Supplementary Materials: Alternative Splicing of the Aflatoxin-Associated Baeyer-Villiger Monooxygenase from Aspergillus flavus: Characterisation of MoxY Isoforms

Carmien Tolmie, Martha S. Smit and Diederik J. Opperman

Figure S1. SDS-PAGE analysis of the expression of the mox Y coding sequence in E. coli BL21-Gold(DE3). (A) Total protein fraction; (B) soluble fraction obtained by lysozyme lysis and centrifugation at $7000 \times \mathrm{g}$ for 30 $\min . \mathrm{M}$, PageRuler ${ }^{\mathrm{TM}}$ Prestained protein ladder; lane 1, pET-22b(+) empty vector control; lane 2, pET22b(+):moxY; lane 3, pET-22b(+):moxY-CTH; lane 4, pET-28b(+):moxY.

Figure S2. Alignment of the EST sequences of the moxY gene to the genomic DNA of Aspergillus flavus NRRL3357. A second intron is spliced out in about half of the EST sequences, removing the first stop codon and creating an alternative and elongated C-terminus. No EST sequence is available that covers the Nterminus to indicate the location of the true start codon. The alignment and image were generated using Geneious software version 7.1.3.

Figure S3. SDS-PAGE analysis of the (A) total protein fraction and (B) soluble protein fraction of E. coli BL21Gold(DE3) expressing the MoxY variants from the pET-28b(+) vector. M, PageRuler Prestained protein ladder; 1, pET-28b(+) empty vector control; 2, MoxY (66.5 kDa); 3, MoxYAltN (69.0 kDa); 4, MoxYAltNC (73.1 kDa); 5, MoxYAltC (70.7 kDa).

Figure S4. (A) Elution profile of MoxYAltN from the Superdex HR200 column, showing two peaks. (B) SDSPAGE analysis of the two peaks. M , molecular weight marker; lane 1, ultracentrifuged fraction, lanes 2-14, gel-filtration fractions of the two peaks showing identical profiles.

Figure S5. SDS-PAGE of the purification of MoxYAltNC. M, PageRuler Prestained protein ladder; lane 1, soluble fraction; lane 2, ultracentrifuged fraction; lane 3, pooled fractions after IMAC; lane 4, pooled fractions after anion-exchange chromatography.

Figure S6. Ketone substrate conversions evaluated by biotransformations with MoxYAltN and MoxYAltNC.

Figure S7. (A) Superimposed structures of the homology model of MoxYAltN, shown in light blue, and MoxYAltNC, shown in pink. The C-terminus of MoxYAltN is shown in medium blue and the C-terminus of MoxYAltNC is shown in magenta. (B) Superimposed structures of the homology model of MoxYAltN, shown in blue, and PAMO, shown in green. The unstructured loop near the C terminus of MoxYAltN is shown in orange, while the elongated C-terminus is shown in red. (C) \& (D) Ligplot+ analysis for the homology models of MoxYAltN and MoxYAltNC.

Figure S8. SDS-PAGE analysis of the (A) total protein fraction and (B) soluble protein fraction of E. coli BL21Gold(DE3) co-expressing the truncated mutants of MoxYAltN from the pET-28b(+) vector with the GroES/EL chaperone from the $\mathrm{pGro7}$ vector; and the (C) total protein fraction and (D) soluble protein fraction of E. coli BL21-Gold(DE3) expressing the truncated mutants of MoxYAltN from the pET-28b(+) vector. M, PageRuler Prestained protein ladder; 1, pET-28b(+) empty vector control; 2, MoxYAltN wild-type (66.5 kDa); 3, MoxYAltN_Tr501 (59.2 kDa); 4, MoxYAltN_Tr545 (64.4 kDa); 5, MoxYAltN_Tr546 (64.5 kDa); 6, MoxYAltN_Loop (69.0 kDa). The GroEL component of the GroES/EL chaperone can be seen as a band of approximately 60 kDa in gels A and B .

Table S1. Whole-cell conversions of ketone substrates by MoxYAltN and MoxYAltNC after 2 hours.

Substrate No.	Substrate	MoxYAltN	MoxYAltNC
1	Cyclopentanone	-	-
2	Cyclohexanone	-	-
3	Cycloheptanone	-	-
4	Cyclooctanone	-	-
5	Cyclododecanone	-	-
6	2-methylcyclopentanone	-	-
7	2-methylcyclohexanone	-	-
8	2-phenylcyclohexanone	+++	+
9	3-methylcyclohexanone	-	-
10	4-methylcyclohexanone	-	-
11	4-ethylcyclohexanone	-	-
12	n-propylcyclohexanone	-	-
13	2-octanone	++	+
14	3-octanone	+	+
15	2-decanone	+++	+
16	2-undecanone	+++	+
17	2-dodecanone	++	+
18	Acetophenone	-	-
19	4-hydroxyacetophenone	-	-
20	Phenylacetone	+++	+
21	4-phenyl-2-butanone	+++	+
22	4-(4-hydroxyphenyl)-2-butanone	++	+
23	4-(4-methoxyphenyl)-2-butanone	-	-
24	1-indanone	-	-
25	thioanisole	-	-

$+++: \geq 15 \%$ conversion, $++:=5-15 \%$ conversion, $+: \leq 5 \%$ conversion, $-:=$ no conversion.

Table S2. GC programs for the analysis of biotransformations of ketone substrates using a Finnigan TRACE GC Ultra (Thermo Fisher Scientific) equipped with a FactorFour ${ }^{\mathrm{TM}}$ VF- 5 ms column ($60 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25$ $\mu \mathrm{m}$, Agilent Technologies, coupled to a Mass Spectrometer (MS). Substrates shown in bold were converted by MoxYAltN and MoxYAltNC.

