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Abstract: Mycotoxins, which are toxic, carcinogenic, and/or teratogenic, have posed a threat to food
safety and public health. Sensitive and effective determination technologies for mycotoxin surveillance
are required. Immunoassays have been regarded as useful supplements to chromatographic
techniques. However, conventional antibodies involved in immunoassays are difficult to be expressed
recombinantly and are susceptible to harsh environments. Nanobodies (or VHH antibodies) are
antigen-binding sites of the heavy-chain antibodies produced from Camelidae. They are found to be
expressed easily in prokaryotic or eukaryotic expression systems, more robust in extreme conditions,
and facile to be used as surrogates for artificial antigens. These properties make them the promising
and environmentally friendly immunoreagents in the next generation of immunoassays. This review
briefly describes the latest developments in the area of nanobodies used in mycotoxin detection.
Moreover, by integrating the introduction of the principle of nanobodies production and the critical
assessment of their performance, this paper also proposes the prospect of nanobodies in the field of
food safety in the foreseeable future.

Keywords: Nanobody; Mycotoxins; Immunoassay; Food safety

Key Contribution: This review thoroughly summarizes the advances and progress of nanobody
technology applied to detection of mycotoxin contamination in agricultural products. It reviews the
critical control points of nanobody production; evaluates their performance in mycotoxin detection;
and discusses the prospects of nanobody technology in the future.

1. Introduction

Mycotoxins are toxic metabolites produced by fungal species that have adverse effects on humans,
animals, and crops, resulting in significant medical costs caused by mycotoxin-based diseases and
large economic losses in international trade [1]. Aflatoxins (AFs), ochratoxins (OTs), zearelenone
(ZEN), fumonisins (FBs), deoxynivalenol (DON), and other trichothecenes are the major mycotoxins
of greatest agro-economic importance [2]. In light of the wide spread of mycotoxins, many countries
set action regulations for mycotoxins in various food and foodstuff. Increasingly sensitive and
effective determination technologies for mycotoxins surveillance are required. Table 1 displays some
predominant mycotoxins and their major fungal producers, contaminated hosts, toxic effects [3], and
their maximum permitted levels in foods according to European legislation.
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There have been many efforts related to mycotoxin determination, typically using high-
performance liquid chromatography (HPLC) [4], liquid chromatography-tandem mass spectrometry
(LC-MS/MS) [5], and immunoassays [6,7]. Among these methods, immunoassays have been regarded
as useful supplements to chromatographic techniques due to their merits in sensitivity, specificity, and
low cost [8]. Large molecules can be easily determined by a sandwich-format immunoassay [9,10].
Small analytes, such as mycotoxins, are not large enough to be simultaneously recognized by
two antibodies, so the competitive immunoassay formats are normally used, which need a hapten to
compete with the target analyte for binding to the antibody [11].

Table 1. The major fungal producers, hosts, toxic effects of mycotoxins, and their maximum permitted
levels in food according to European legislation.

Mycotoxins Major Producers Major Host Toxin Effects Maximum Level

Aflatoxins (AFB1,
AFB2, AFG1,

AFG2)

Aspergillus flavus,
A. parasiticus

maize, nuts,
cottonseed,

peanuts

hepatotoxicity, cancer,
immunosuppression

8.0 µg/kg (AFB1);
15 µg/kg (total aflatoxins)
(Commission Regulation,

EU No. 165/2010) [12]

Fumonisins
(FB1,FB2)

Fusarium
verticillioides,
F. proliferatum

maize

hepatotoxicity,
cancer,

pulmonary edema,
leukoencephalomalacia

4000 µg/kg in maize;
1000 µg/kg in maize-based foods

(EC No. 1126/2007) [13]

Deoxynivalenol
(DON)

F.graminearum,
F. culmorum

maize, wheat,
barley

gastrointestinal toxicity,
inflammation of central

nervous system

1250 µg/kg in cereals
(EC No. 1126/2007)

