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Abstract: Vitamin D deficiency is a global public health problem and has been associated 

with an increased incidence and severity of many diseases including diseases of the 

respiratory system. These associations have largely been demonstrated epidemiologically 

and have formed the basis of the justification for a large number of clinical 

supplementation trials with a view to improving disease outcomes. However, the trials that 

have been completed to date and the ongoing experimental studies that have attempted to 

demonstrate a mechanistic link between vitamin D deficiency and lung disease have been 

disappointing. This observation raises many questions regarding whether vitamin D 

deficiency is truly associated with disease pathogenesis, is only important in the 

exacerbation of disease or is simply an indirect biomarker of other disease mechanisms?  

In this review, we will briefly summarize our current understanding of the role of vitamin 

D in these processes with a focus on lung disease. 
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1. Introduction 

The prevalence of vitamin D deficiency around the world is increasing. While the importance of 

vitamin D in bone health has been recognized for nearly two centuries [1], there has been growing 

recognition of the critical extra-skeletal roles for vitamin D in recent years [2]; with a particular focus 
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on chronic disease. As such, there has been an explosion of interest in vitamin D across health 

disciplines including lung disease. 

While vitamin D can be obtained from dietary sources (D2 isoform) the biggest contribution to an 

individual’s circulating levels of vitamin D, in most countries, is through endogenous production in the 

skin following exposure to ultraviolet(UV)-B radiation from the sun [2]. Exposure to UV-B 

(wavelength ~290–315 nm) converts 7-dehyrdrocholestrol in the skin into pre-vitamin D (D3 isoform) 

which spontaneously isomerizes into vitamin D [1]. This vitamin D, along with any vitamin D 

obtained through the diet, is converted into 25(OH)D in the liver [1]. Circulating levels of 25(OH)D 

are used as a marker of an individual’s vitamin D status [2] and, while there is some debate regarding 

what constitutes levels that are sufficient for normal physiological function, the current Institute of 

Medicine (IOM) guidelines from 2011 recommend 20 ng mL
−1

 (~50 nmol L
−1

) [3] which is based 

entirely on the levels required to maintain adequate bone health. 

The serum levels of 25(OH)D are measured as a marker of vitamin D status due to its long half-life 

(~15 days) [4], however it should be acknowledged that 25(OH)D represents the reservoir available for 

production of the active form 1,25(OH)2D which is produced, primarily in the kidney, through 

enzymatic conversion by 25-hydroxyvitamin D-1α-hydroxylase [2]. As a result, there are several 

pathways that can influence an individual’s ability to produce and respond to adequate local quantities 

of the active form of vitamin D which is the true determinant of physiological function. 1,25(OH)2D 

interacts with vitamin D binding protein (VDBP) which facilitates transport of the molecule. 

1,25(OH)2D enters the cell, binds to the nuclear vitamin D receptor and forms a complex with retinoid 

X receptor (RXR) [1]. This receptor complex then directs transcription of genes with a vitamin D 

response element (VDRE) [5]. 

It is important to recognise from the outset that, in reviewing the link between vitamin D and 

chronic lung disease, there are several challenges. The first of which is the widespread expression of 

the vitamin D receptor (VDR) across different cell types throughout the body and the high number of 

genes that contain a vitamin D response element (VDRE). This means that while there have been 

several studies showing epidemiological associations vitamin D and lung disease outcomes, we still 

have a poor understanding of the potential mechanisms involved due to the complex nature of the 

pathways involved. Likewise, the observation that most of our vitamin D is produced by exposure to 

UV radiation is critically important for the simple reason that UV-B is known to be an important 

immunomodulator in itself and can exert its effects through several non-vitamin D dependent pathways 

(reviewed in [6]). This means that, in epidemiological associations between vitamin D and chronic 

lung disease, it is possible that serum vitamin D levels are simply a surrogate marker for UV-B 

exposure and vitamin D is not on the causal pathway for disease outcomes. 

In the context of chronic lung disease the potential association with vitamin D is further confounded 

by the strong association between physical activity, which is directly linked to an individual’s level of 

sun exposure [7] and disease severity [8,9], which means that it is unclear if vitamin D is simply an 

indirect marker of physical activity and, consequently, is an innocent bystander in disease 

pathogenesis. Thus, in many instances, it is uncertain whether vitamin D is critical in disease onset or 

is just an indirect biomarker for morbidity. One further issue that has not been addressed anywhere in 

the literature is the direct effect of inflammation on circulating 25(OH)D. Given that there is local 

upregulation of the conversion of 25(OH)D to 1,25(OH)2D during infection one might predict that 
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immediate circulating store of 25(OH)D would be depleted. Thus, one intriguing possibility is that in 

the setting of chronic inflammation circulating vitamin D levels may be reduced as a direct result of 

the inflammatory response itself, which further confounds the positive association between vitamin D 

deficiency and disease severity. 

