of salty foods, and whether there is an association between oral sodium sensitivity 

and liking of salty foods. 

6.1. Genetic Factors 

To our knowledge only two studies have tested the association between heritability and salt taste 

sensitivity as assessed by recognition threshold [48,49]. They concluded that salt taste sensitivity had 

no major heritable components and environmental factors may play a greater role in salt taste 

sensitivity. No measures of salt preference were included in these studies. 
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6.2. Environmental Factors  

Environmental factors appear to have a larger influence on salt taste preference, than genetic  

factors [3]. Infants and children’s liking for salt in specific foods is thought to be influenced by 

consumption of salty foods commonly available after 6-months of age [4], when infants are able to 

detect and preferentially ingest NaCl solutions compared to water. This developmental change is 

thought to be a result of experience, and salt taste preference is said to be ―learned‖ rather than  

innate [4]. Further evidence of the role of environmental factors in salt taste preferences are based on 

observations that exposure to sodium determines salt taste preferences [50]. Subjects on a sodium 

reduced diet experienced increased saltiness in foods and a decreased liking for higher concentrations 

of sodium chloride in foods [51,52]. Some researchers suggest a link between sodium intake and both 

salt taste sensitivity and preference [51,52], which is likely caused by the sensory perception of  

salt [53]. It is also believed that changes in salt taste preference were due to sensory experience of salt 

taste rather than actual amount of sodium consumed. 

The evidence, however, is not conclusive, and other research has shown no link between salt taste 

sensitivity and consumption or liking of salty food [54], or between consumption of reduced sodium 

diet and increasing preference for salty foods [55,56]. However, these studies have generally involved 

a dramatic sodium reduction, e.g., a 50% reduction over a short period of time. Bertino et al. [51] 

hypothesized a biphasic response to sodium reduction which is characterized by an initial phase of 

increased attraction to salt taste followed by a decreased preference for salt which would explain the 

discrepancies in results. 

7. Methods of Sodium Reduction 

7.1. Sodium Restricted Diet 

A simplistic view on sodium reduction is to just tell consumers they eat too much sodium and 

expect them to change their eating behavior. Community-based intervention trials, however, have 

demonstrated that only 20–40% of participants were able to reduce their sodium intake below the 

recommended upper limit of 100 mmol Na/day (5.8 mg NaCl/day) despite intense counseling [45]. 

Due to the need for counseling, this intervention is not feasible at a population level.  

Sodium reduced diets are difficult to maintain as they often require a change in dietary behavior  

for example, actively choosing low salt foods of which there is very limited choice on supermarket 

shelves [57]. It is widely accepted that sodium reduction could be more effectively achieved  

by reducing the sodium content of processed foods and by applying multisensory principles,  

e.g., enhancing aromas, to optimize the flavor characteristics of the foods, rather than by just giving 

dietary advice alone [1,57,58]. 

7.2. The United Kingdom Strategy—Sodium Reduction by Stealth 

The UK approach is based around stealth reduction methods which refers to a gradual reduction of 

salt in processed foods that is unnoticeable to consumers [59]. Grigis et al. [60] gradually reduced the 

sodium content of white bread by 25% over a period of 6 weeks and consumers generally could not 
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notice a difference in flavor. For food industry this would mean that they can meet sodium reduction 

targets by gradually decreasing sodium in their product over the course of a couple of years, without 

losing consumers. This strategy has been successful with the sodium content of many processed foods 

in supermarkets being reduced by 20–30% in the past 3 years. These results are expected to be 

duplicated when revised targets are set for a further 10–20% reduction to meet the UK’s daily intake 

target of 6 g/day by 2012 [61]. The reduction by stealth approach has the benefit of not requiring any 

behavior change from consumers, which is traditionally difficult to achieve. This approach has resulted 

in the UK population intake of NaCl reducing by approximately 1 g/day [24,57]. 