Zearalenone
(ZEN)

F. culmorum,
F.graminearum

maize, barley,
wheat, rice

infertility,
abortion

350 µg/kg in maize;
100 µg/kg in other cereals

(EC No. 1126/2007)

OchratoxinA
(OTA)

Penicillium
verrucosum,
A.ochraceus

cereal-derived
products,

spices, wine

nephrotoxic, carcinogenic,
teratogenic, immunotoxic

effects

5.0 µg/kg in maize
(EC No. 1881/2006)

Citrinin (CIT)

P.citrinum,
P. verruscosum,

P.expansum,
A.terreus,

Monascus ruber

corn, wheat,
barley, rice

nephrotoxic, hepatotoxic,
immunotoxic, carcinogenic

effects

2000 µg/kg
(EU No. 212/2014) [14]

A large number of antibodies against mycotoxins have been developed, including polyclonal
antibodies (pAbs) [15,16], monoclonal antibodies (mAbs) [17,18], and recombinant antibodies
(rAbs) [19,20]. Since heavy-chain-only antibodies (HcAbs) that are naturally devoid of light chain and
lacking the CH1 domains were first discovered in the serum of the camel (Camelus dromedarius) [21],
camelid antibodies have gained increasing attention due to their convenience in biotechnological
applications. While conventional mAbs and pAbs are composed of two heavy and two light chains
with variable domains of heavy chain (VH) and light chain (VL) contributing to form a paratope of the
antibody, the camelid HcAbs are composed of only heavy chains, of which the antigen-binding sites
are formed only by the variable domain of the heavy chain (VHH) [22]. These VHHs can be expressed
recombinantly and have been termed VHH antibodies, or single domain antibodies (sdAbs) [23].
Due to the nanometer-scale size (4 nm × 2.5 nm × 3 nm) of the VHH antibodies, they are also referred
to as nanobodies (Nbs) by a biopharmaceutical company, Belgium Ablynx [24]. The representative
structures of conventional antibody and nanobody derived from camelid HcAb are diagramed in
Figure 1.

Sequence analysis and elucidation of the crystal structure have revealed several structural features
of Nb fragments. The single domain nature of Nbs provides many advantages over conventional
antibodies and other recombinant antibody fragments such as antigen-binding fragment (Fab), variable
fragment (Fv), and single-chain variable fragment (scFv) [25–27]. The most characteristic feature of
Nbs is the presence of amino acid substitutions in the framework-two region (FR2), making Nbs
more soluble than conventional antibody fragments [28]. The extended flexible complementarity-
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determining region 3 (CDR3) makes Nbs capable of recognizing antigenic sites that are normally
inaccessible or cryptic for pAbs and mAbs such as enzyme active sites and cryptic viral epitopes [29,30].
In particular, their small size (12~15 kDa), ease of cloning and expressing in various expression
systems, high solubility and stability, resistance to proteolysis, and facile genetic manipulation, make
Nbs an excellent alternative to producing immunoreagents for immunoassays [31]. For example,
Nbs can be used in biosensors with higher immobilizing densities [32], used for affinity purification
medication [33], used in the design of anti-idiotypic antibodies [34] and as modular building units for
multivalent or multifunctional constructs [35].
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Figure 1. Schematic representation of a (A) conventional antibody (IgG) and (B) heavy chain camelid
antibody. The isolated variable domain of the latter is called nanobody.

Nanobody technology has been initially applied in diagnostic and therapeutic areas [36–38].
To date, most reported biotechnological applications of Nbs refer to proteins or other macromolecular
antigens, while rare reports are related to Nbs used against small hapten (molecular weight below
1500 Da) for the reason of the sensitivities of most assays at the µM range that are somewhat unfavorable
for practical application [39–42]. However, a growing number of studies have demonstrated that
highly-sensitive Nbs maybe successfully isolated by sophisticated design of the selection procedure
from the small subpopulation of high-affinity Nbs pool. There have been some successful examples
regarding the use of Nbs to effectively recognize small molecules. Those compounds, such as the
mycotoxins AFB1, OTA, and 15-acetyl-DON, and some environmental contaminants, were reviewed
by Bever et al. [43].