In this review, we will briefly summarize our current knowledge regarding the link between 

vitamin D and several common chronic respiratory conditions in an attempt to examine the importance 

of vitamin D deficiency in disease onset, through disease progression (pathogenesis) and during the 

acute exacerbation of disease. In this review, we have chosen to focus on asthma, chronic obstructive 

pulmonary disease (COPD) and lung cancer as they collectively represent a significant public health 

burden. We will also briefly mention respiratory infections but primarily in the context of their 

importance in the exacerbation of disease. We acknowledge that by focusing on these diseases we will 

not be addressing the literature linking fibrotic disease (both cystic fibrosis and idiopathic pulmonary 

fibrosis) and vitamin deficiency. For interested readers these associations are reviewed elsewhere [10]. 

2. Respiratory Infections 

Respiratory infections are a significant cause of morbidity and mortality worldwide. While 

respiratory infections per se are not typically considered in the category of “chronic” lung disease they 

can be important modifiers of disease progression and are key drivers of the exacerbation of many 

chronic lung diseases. As such, the importance of vitamin D in determining responses to respiratory 

infections will be briefly mentioned here (for more comprehensive reviews see [11–13]). 

Vitamin D and Respiratory Infections 

It has long been recognised that one of the key non-skeletal effects of vitamin D is to modulate the 

immune response to pathogens. As part of the innate immune response, 1,25(OH)2D induces the 

production of antimicrobial peptides including cathelicidin and β-defensin 2. The promoter region  

of the genes coding for these two peptides contain vitamin D response elements, indicating  

1,25(OH)2D-dependent regulation [14]. Cathelicidins and defensins have a broad spectrum of 

antimicrobial activity and kill bacteria by disruption of microbial membranes. In addition, they also act 

as chemoattractants for other inflammatory cells and contribute to wound repair [15]. An important 

study of Mycobacterium tuberculosis infection in human monocytes found that activation of toll-like 

receptor (TLR)1 and TLR2 [16], receptors responsible for recognizing microbial ligands, led to 

upregulation of the vitamin D receptor (VDR) and CYP27B1, the enzyme responsible for converting 

25(OH)D to 1,25(OH)2D. The endogenous production of 1,25(OH)2D by CYP27B1 and subsequent 

action through the VDR led to the induction of cathelicidin, thus demonstrating a mechanism of the 

antimicrobial activity of vitamin D [16]. In addition to its immediate impact on the production of 

antimicrobial peptides vitamin D has been implicated in modifying the signaling pathways that bind 

respiratory viruses. For example, 1,25-dihydroxyvitamin D decreases the expression of ICAM-1,  

the major cellular receptor for human rhinovirus [17] in human umbilical vein endothelial cell 

cultures [18] and peripheral blood mononuclear cells [19]. Given the importance of rhinovirus in the 

exacerbation of both asthma and COPD this has important implications for lung health. 
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On the basis of these observations, along with a plethora of other studies that were not mentioned, it 

is clear that vitamin D is important in the immediate response to respiratory infections in experimental 

systems. This is supported epidemiologically by seasonal patterns in the prevalence of respiratory 

infections [20]. There have been several clinical trials, of varying caliber, that have assessed vitamin D 

supplementation which also point to a beneficial effect of vitamin D on responses to respiratory 

infection. It should be noted that these epidemiological associations remain controversial as they can 

be difficult to separate from other seasonal confounders, such as increased proximity to infected 

individuals during winter, and on balance the responses in clinical trials has been variable [21]. 

However, to date the weight of evidence points to an important role for vitamin D in modulating the 

response to respiratory infection both in terms of disease susceptibility and severity. Importantly 

respiratory infections have been implicated in the onset, progression and exacerbation of chronic  

lung diseases. 

3. Asthma 

Asthma is a chronic disorder of the conducting airways characterized by airway inflammation, 

airway remodeling and airway hyperresponsiveness (AHR) [22]. Asthma is a heterogeneous disease 

which, in the most common form, is associated with allergic sensitization [23]. There is emerging 

evidence that signs of disease, including airway remodeling, may be present early in life [24]. As such, 

if vitamin D is important in disease onset then it is most likely to exert its effect in utero or early in 

post-natal life. Much of the burden in asthma, both in terms of morbidity and mortality, is due to 

asthma exacerbations and the subset of asthmatics that do not respond to common therapies. 

Interestingly, there is evidence to support a role for vitamin D in both of these aspects of asthma 

although, again, the potential association between disease severity and physical activity needs to be 

considered. These issues will be discussed in more detail below. 