7.3. Use of Salt Substitute 

An ideal situation would be the replacement of sodium with a compound that elicits a similar pure 

saltiness when consumed. However, such replacements appear improbable due to the specificity of 

sodium to the ENaC responsible for salt taste. Sodium chloride replacers such as potassium chloride, 

calcium chloride and magnesium sulfate have been used to replace or enhance salt taste in a number of 

food products [28]. While these compounds do contribute a certain salty taste quality, they may also 

provide undesirable after tastes such as bitter, metallic and astringent tastes, which has limited their 

current use in food manufacturing [62,63]. These other non-sodium cations are believed to activate a 

second type of salt taste ENaC, which is non-specific and believed responsible for the off-tastes and 

flavors. So while the use of other cations is appealing, in particular potassium due to the added health 

benefit of increasing dietary potassium, the concentration which can be used in processed food will be  

limited [63]. Potentially, the intensity of perceivable bitter taste and associated off flavors can be 

decreased by ―bitter blockers‖, or sweeteners such as sucrose and thaumatin, which is an intensely 

sweet tasting protein [64]. 

Furthermore, food grade acids have been shown effective in enhancing saltiness of sodium. Little 

and Brinner [65] observed the effects of modifying NaCl and citric acid content of tomato soup on 

both taste preference and saltiness [65]. Saltiness intensity increased with increasing citric acid 

concentration. Taste preferences followed a hyperbolic function with an initial increase to a point of 

maximum taste preference (between 0.15–0.3% citric acid) and then dropping quite rapidly thereafter. 

Maximum taste preference was reached at both moderate NaCl (0.6%) and acid (0.3%) concentrations. 

It is also interesting to note that a low NaCl soup with citric acid could match or exceed the liking  

of a high NaCl soup [65]. A similar study investigated the effects of taste mixtures of NaCl and a 

combination of acetic and lactic acid in both simple solutions and bread [66]. As in the soup study, 

increasing concentrations of acid caused increased perceived saltiness at all salt variations in bread 

samples. Highest pleasantness rating was reached at a moderate acid (0.6%) and highest NaCl (1.2%) 

concentration in bread. The maximum taste preference of both studies involved only moderate acid 

concentrations. This suggests the use of acids to enhance salty taste is limited to lower concentrations, 

because sour notes may dominate and affect hedonic responses at higher concentrations. However, 

there may be some food matrices in which the use of acids would not be successful.  
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7.4. Other Approaches to Sodium Reduction 

Due to the influence of sodium reduction on the total sensory profile of foods, the addition of 

flavor, by means of herbs and spices, to sodium reduced product might be a viable solution [67]. 

Monosodium glutamate, which is responsible for the umami flavor, has been suggested as good flavor 

enhancer in low NaCl products, without substantially increasing the total sodium content of the 

product [59]. Kremer and colleagues replaced NaCl in a variety of foods, with different levels of 

naturally brewed soy sauce and measured the total NaCl and food acceptance [68]. They suggested  

that salad dressings (50% NaCl reduced), stir-fried pork (17% NaCl reduced) and soups (29% NaCl 

reduced), were still acceptable when NaCl was substantially decreased and substituted with soy  

sauce [68]. The study by Manabe [69] suggested that 17% of NaCl in egg custard could be decreased 

by the addition of dried bonito (fish) [69].  

8. Concerns for Food Industry for Sodium Reduction 

Sodium chloride is a widely used food additive due to its low cost, its ability to increase liking of 

foods via flavor modification, and other functional abilities in a food matrix [24,57]. Sodium chloride 

is required in food processing for some technological functions such as dough development in bread, 

and water binding and preservation in meats. However it is also believed that the sodium content of 

many food products exceeds technological requirements and primarily acts to enhance sensory  

effects [70]. A survey of UK food manufacturers revealed the most commonly cited function of 

sodium chloride in a range of food products was ―to impart flavor‖ and the most commonly cited 

constraint to sodium reduction was ―palatability and consumer preference‖ [71]. Given that sodium 

reduction will likely decrease preference for foods, there will be considerable pressure from food 

manufacturers to maintain current sodium levels in processed foods. 