Recently, there have been various forms of Nbs used in mycotoxin immunodetections. In addition
to the hapten-specific Nbs commonly used as primary antibodies involved in immunoassay,
anti-idiotypic Nbs (AI-Nbs), which are generated from mAbs-immunized camelid and which
are capable of targeting the antigenic determinants of the primary antibodies, can be used for
immunoassays as surrogates for competing antigens and can significantly improve the sensitivity
of the assays [44]. For many analytical and diagnostic applications, Nbs have been directly used as
phage-borne antibody fragments, relying on the multiple copies of M13 phage particles to increase
the assay sensitivity [45]. Likewise, the phage DNA can be used for ultrasensitive detection of the
phage-borne antibody by utilizing a combination of real-time polymerase chain reaction (RT-PCR) in
different immunoassay formats, which widens the dynamic range of the assay by several orders of
magnitude [46,47].

Considering the predominant traits of Nbs, they could meet the field-testing requirement of
reagents with greatly enhanced stability for analytical methods and become promising alternative
immunoreagents for mycotoxin detection. However, few reviews have provided detailed summaries
of the development of the Nb-based immunoassays utilized for mycotoxin determination. This review
focuses on the introduction of Nb technology for mycotoxin detection in the field of food safety and
refers to recently reported studies, integrating the introduction of the principle of Nb development
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and providing a detailed description of their performance. This paper also proposes the prospect of
Nbs in the area of analytical chemistry in the foreseeable future.

2. Principle of Developing Chemical-Specific Nb

Recombinant antibody techniques were used to create phage-displayed Nb libraries. To take
advantage of the exquisite in vivo antibody-affinity maturation process, animals are often immunized
prior to antibody isolation. It was noted that immune libraries lead more directly to anti-hapten
Nbs with higher affinity and sensitivity than that of nonimmune libraries [43], although a few Nbs
against small molecules (e.g., picloram [39] and auxin [40]) and AI-Nbs have been selected from native
library [48–50].

Members of the Camelid family, including dromedary, llamas, and alpaca, are easily immunized
following standard procedures [51]. Small haptens are compounds with low molecular weight and
low immunogenic, customarily conjugated to a carrier protein (e.g., bovine serum albumin, BSA;
ovalbumin, OVA; keyhole limpet hemocyanin, KLH, etc.) to induce an immune response. After
immunization with weekly boosts, the total RNA is extracted from peripheral blood lymphocytes
isolated from whole blood, and its cDNA synthesized using reverse transcriptase techniques [52].
The Nb-encoding fragments from IgG2 and IgG3-a subset of IgG antibodies lacking light chains
are amplified and cloned into M13 phagemid vector to construct the phage-displayed Nb library.
The resulting phage-Nb library can be used for panning target-specific binders.

The panning strategy of improving selection pressure has been proved to be valid in isolating
positive phage-Nb clones with favorable affinity and sensitivity [53–55]. Non-specific phage-Nbs
were minimized by increasingly stringent washings and desorption of phage input/output to the
carrier protein. Moreover, blocking reagents should be switched alternatively in each panning process
which is beneficial to minimize the nonspecific absorption. There are two regular methods for the
elution of phage binding to the immobilized target in the process of biopanning. One is polar elution
(for example, 0.2 M glycine-HCl pH 2.2; or 0.1 M triethylamine pH 11.0 for elution of phage-Nb),
which is frequently used for a isolation of Nbs against large molecular antigens or in the case of lack
free competitors [48,56]. The other is competitive elution, which is mostly applied to a selection of Nbs
for small molecules, such as mycotoxins and chemical contaminants [53,55,57]. The construction of
phage-displayed Nb library and the strategy of panning used to isolate high-affinity Nbs are shown in
Figure 2.
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Figure 2. Schematic representation of the construction of phage-displayed nanobody library and the
strategy of panning for the high-affinity Nbs isolation.