3.1. Vitamin D and Asthma Onset 

Recently it has been hypothesized that westernized patterns of behavior have caused the human 

population to spend more time indoors away from sun exposure, leading to an increase in asthma and 

allergy as a result of vitamin D deficiency [25]. The importance of sun exposure in asthma is supported 

by the positive correlation between latitude and asthma prevalence [26]. Since UV exposure decreases 

at distances further away from the equator these observations suggest that vitamin D may play a role in 

asthma pathogenesis. Data from an unselected community birth cohort study from Perth, Australia 

showed that low serum 25(OH)D levels at 6 years of age were predictive of subsequent atopy or 

asthma-associated phenotypes at 14 years of age in boys [27]. A cross-sectional Italian study of 

children with asthma found that 53.3% of the children surveyed were vitamin D-deficient with serum 

25(OH)D levels less than 20 ng/mL. Lower vitamin D levels were associated with worse asthma 

control and lower lung function [28]. In another cross-sectional study from North America, 17% of 

children with asthma were vitamin D-deficient and there was a significant correlation between 

vitamin D levels and lung function as well as markers of atopy such as IgE levels and positive skin 

prick test responses [29]. In adults with asthma, low serum 25(OH)D levels are associated with lower 

lung function, increased AHR and reduced sensitivity to glucocorticoids [30]. Much of the data from 
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these observational studies support the hypothesis that higher vitamin D levels lead to better asthma 

outcomes. However, as mentioned previously, vitamin D deficiency is often an indirect marker of 

other confounding factors such as physical activity, making it hard to determine a causal association 

between vitamin D status and asthma. 

Birth cohort studies investigating the associations between maternal vitamin D status and asthma 

outcomes in children have shown that lower maternal dietary intake of vitamin D during pregnancy is 

associated with an increased risk of wheeze [31,32] and the development of asthma in children [33]. In 

contrast a birth cohort study from Finland also found that vitamin D supplementation in the first year 

of life was associated with an increased prevalence of asthma and atopy at 31 years of age [34]. 

However, vitamin D status in these studies was assessed using food questionnaires rather than directly 

measuring serum 25(OH)D concentrations. Gale et al. [35] reported that children whose mothers had 

serum 25(OH)D concentrations above 75 nmol/L had an increased risk of asthma at nine years of age  

(OR = 5.4 95% CI 1.09, 26.65; p = 0.038) [35]. However another recent study measuring serum 

25(OH)D during late pregnancy did not find an association between maternal vitamin D status and risk 

of childhood asthma, wheeze or atopy at six years of age [36]. A Spanish birth cohort study also found 

no association between maternal vitamin D status during pregnancy and the incidence of wheeze or 

asthma but reported an inverse association with the risk of respiratory infection [37]. 

In another study low cord blood 25(OH)D levels were associated with an increased risk of 

respiratory infections at three months of age and wheeze by five years of age, but again were not 

associated with asthma incidence [38]. As such, the evidence to suggest that higher 25(OH)D levels 

reduce the incidence of asthma is conflicting and there is yet to be a study that convincingly 

demonstrates that vitamin D deficiency is implicated in the onset of asthma. However, the association 

between low levels of vitamin D, wheeze and respiratory infections appears to be more consistent. 

Given the strong positive association between the frequency and severity of early life respiratory 

infections and the risk for developing asthma [39] any increase in the respiratory infections as a result 

of primary vitamin D deficiency in early life is likely to impact on the likelihood of developing 

asthma. While this is an attractive hypothesis there has yet to be a study that has attempted to 

disentangle this complex pathway such that the current evidence implying a direct role for vitamin D 

in the onset of asthma is equivocal. 

3.2. Vitamin D and Asthma Pathogenesis 

Gupta and colleagues [40] measured serum 25(OH)D levels in a study which included children with 

moderate and steroid resistant asthma (STRA), as well as non-asthmatic subjects, and found that serum 

25(OH)D levels were lowest in children with STRA. Consistent with other studies, the authors 

reported reduced lung function, increased corticosteroid use and asthma exacerbations with lower 

vitamin D levels in asthmatic children. Importantly, this study also found that low vitamin D levels 

were associated with an increase in ASM mass in children with STRA [40]. This study was the first 

study to demonstrate an association between serum vitamin D levels, lung function and structural 

changes in vivo, and the authors speculated that low vitamin D levels may be partly responsible for the 

increased ASM and reduced lung function in severe asthma. Importantly, in vitro studies support a role 

for vitamin D in airway remodeling. Increased proliferation of ASM cells exposed to serum from 
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asthmatic patients is inhibited by 1,25(OH)2D [41]. 1,25(OH)2D also downregulates the expression  

of MMP-9 and a disintegrin and metalloprotease (ADAM33), previously identified as an  

asthma-susceptibility gene which is involved in airway remodeling. This is further supported by a 

study by Damera et al. demonstrating that 1,25(OH)2D can inhibit ASM cell proliferation in both 

normal and asthmatic subjects by preventing cell cycle progression [42]. In vivo and in vitro animal 

studies support an important role for vitamin D in modulating normal lung development [43,44] such 

that vitamin D deficiency impairs lung growth [45]. The important role for vitamin D in lung growth 

and development is often overlooked in favor of an immunomodulatory explanation for the apparent 

association between vitamin D deficiency and chronic lung disease. This is surprising given the 

strength of the effect of vitamin D on lung growth in vivo [45] and the role that structural deficits are 

likely to play in the onset of chronic lung disease and the prognosis of an individual who is genetically 

susceptible to the development of obstructive lung disease. 