Compound	Program ${ }^{\text {[a] }}$	Retention time (min) Substrates	Retention time (min) Products ${ }^{[b]}$
Cyclopentanone	80/2/15/185/0	1.92	6.03
Cyclohexanone	60/1/10/110/4/25/200/2	2.82	6.2
Cycloheptanone	60/1/10/110/4/25/200/2	3.82	4.56
Cyclooctanone	60/1/10/110/4/25/200/2	5.05	5.2
Cyclododecanone	80/2/15/250/0	8.92	
2-methylcyclopentanone	80/2/15/250/0	2.01	4.67(D) 4.71 (P)
2- methylcyclohexanone	60/1/10/110/4/25/200/2	3.47	6.83 (D) 6.90 (P)
2-phenylcyclohexanone	80/2/8/140/0/15/220/2	14.25	15.57
3-methylcyclohexanone	60/1/10/110/4/25/200/2	3.53	7.20 (D) 7.35 (P)
4-methylcyclohexanone	60/1/10/110/4/25/200/2	3.6	7.46
4-ethylcyclohexanone	60/1/10/110/4/25/200/2	5.16	10.62
n-propylcyclohexanone	60/1/10/110/4/25/200/2	6.66	12.01
2-octanone	80/2/15/250	4.28	4.21 (P)
3-octanone	80/2/15/250	4.23	4.35 (D) 4.42 (P)
2-decanone	80/2/15/250	6.51	6.65 (P) 6.73 (D)
2-undecanone	80/2/15/250	7.54	7.66 (P) 7.74 (D)
2-dodecanone	80/2/15/250	8.49	8.58 (P) 8.72 (D)
Acetophenone	60/2/8/140/0/15/220/2	11.65	10.62
Phenylacetone	80/2/8/140/0/15/220/2	7.17	7.75
4-phenyl-2-butanone	80/2/8/140/0/15/220/2	9.25	9.39
4-(4-hydroxyphenyl-2butanone)	60/15/5/160/25/250/2	24.56	24.67
4-(4-methoxyphenyl-2butanone)	80/2/8/140/0/15/220/2	12.91	12.99
1-indanone	60/2/5/165/0	12.85	15.57
$\begin{aligned} & \text { rac-bicyclo[3.2.0]hept-2-en- } \\ & \text { 6-one } \end{aligned}$	80/2/15/260/5	3.85	6.56 (D) 6.58 (P)
Thioanisole	60/2/8/140/0/15/220/2	6.52	$10.83,11.85$ [c]

${ }^{[a]}$ Initial temp $\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) /$ slope $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ temperature $\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) /$ slope $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ temperature $\left({ }^{\circ} \mathrm{C}\right) /$ time $),{ }^{[\mathrm{bl}} \mathrm{P}=$ proximal product, $\mathrm{D}=$ distal product, ${ }^{[\mathrm{cc}}$ Sulfoxide, sulfone.

Table S3. GC program for the separation of rac-bicyclo[3.2.0]hept-2-en-6-one and products extracted from whole-cell biotransformations. A Finnigan TRACE GC Ultra (Thermo Scientific) equipped with an Astec CHIRALDEX ${ }^{\mathrm{TM}}$ G-TA column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.12 \mu \mathrm{~m}$, Sigma Aldrich) was used and compounds were detected by FID. Retention times for the substrates and products are indicated.

Program ${ }^{\text {[a] }}$	Retention time (min)	Compound	
80/7/10/125/15/15/160/1	6.7	$\begin{gathered} (-)-(1 S, 5 R) \text {-bicyclo[3.2.0]hept-2-en-6- } \\ \text { one } \end{gathered}$	
	7.3	$\begin{aligned} & (+)-(1 R, 5 S) \text {-bicyclo[3.2.0]hept-2-en-6- } \\ & \text { one } \end{aligned}$	
	21.7	$\begin{gathered} (-)-(1 R, 5 S)-3 \text {-oxabicyclo[3.3.0]oct-6- } \\ \text { en-2-one } \end{gathered}$	
	22.5	$\begin{gathered} (+)-(1 R, 5 S)-2 \text {-oxabicyclo[3.3.0]oct-6- } \\ \text { en-3-one } \end{gathered}$	
	24.4	$\begin{gathered} (-)-(1 S, 5 R)-2 \text {-oxabicyclo[3.3.0]oct-6- } \\ \text { en-3-one } \end{gathered}$	
	25.0	$\begin{gathered} (+)-(1 S, 5 R)-3 \text {-oxabicyclo[3.3.0]oct-6- } \\ \text { en-2-one } \end{gathered}$	

${ }^{[a]}$ Initial temp $\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) /$ slope $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ temperature $\left({ }^{\circ} \mathrm{C}\right) /$ time $(\mathrm{min}) /$ slope $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) /$ temperature $\left({ }^{\circ} \mathrm{C}\right) /$ time.

Table S4. Primer sequences to create C-terminally truncated variants of MoxYAltN at residues 501, 545 and 546, and excision of a loop located at positions 526-541.

Primer	Sequence	Annealing Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\frac{\text { Truncation of C-terminus: }}{\text { MoxY_TrpET28_F }}$	TAG CTC GAG CAC CAC CAC CAC CAC C	
MoxY_Tr545_R	CTG GAT TGT CCA GCC CAT GCC CAG G	66.4
MoxY_Tr501_R	CCG ACC CGT CTC GTT GTT CTT GTA CC	65.8
MoxY_Tr546_R	GTC CTG GAT TGT CCA GCC CAT GCC C	62.7
Excision of C-terminal loop:		65.7
MoxY_Loop_G541_F	GGC TGG ACA ATC CAG GAC CGC AAA G	64.0
MoxY_Loop_A526_R	GTC GAA GTC TTC GTA GCG AGG CTG GTC	63.8