Recently, a novel high-throughput screening strategy, “off-rate selection,” was proposed by
Pírez-schirme et al. [58]. Nb specific to cyanotoxin microcystin-LR (995 Da) was obtained by promoting
the isolation with the slowest koff for the immobilized hapten and exhibited higher sensitivity than
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Nbs selected by other two regular panning methods. This approach provides an alternative to improve
the probability of positive anti-hapten Nb selection.

3. Performance of Nbs in the Field of Chemical Analysis

3.1. Affinity (Sensitivity)

Affinity is the binding strength between an antigenic determinant and anantigen-binding site.
Early studies mostly described low-affinity Nbs [59,60]. These results are not surprising, because the
overall anti-hapten sdAbs response found in Camelide are observed to be modest. It may result from
only a single variable domain of sdAb contributing to form the antigen binding site, which limits
the contact between the antibody and antigen, whereas conventional antibodies appear to have a
relatively two-dimensional shape [61]. Table 2 provides Nb assay sensitivities (represented by 50%
inhibitory concentration, IC50) and, when possible, provides mAb or pAb-based assay sensitivities to
the equivalent mycotoxin. The AFB1 and OTA detection were conducted by the method of indirect
competitive enzyme-linked immunosorbent assay (icELISA) based on either Nb or conventional
antibodies. As for 15-acetyl-DON determination, Nb-based competitive fluorescence polarization
assay was developed and compared the sensitivity with mAb/pAb-based direct competitive ELISA
(dcELISA). It was noted that Nbs have similar sensitivity in comparison with the conventional
antibodies. In some cases, such as Nb against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47, molecular
weight 485.79 Da) [62], the sensitivity of Nb-based icELISA (IC50 = 1.4 ng/mL) is even higher
than that of mAb (IC50 = 1.75 ng/mL) [63]. In another study, Nb against tetrabromobisphenol-A
(TBBPA, molecular weight 543.9 Da) [57], also exhibits higher sensitivity (IC50 = 0.4 ng/mL) by
means of the icELISA method, compared with that of mAb (IC50 = 3.87 ng/mL) [64] and pAb
(IC50 = 0.87 ng/mL) [65].

Table 2. Nbs to mycotoxins to date and comparison of sensitivities to monoclonal antibodies and
polyclonal antibodies.

Mycotoxin Antibody Assay Format Sensitivity, IC50

AFB1 Nb icELISA [55] 0.754 ng/mL
mAb icELISA [17] 0.0002 ng/mL
pAb icELISA [66] 2.0 ng/mL

OTA Nb icELISA [67] 0.64 ng/mL
mAb icELISA [68] 0.058 ng/mL
pAb icELISA [69] 5.0 ng/mL

15-acetyl-DON Nb fluorescence polarization [59] 419 ng/mL
mAb dcELISA [70] 1000 ng/mL
pAb dcELISA [71] 1.9 ng/mL

3.2. Selectivity

Nbs show high selectivity to macromolecular targets, especially as enzyme inhibitors due to
their unique protruding CDR3, and show better selectivity toward closely related enzymes than
conventional antibodies whose antigen-binding site is typically concave or flat and more likely to
recognize the surface of the targets [72]. As for small haptens, it seems that no obvious difference
between Nbs and conventional antibodies in terms of specificity, especially in recognizing antigens
with structural analogues. The cross-reactivity of immunoassays is of usual occurrence, which is a
common issue of both conventional antibodies and recombinant antibodies [60]. It was reported that
the chance of selecting specific antibodies secreted from B cells mostly depends on the particular
design of the immunized antigen, immunized dose, the ratio of the hapten and carrier protein and the
spacer-arm lengths between the hapten and carrier protein [73–76]. However, it is feasible to produce
specific Nbs towards a group of chemical analytes, such as Nb specific for OTA and its analogue, OTB,
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but no significant cross-reactivity for L-phenylalanine and coumarin, which have structural similarities
with parts of OTA [77].