However, the immunomodulatory effects of vitamin D are also likely to be important in asthma 

pathogenesis and should not be ignored; ultimately an understanding of the impact of vitamin D 

deficiency on both immune function and normal growth and development is likely to result in the 

biggest advances in our understanding of the importance of this nutrient in chronic lung disease. The 

role of vitamin D on T cell responses has been well studied. T-cells, particularly T-helper (Th) 2 cells 

can contribute to the pathogenesis of asthma through the production of cytokines, such as IL-4, IL-5, 

IL-9 and IL-13. Secretion of these cytokines are essential for the class switching of B-cells to 

immunoglobin (Ig) E synthesis, the recruitment of mast cells and the maturation of eosinophils [46]. It 

is well established that 1,25(OH)2D inhibits Th1 cytokine production [47,48]. However, the effect of 

vitamin D on Th2 responses remains unclear. While 1,25(OH)2D has been shown to promote Th2 

responses in murine T cells [47], Pichler et al. found that 1,25(OH)2D can also inhibit both Th1 and 

Th2 cytokine production from human cord blood T cells [49]. Studies investigating the effects of 

1,25(OH)2D supplementation has also produced conflicting results. One study found that 1,25(OH)2D 

can inhibit the inflammatory response by treatment with 1,25(OH)2D at the onset of exposure to the 

experimental allergen ovalbumin (OVA) in mice [50]. Another study by Matheu et al. found that 

priming with 1,25(OH)2D prior to OVA sensitization resulted in enhanced antigen-specific IL-4, IL-13 

and IgE production, but inhibited IL-5 release and eosinophilia [51]. The authors went on to 

investigate whether these effects were dependent on the timing of vitamin D treatment, and found that 

eosinophil recruitment was inhibited when 1,25(OH)2D was administered at a later stage in the 

exposure protocol. This work is supported by Gorman and colleagues [52] who showed that vitamin D 

deficiency in a mouse model of OVA exposure suppresses allergic responses in a sex dependent 

manner. Interestingly, the apparent sensitivity of male mice to the effects of vitamin D deficiency was 

associated with an increase in bacteria levels in the lung implying a role for vitamin D induced 

modulation of the microbiome in regulating asthma like responses in the airway. This is an area that 

warrants further investigation. 

There is certainly mounting evidence for a role of vitamin D in altering the pathogenesis of asthma 

through modulation of T cell driven immune responses, however there is still clearly work to do in  

this field. 
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3.3. Vitamin D and Asthma Exacerbations 

Severe asthma exacerbations may require hospitalization and account for much of the burden of 

asthma [53]. In a cross-sectional study of asthmatic children in Costa Rica between the ages of 6 and 

14 years, higher levels of vitamin D were associated with reduced asthma exacerbations as determined by 

reduced odds of hospitalizations or emergency department visits (OR = 0.05 95% CI 0.004, 0.71; p = 0.03), 

as well as lower serum IgE, eosinophil counts and inhaled steroid use [54]. Brehm et al. [55] followed 

up these results with a prospective study of serum vitamin D levels and the subsequent development of 

severe asthma exacerbations over a 4-year period in North American asthmatic children. This study 

confirmed the findings from the Costa Rican study showing that vitamin D levels less than 30 ng/mL 

were associated with higher odds of asthma exacerbations (OR = 1.5 95% CI 1.1, 1.9; p = 0.01). 

Furthermore, children who were vitamin D insufficient, regardless of whether they did or did not 

receive inhaled steroids, had an increased risk of exacerbation compared with children who received 

inhaled steroids and had sufficient levels of vitamin D, indicating a role for vitamin D in enhancing 

steroid responsiveness [55]. Another study conducted in Puerto Rican children with and without 

asthma reported higher odds of asthma exacerbations (OR = 2.6 95% CI 1.5, 4.9; p = 0.001) and atopy, 

and lower FEV1/FVC in children with asthma who were vitamin D insufficient. There was no 

association between lung function and atopy and vitamin D insufficiency in children without asthma 

suggesting that vitamin D influences asthma exacerbations via mechanisms unrelated to allergic 

immune responses or lung structure [56]. 