8.1. Loss of Palatability and Consumer Acceptance 

Taste is one of the most important factors in food choice. Humans and animals have a liking for salt 

taste [27]. Therefore, when a large reduction in sodium content occurs there is a decline in consumer 

acceptance [72,73]. Small incremental decreases in sodium have shown to be effective, as consumers 

may not be able to detect gradual reductions in sodium up to a point [60]. However, with a continual 

decline of sodium from products it is inevitable that a point will be reached where a difference in 

flavor profile will be detectable by consumers and the food will be less liked. A recent study by  

Lucas et al. [54] showed that a significant sodium reduction (i.e., >50%) of a meal component (hash 

brown) could occur with only a minor decrease in liking [54]. Therefore, large sodium reductions in 

foods are possible, but ideally the salt taste elicited by sodium needs to be replaced so that the 

consumer acceptance is not negatively affected [1]. 

8.2. Texture and Other Quality Characteristics  

Reducing sodium chloride level may affect texture and other quality characteristics including, 

moisture levels, fat content, pH, starter cultures, various additives, and processing conditions [1]. For 

example, sodium chloride is able to bind proteins and fats and hold water. Therefore, meat batters with 
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low sodium need to have a sodium replacer, which not only replaces salt taste, but also needs to 

compensate for the other functions, which are lost when sodium is decreased [74]. 

Sodium chloride also limits the growth of yeast and enables the gluten structure in bread to develop. 

The reduction of sodium chloride in bread may therefore result in an increase in the growth of yeast 

and an undeveloped gluten structure, which has a negative effect on the texture of bread [75]. 

Furthermore, reduction of sodium chloride in cheese may affect starter culture activity. This negative 

effect of sodium reduction, however, did not prevent food industry in the U.S. to market Cheddar 

cheeses with different levels of sodium chloride [76]. 

8.3. Preservation and Microbial Safety  

Sodium reduces water activity in foods and is therefore able to limit the growth of pathogens and 

spoilage organism in a variety of food system [67]. For example, in processed meats and cheeses 

sodium chloride limits the growth and production of toxin by Clostridium Botulinum [77]. Similarly, 

sodium diacetate and sodium lactate limit the growth of Listeria monocytogenes and lactic acid 

bacteria in ready-to eat meats, which makes it safe for human consumption [78]. Sodium reduction 

may therefore pose a risk for unwanted bacteria growth and shorten shelf life. When sodium is reduced 

extra care needs to be taken in terms of cooking, packaging and storage temperatures. Furthermore, 

other preservatives may need to be added and all newly developed low sodium products need to be 

tested on microbiological safety and shelf life [67]. 

8.4. Other Functions of Sodium 

In addition to safety risks and processing challenges involved in producing low sodium foods, there 

is also an economic consideration. Sodium chloride is relatively cheap and any substitute used will 

increase the cost of the product. Furthermore, in order to find suitable salt replacers, bitter blockers and 

or flavor enhancers substantial effort and money needs to go into research, development and consumer 

testing. The food industry will need to take all functions of sodium in foods into account when 

addressing sodium reduction. 

9. Conclusion 

Saltiness is an important sensory attribute of many foods, and sodium chloride contributes more 

than just saltiness to the characteristic flavor of many food types. Whilst ensuring adequate dietary 

sodium intake is vital to health, our intake of excessive amounts of sodium has been linked to 

development of hypertension and subsequent pathologies [79]. Changing the dietary sodium content of 

a population that has adapted to a high sodium diet will not be easy, and will entail a number of 

strategies [24]. Part of the reason previous attempts to reduce sodium in processed foods were not 

successful was due to loss of palatability of foods [73]. One strategy to reduce sodium is to replace 

sodium with potassium salts, and while potassium chloride elicits weak saltiness, at higher 

concentrations it also elicits metallic and bitter taste limiting its utility in food. The ―stealth‖ approach 

of gradual sodium reduction in processed foods [60], thereby modifying consumers’ salt taste 

experience over time is recognized as arguably the best current strategy to reduce sodium in foods. 
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Initiatives carried out in several countries will provide much-needed data about whether this approach 

is successful in reducing sodium intake and blood pressure at the population level.  

There are potential barriers such as the technological function of sodium in foods, and decreased 

consumer liking, that could be put forward by the food industry to stop sodium reduction. However, 

mandating sodium reduction in certain food categories would urge food industry to come up with 

creative solutions, which will enable sodium reduction without compromising on food safety and 

consumer acceptance. There is no doubt that sodium reduction in foods will be difficult, but equally 

there is no doubt that reducing the level of sodium in foods is essential for population health. 
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