3.3. Stability

The stability of reagents is usually a key factor when developing immunoassay products.
The reagents with a long shelf-life and high stability are always preferred. It has been reported that Nbs
show greater resistance to heat than conventional antibodies and are thus more suitable to be applied
as immunoreagents [44]. The main distinction between the Nb fragments and conventional antibody
fragments is the reversibility of the thermal unfolding process, explaining its retained functionality
after exposure to high temperatures [78]. Nbs have also been observed with high stability to organic
solvents, which is beneficial for developing immunoassays to be used for the analysis of lipophilic
analytes, such as mycotoxins and pesticides. Since the water-miscible solvents are commonly used for
extraction of analytes prior to analysis, less dilution of the extracts is needed if the matrix effects for
solvent extracts are negligible, enhancing the assay’s sensitivity. He et al. [55] estimated the solvent
stability of Nbs against AFB1 with methanol, dimethylsulfoxide (DMSO), dimethylformamide (DMF),
acetone, and acetonitrile. By comparison of the performance of mAb against AFB1, the results showed
that Nbs displayed a higher stability to methanol, acetone, and acetonitrile than that of mAb.

3.4. Solubility

The single domain nature of Nbs leads them to facile single gene clone and easy to be expressed in
soluble form in various expression systems, including bacteria, fungi, mammalian cell lines, plants, and
insects [79]. The Nbs are naturally soluble because of the substitutions of hydrophobic by hydrophilic
residues in the FR2. In addition, the absence of a linker peptide prone to aggregation or susceptible
to proteolysis (e.g., as observed for scFv), promotes the solubility of Nb, even at concentrations
above 10 mg/mL [80]. The majority of Nbs has been produced in E. coli, either periplasmically
or cytoplasmically. Periplasmic Nbs production yields typically range from 1 to 10 mg/L while
cytoplasmic Nbs production yields can reach 60–200 mg/L [79]. The E. coli strain containing Nb gene
is feasible for reproduction and purification of soluble Nbs in shake flask cultures without immunizing
animals, which is needed in mAbs and pAbs reproduction from host animals. The high solubility
and high accumulation levels of Nbs make them ideal immunoreagents for the large-scale production
in industry.

An overview of the Nbs presented within this review together with their targets, functional types,
involved immunoassays and their performance are tabulated in Table 3.
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Table 3. Some applications and the performance of Nbs used for mycotoxin detection.

Targets (MW). NB TYPE Assay Formats, (Ref.) Sensitivity, IC50; Linear
Range, IC20–IC80; LOD, IC10

Specificity (CR) Thermal Stability Solvent/Matrix Stability

OTA (403.813) Anti-hapten Nb icELISA [67]
IC50: 0.64 ng/mL;

LR: 0.27–1.47 ng/mL;
LOD: 0.16 ng/mL

not tested

95 ◦C for 5min, retained>45% of
binding activity;

90 ◦C for 75 min, retained>25%of
binding activity

dilution factor ×2.5 eliminate
the matrix interference

Nb-AP dcELISA [81]
IC50: 0.13 ng/mL;

LR: 0.06–0.43 ng/mL;
LOD: 0.04 ng/mL,

CR: <0.1% with OTB, ZEN, DON,
and AFB1

not tested Susceptive to methanol, ionic
strength and low pH (≤6.0)

phage-Nb Nb-IPCR [82] LR: 10−5–1.0 ng/mL;
LOD: 3.7 × 10−6 ng/mL;