One of the mechanisms in which vitamin D deficiency may contribute to asthma exacerbations is by 

reducing steroid responsiveness. Searing and colleagues [29] reported an inverse correlation between 

corticosteroid use and vitamin D levels in asthmatic children. Furthermore, vitamin D was able to 

restore corticosteroid action in an experimental model of steroid resistance [29]. Inhaled 

corticosteroids have a protective effect on severe asthma exacerbations and inhibit the synthesis of Th2 

cytokines, which are implicated in asthma pathogenesis, and induce IL-10, a potent anti-inflammatory 

cytokine in airway epithelial cells. Since severe asthmatics are less responsive to corticosteroids 

compared with mild asthmatics, corticosteroid insensitivity may be a mechanism contributing to 

asthma severity [57]. Regulatory T cells from patients with severe therapy-resistant asthma do not have 

an increase in IL-10 following corticosteroid exposure. However, the administration of vitamin D may 

overcome this deficit in IL-10 production [58]. Microarray studies have also revealed that stimulation 

of ASM cells with the VDR ligand, 1,25(OH)2D, upregulates the expression of two genes coding for 

glucose-6-phosphate dehydrogenase and 1β-hydroxysteroid dehydrogenase type 1 enzyme, both of 

which are responsible for corticosteroid activation [59]. These data suggest that vitamin D 

supplementation could be used as an adjunct therapy to overcome steroid resistance in severe asthma. 

While there is certainly emerging evidence of a role for vitamin D deficiency in steroid resistance, 

which may impact on the propensity for acute exacerbations, the important role of vitamin D in 

responses to infection also deserves recognition. This is particularly important given that almost all 

acute exacerbations of asthma that require hospitalization in children [60] are associated with an acute 

viral infection. As highlighted earlier there are a plethora of studies on the impact of vitamin D on 

responses to infection, however there are very few (if any) studies that have systematically assessed 

the causal role of vitamin D deficiency in modulating the severity and/or duration of response to viral 
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infection during an acute asthma exacerbation. Of course, it is possible that this explains the 

observations from the studies described above showing an association between vitamin D and acute 

exacerbation outcomes, however whether this is due to an altered response to viral infection is yet  

to be elucidated. 

4. Chronic Obstructive Pulmonary Disease (COPD) 

COPD is a chronic inflammatory airway disease characterized by progressive destruction of the 

lung parenchyma (emphysema) and/or chronic inflammation of the small airways leading to 

hyperinflation and fixed airflow obstruction [61,62]. The pattern of disease onset, progression and the 

mechanisms leading to exacerbation in COPD can be difficult to dissect due to the multitude of factors 

that contribute to pathology in an individual patient. While COPD is primarily associated with 

smoking and, as such, has been treated as an “adult” disease, there is increasing recognition of the 

importance of early life factors in influencing the risk of developing disease [63,64]; particularly early 

life exposures that might influence immune function and/or lung growth. Thus, like asthma, vitamin D 

has the potential to influence disease onset by impacting on the lung early in life. The potential 

association between COPD and vitamin D is perhaps even more complex than that described for 

asthma due to the significance of muscular and bone related co-morbidities, which are highly 

influenced by vitamin D. As such, epidemiological associations between vitamin D and COPD 

outcomes are highly influenced by confounders. 

4.1. Vitamin D, COPD and Musculoskeletal Co-Morbidities 

The high prevalence of osteoporosis and osteopenia in COPD patients [65] may be an indication of 

a link between vitamin D deficiency and COPD. Osteoporosis and osteopenia are characterized by low 

bone mineral density partly due to reduced calcium intake and absorption. Vitamin D, together with 

parathyroid hormone increases intestinal calcium absorption to maintain normal calcium levels [66]. 

Janssens et al. [67] reported a high prevalence of vitamin D deficiency in patients with COPD from a 

cohort which included age, sex and smoking-matched controls. Serum 25(OH)D levels correlated with 

lung function as measured by FEV1 in COPD patients, but not healthy smokers [67]. A previous study 

also found that low vitamin D levels were common in a small cohort of patients with COPD awaiting 

lung transplantation [68]. Similar associations between serum 25(OH)D with FEV1 and FVC were 

reported in a large cross-sectional study from the third National Health and Nutrition Examination 

Survey (NHANES) [69]. Although there was no correlation with COPD, the association between 

serum 25(OH)D and FEV1 was increased in smokers and ex-smokers compared with non-smokers. 

Another recent study demonstrated a positive association between dietary vitamin D intake and FEV1, 

FEV1/FVC and an inverse association with COPD incidence [70]. However, as already suggested, 

these associations must be treated with additional caution due to the combined influence of the link 

between disease severity, physical activity levels and vitamin D and the strong link between 

musculoskeletal abnormalities and COPD. 
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4.2. Vitamin D and COPD Onset 

When attempting to describe the impact of vitamin D on the onset of COPD there are two 

paradigms to consider; the early life origins of disease and the primary response to an individual’s first 

exposure/s to cigarette smoke. In both cases, data on the impact of vitamin D on these pathways for 

disease initiation is limited. 

Like asthma, any factors that result in an early life deficit in lung function are likely to impact  

on disease morbidity (and mortality) later life. This is because lung function tends to follow a 

trajectory [71,72] whereby any deficit, relative to the population, is maintained throughout life such 

that the threshold for limitations in lung function following a respiratory insult is lowered. While there 

have been no epidemiological studies showing a link between early life vitamin D deficiency and 

COPD (or asthma), in vivo and in vitro experimental data suggests an important role for vitamin D in 

lung development. For example, vitamin D has been shown to increase the synthesis of surfactant in 

alveolar type II cells [43] and modulate epithelial-mesenchymal interactions [44] in the developing rat 

lung. More recently, it has been shown in vivo that vitamin D deficiency in utero and in early life, in 

the absence of hypocalcaemia, alters lung development in mice resulting in deficits in lung volume and 

impaired lung mechanics [45]. Together these observations implicate vitamin D for a role in normal 

lung growth. As a result, vitamin D deficiency has the potential to impact on the development of 

chronic lung disease in early although direct evidence for this in human studies is currently lacking. 

Likewise, there have been almost no studies that have examined the impact of vitamin D on the 

primary response to cigarette smoke. One study has shown that exposing cells in culture to cigarette 

smoke inhibits vitamin D induced translocation of the nuclear VDR [73], however this appears  

to be the only evidence that cigarette smoke has a direct impact on vitamin D pathways. While 

acknowledging that work in this area is limited the potential upregulation of VDR in response to an 

insult has important implications when considering the validity of measuring 25(OH)D alone when 

examining disease associations. There is clearly more work that needs to be done on the impact of 

vitamin D on the onset of COPD. 

4.3. Vitamin D and COPD Pathogenesis 

COPD is generally seen as a disease affecting older individuals as a result of cigarette smoking. 

However about 20% of COPD cases occur in non-smokers and not all smokers develop COPD, 

indicating other contributors to disease pathogenesis [62]. A study investigating the risk factors 

associated with early inception of COPD measured lung function in a European cohort of young ages 

at ages 20 to 44 years, and again 8 to 9 years later. This study found that cigarette smoking remained 

the main cause of COPD in these young adults, however the same factors associated with asthma risk 

such as AHR, a family history of asthma and childhood respiratory infections were also risk factors for 

COPD [74]. As discussed earlier, these data are consistent with a growing body of evidence for early 

life origins of many chronic lung diseases of adulthood. Like asthma, there is an increase in ASM  

in the airways of COPD patients, predominantly in the small airways [75]. Thus, one tantalizing 

hypothesis for the common association between vitamin D deficiency and an increased incidence of 

asthma and COPD is through the impact of vitamin D on primary lung structure. 
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In COPD, vitamin D deficiency is often thought to be a consequence of the disease rather than the 

cause since COPD patients have a reduced capacity for vitamin D synthesis due to their aging skin and 

are more likely to spend less time outdoors. The data from the NHANES III study however suggests 

that vitamin D status directly affects lung function per se [69]. Genetic studies have also found a link 

between COPD and variants of the vitamin D binding protein (VDBP). VDBP is the major carrier 

protein for vitamin D and binds circulating 25(OH)D and 1,25(OH)2D with high affinity. However it 

is now known to have other functions including macrophage activation and can augment monocyte and 

neutrophil chemotaxis [5], both of which play an important role in COPD pathogenesis. Single 

nucleotide polymorphisms (SNPs) of the VDBP gene (GC), namely rs7041 and rs4588, produce the 

Gc1 and Gc2 variants which have different binding affinities for 25(OH)D. Janssens et al. [67] 

reported that the rs7041 variant Gc1S predicted 25(OH)D levels in COPD patients and was a genetic 

risk factor for the disease. Another study of vitamin D levels and alveolar macrophage function 

reported lower lung function and increased macrophage activation with higher levels of VDBP in the 

airways [76]. The Gc2 variant was also protective against COPD and a potential explanation for this is 

that Gc2 is less able to activate macrophages. Macrophage accumulation and activation in the COPD 

lung leads to the release of neutrophil chemoattractants, which may contribute to lung damage. 

Together the data suggests that genetic variants of VDBP may protect against COPD pathogenesis. 

MMPs also have a potential role in the progression of COPD. MMP-9 is increased in the sputum of 

COPD patients [77] and MMP-9 activity is known to enhance the degradation of the lung parenchyma 

thus contributing to the emphysema phenotype observed in COPD. A study using VDR knockout mice 

reported emphysema and reduced lung function in these mice together with increased neutrophil and 

macrophage influx in the lung as well as upregulation of MMP-2, MMP-9 and MMP-12, suggesting 

that the lack of VDR activates pathways that are associated with COPD pathogenesis [78]. 