CR: 3.5% with OTB;
<0.1% with FB1, ZEN, DON, and AFB1

not tested not tested

phage-AI-Nb AI-Nb-IPCR [47] LR: 0.01–10 ng/mL;
LOD: 0.004 ng/mL

CR: <0.1% with FB1, ZEN, DON,
and AFB1

not tested susceptive to methanol
over 10%

AFB1 (312.27) Anti-hapten Nb icELISA [55]
IC50: 0.754 ng/mL;

LR: 0.117–5.676 ng/mL;
LOD: 0.05 ng/mL

CR: <10% with AFB2, AFG1, and AFG2
85 ◦C for 60 min, retained>40%

of binding activity
stable in 40% methanol and

40% acetone

phage-AI-Nb AI-Nb-IPCR [83] LOD: 0.02 ng/mL CR: >50% with AFB2 and AFG1; 13.5%
with AFG2

not tested susceptive to methanol
over 10%

AI-Nb AI-ELISA [34]
IC50: 0.16 ng/mL;

LR: 0.09–0.82 ng/mL;
LOD: 0.06 ng/mL

CR: >50% with AFB2 and AFG1;
>30% with AFG2 and AFM1

80 ◦C for 60 min, retained
>20% of bindingactivity stable in methanol below 40%

AI-Nb TRFICA [84]
IC50: 0.46 ng/mL;

LR: 0.13–4.54 ng/mL;
LOD: 0.05 ng/mL

CR: >50% with AFB2 and AFG1; 31.1%
with AFG2; 19.4% with AFM1

not tested not tested

ZEN (318.37) phage-AI-Nb AI-Nb-IPCR [46] LR: 0.01–10 ng/mL;
LOD: 0.0065 ng/mL CR: <0.1% with AFB1, DON, and OTA not tested susceptive to methanol

over 5%

AI-Nb TRFICA [84]
IC50: 0.86 ng/mL;

LR: 0.20–2.77 ng/mL;
LOD: 0.07 ng/mL;

CR: 78.1% with β-zearalenol not tested not tested

15-acetyl-DON
(338.35) Anti-hapten Nb fluorescence

polarization [59]
IC50: 419.5 ng/mL (monomer)

167.175 ng/mL (pentamer)
CR: <0.1% with neosolaniol,

diacetoxyscirpenol, and T-2 toxin not tested not tested

DON (296.32) AI-Nb AI-ELISA [48]
IC50: 8.77 ng/mL;

LR: 2.18–62.25 ng/mL;
LOD: 1.16 ng/mL

CR: <0.1% with FB1, ZEN, AFB1,
and OTA

95 ◦C for 5 min, retained>60% of
binding activity not tested

phage-AI-Nb AI-PELISA [85] IC50: 24.49 ng/mL;
LR: 9.51–180.15 ng/mL

CR: <0.1%with FB1, ZEN, AFB1,
and OTA

95 ◦C for 5 min, retained>55% of
binding activity

stable in ionic strength below
50 mM and pH between 5.0

and 8.0
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Table 3. Cont.

Targets (MW). NB TYPE Assay Formats, (Ref.) Sensitivity, IC50; Linear
Range, IC20–IC80; LOD, IC10

Specificity (CR) Thermal Stability Solvent/Matrix Stability

FB1 (721.84) AI-Nb AI-ELISA [49]
IC50: 0.95 ng/mL;

LR: 0.27–5.92 ng/mL;
LOD: 0.15 ng/mL

CR: 4.93% with FB2 not tested
stable in ionic strength below
50 mM and pH between 5.0

and 8.0

CIT (250.25) AI-Nb AI-ELISA [50] IC50: 44.6 ng/mL;
LR: 5.0–300.0 ng/mL;