4.4. Vitamin D and COPD Exacerbations 

COPD exacerbations are important events in the natural history of the disease. A recent consensus 

statement defined COPD exacerbations as “a sustained worsening of the patient’s condition, from the 

stable state and beyond normal day to day variations that is acute in onset and necessitates a change 

in regular medication in a patient with underlying COPD” [62,79]. Exacerbations have been described 

as clinical manifestations of increased inflammation and a key finding is an increase in neutrophils in 

the sputum during acute exacerbations [80]. The majority of COPD exacerbations are caused by viral 

and/or bacterial infections of the tracheobronchial tree [81]. Air pollution induces oxidative stress and 

is another important cause of exacerbations, however there is also a large proportion of exacerbations 

with no identifiable cause [62]. 

An analysis of sputum samples from 56 COPD patients in East London experiencing an 

exacerbation found that about 70% of exacerbations were associated with a bacterial pathogen, while 

20% was associated with rhinovirus infection. In addition, bacterial and viral infections interact to 

cause more severe exacerbations [82]. In an experimental study where patients with COPD were 

infected with a low dose of rhinovirus, clinical features of an acute exacerbation were induced [83]. 

Subjects with COPD had greater airflow obstruction and neutrophilic inflammation compared with 

controls, demonstrating an important role for rhinovirus infections in COPD exacerbations. In contrast, 
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another study from London investigating whether higher vitamin D levels reduced exacerbation 

frequency as well as susceptibility to human rhinovirus did not find any associations [84]. 

A study of North American patients with severe COPD found that more than 40% had serum 

25(OH)D levels less than 20 ng/mL, however there was no association between baseline 25(OH)D 

levels and time to first acute exacerbation [85]. Another Norwegian study consisting of subjects with 

and without COPD found a high risk for vitamin D deficiency in COPD patients however again there 

was no association with self-reported exacerbation frequency [86]. Recent data from a randomized 

control trial of supplementation with high doses of vitamin D in a cohort of COPD patients did not 

reduce the incidence of exacerbations [87]. Thus, despite the evidence that vitamin D can reduce 

infections that may associated with acute exacerbations, current data does not support a role for 

vitamin D in preventing COPD exacerbations. 

5. Lung Cancer 

Lung cancer is the leading cause of cancer mortality in both men and women worldwide [88]. Lung 

cancer can be divided into two major classes, non-small-cell lung cancer (NSCLC), which accounts for 

85% of all lung cancer and small-cell lung cancer (SCLC), representing 15% of cases. NSCLC can be 

further divided into adenocarcinoma, squamous cell carcinoma and large cell lung carcinoma [89]. 

While the main cause of lung cancer is cigarette smoking, an estimated 25% of cases also occur in 

non-smokers, most often in the form of adenocarcinomas [90]. Vitamin D has been studied extensively 

in many cancer settings and there is strong evidence to suggest that vitamin D is anti-tumorigenic [91]. 

5.1. Vitamin D and Lung Cancer Onset 

The anti-tumorigenic activities of vitamin D are thought to be initiated via the binding of 

1,25(OH)2D to the VDR. These mechanisms include inhibition of lung cancer cell proliferation, 

promoting apoptosis and reducing angiogenesis [92,93]. A recent in vitro study demonstrated that 

1,25(OH)2D mediated G0/G1 cell cycle arrest via downregulation of cyclins which promote entry into 

the S phase of the cell cycle [94]. 1,25(OH)2D may prevent angiogenesis by reducing the secretion  

of vascular endothelial growth factor (VEGF), which is known to induce activation, migration  

and proliferation of endothelial cells [93]. MMP-2, MMP-9 and parathyroid hormone related  

protein (PTHrP) expression and production is also reduced in lung carcinoma cells treated with 

1,25(OH)2D [93]. This may be an important mechanism since MMPs and PTHrP are also important 

factors for tumor invasion. The question is whether vitamin D only suppresses growth of established 

tumors or inhibits the development of lung cancer in the first place? A study in a mouse model of lung 

cancer found that 1,25(OH)2D supplementation decreased tumor incidence and significantly decreased 

tumor multiplicity in a dose-dependent manner [95]. 1,25(OH)2D can also inhibit metastatic growth of 

lung cancer cells in vivo [96], suggesting that maintaining adequate levels of vitamin D may prevent 

lung cancer pathogenesis. However, more clinical studies are required to determine if vitamin D can 

prevent carcinogenesis although the studies to date suggest that vitamin D status has an impact on the 

initiation of tumor growth. 
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5.2. Vitamin D and Lung Cancer Progression 

Vitamin D deficiency is associated with an increased risk of developing colon, prostate and  

breast cancer, as well as a higher mortality due to these cancers [2]. A prospective cohort study found  

that serum 25(OH)D levels were inversely associated with lung cancer incidence in women  

(RR = 0.16 95% CI 0.04, 0.59; p < 0.001) and participants less than 50 years of age (RR = 0.34 95% 

CI 0.13, 0.90; p = 0.04), but not men (RR = 1.03 95% CI 0.59, 1.82; p = 0.81) and older participants 

(RR = 0.92 95% CI 0.50, 1.70; p = 0.79) [97]. Another prospective study of lung cancer risk in male 

smokers from Finland did not find an association between serum 25(OH)D levels and lung cancer risk, 

however a 10 nmol/L increase in serum 25(OH)D during the darker season was associated with a 

lower risk (OR = 0.89 95% CI 0.81, 0.98; p = 0.02) [98]. Given the high morbidity associated with 

cancer it is likely that in many instances the associations between lung cancer and vitamin D status 

may be due to a lack of sun exposure as a result of low physical activity. However, while 

epidemiological studies with lung cancer have not been entirely convincing, studies using animal 

models have found that vitamin D-deficient mice [99] and VDR knockout mice [100,101] have 

enhanced tumor growth in many tumor types including lung cancer [96]. 1,25(OH)2D has also been 

reported to have effects on cell proliferation and apoptosis and can inhibit tumor growth in colon, 

breast and prostate cells [102]. The enzyme responsible for breaking down 1,25(OH)2D, CYP24A1, is 

expressed in NSCLC cell lines, but not normal lung epithelial cells. Furthermore, several studies have 

found that expression of CYP24A1 is much higher in primary lung tumors compared with normal lung 

tissue samples, suggesting that the increased breakdown of 1,25(OH)2D may have inhibited its  

anti-proliferative effects [94,103,104]. Hansdottir et al. [105] also found reduced CYP27B1 expression 

in lung cancer derived cells compared with primary lung epithelial cells, indicating that the cancer 

cells did not convert 25(OH)D to 1,25(OH)2D. High CYP24A1 and low CYP27B1 both result in lower 

levels of 1,25(OH)2D, so, taken together, these studies suggest that low 1,25(OH)2D levels may be 

important in lung cancer progression. 

5.3. Vitamin D and Lung Cancer Mortality 

Data showing that vitamin D can inhibit lung cancer cell proliferation has prompted investigations 

into the link between vitamin D status and lung cancer mortality. Data from the NHANES III study did 

not show an association between vitamin D status and overall lung cancer mortality, but did 

demonstrate that serum 25(OH)D levels less than 44 nmol/L were associated with a decreased risk of 

mortality in non-smokers (HR = 0.53 95% CI 0.31, 0.92) [106]. Studies in early stage NSCLC patients 

found that increased UVB exposure, as determined by surgical resections during summer, and higher 

vitamin D intake [107], as well as high circulating 25(OH)D serum levels resulted in improved 

survival [108]. Another Turkish study also demonstrated similar findings of shorter survival in NSCLC 

patients who underwent resection in winter compared to those operated on in summer [109]. Despite 

not measuring the vitamin D status of patients, the authors report that a polymorphism in the VDR 

gene was an independent prognostic indicator in resected NSCLC patients. Heist et al. [110] also 

reported that having the T allele of the VDR > Fok1 > T polymorphism was associated with worse 

survival, but vitamin D status had no effect on survival in patients who had advanced NSCLC. High 
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nuclear VDR expression was also associated with improved overall survival in NSCLC patients 

(adjusted HR = 0.36 95% CI 0.17, 0.79; p = 0.011) [111], while overexpression of CYP24A1 resulted 

in poorer survival (HR = 2.1 95% CI 1.14, 3.75; p = 0.001) [104]. A recent study has also 

demonstrated that VDBP expression is low in lung cancer tissue and low circulating VDBP was a 

predictor of subsequent death from lung cancer in patients [112], indicating that VDBP is also an 

important independent factor in determining better survival outcomes in lung cancer patients. 

6. Conclusions 

The growing prevalence of vitamin D deficiency around the globe is a significant public health 

concern. Based on the weight of evidence to date it is clear that vitamin D is important in lung disease. 

In moving forward to address this problem it is important that we understand this association better in 

order to identify (1) the minimum (and maximum) vitamin D levels required for normal lung growth, 

development and immune function and (2) when to intervene if necessary. To that end, we need a 

thorough understanding of the importance of vitamin D in determining the onset of disease, 

progression of disease and, in the case of asthma and COPD, the exacerbation of disease. To date the 

bulk of the studies have focused on associations between an individual’s current vitamin D and disease 

status which is not sufficient to adequately inform public health policy in order to ameliorate the 

vitamin D deficiency induced burden of respiratory disease in the community. 
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