CR: <0.1% with AFB1, ZEN, DON,
and OTA not tested susceptive to methanol

over 20%

phage-AI-Nb AI-PELISA [45] IC50: 10.9 ng/mL;
LR: 2.5–100.0 ng/mL

CR: <0.1% with AFB1, ZEN, DON,
and OTA not tested

stable in methanol below 25%,
ionic strength below 55 mM
and pH between 5.4 and 9.0

Abbreviations used: (1) MW, molecular weight; (2) IC50, IC20–IC80, IC10, concentrations resulting in 50, 20-80 or 10% decrease in maximum signal; (3) LR, linear range; (4) LOD, limit
of detection; (5) CR, cross-reactivity; (6) ELISA, enzyme linked immunosorbent assay; (7) ic-ELISA, indirect competitive ELISA; (8) dc-ELISA, direct competitive ELISA; (9) Nb-IPCR,
Nb-based phage displayed immune PCR; (10) AI-Nb-IPCR, anti-idiotypic Nb based phage displayed immune PCR; (11) AI-ELISA, anti-idiotypic Nb based ELISA; (12) AI-PELISA,
anti-idiotypic Nb-based phage ELISA; (13) TRFICA, time-resolved fluorescence immunochromatographic assay; (14) Nb-AP, Nb-alkaline phosphatase fusion protein; (15) phage-Nb,
phage-displayed Nb; (16) phage-AI-Nb, phage-displayed anti-idiotypic Nb. * units converted to ng/mL from initial publication.
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4. Application of Nbs in the Area of Mycotoxin Detection

In spite of the unfavorable camelid immune response against small haptens, high-affinity Nbs
to a diverse of targets have been generated and utilized to develop highly sensitive immunoassays
for mycotoxin detection. Those methods, including Nb-based icELISA, one-step dcELISA based on
Nb-alkaline phosphatase (AP) fusion protein, AI-Nb-based ELISA (AI-ELISA) and phage-Nb combined
with immune-PCR. Some other exquisite designed immunoassays, such as Nb-based fluorescence
polarization immunoassay and immunochromatographic assay, were also proved to be feasible, which
widens the Nb application in mycotoxin detection in the area of food quality control.

4.1. Competitive Enzyme-Linked Immunosorbent Aassay

There are two normal types of competitive ELISA, indirect and direct competitive assay, applied
in small chemical determination. Figure 3 displays the main forms of Nb-based competitive ELISA.
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use second antibody and have one less step than the indirect assays. (A) Nb-based icELISA;
(B) anti-idiotypic Nb-based icELISA, AI-ELISA; (C) Nb-based dcELISA; (D) anti-idiotypic Nb-based
dcELISA, AI-dcELISA.

Anti-hapten Nbs can be used as affinity reagents in immune recognition and to construct a
Nb-based icELISA (Figure 3A). Liu et al. [67] raised positive Nb against OTA and developed a sensitive
Nb-based icELISA. The assay showed high resistance to cereal matrix interference and was applied
to OTA-contaminated cereal samples determination. He et al. [55] developed an icELISA based on
Nb for the analysis of AFB1, in which Nb also showed high stability under organic solvents and
high temperature. The recovery of the assay was acceptable for the quantitative analysis of AFB1 in
agro-product samples without dilution of extracted samples.

With the feasibility of genetic manipulation, Nb can be easily combined with alkaline phosphatase
(Nb-AP) as fusion protein for direct colorimetric detection and construct the dcELISA (Figure 3C),
which can avoid the chemical conjugation of a second enzyme and reduce the reaction step without
altering sensitivity. Liu et al. [81] developed dcELISA based on a Nb-AP fusion protein for monitoring
OTA contamination in cereal. The IC50 of the assay was 0.13 ng/mL, which increased 5-fold
compared to Nb-based icELISA. Moreover, the detection limit and linear range were 0.04 ng/mL and
0.06-0.43 ng/mL, respectively. Shu et al. [49] developed a green and rapid one-step competitive enzyme
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immunoassay based on an AI-Nb and AP as fusion protein for FB1 detection in cereal (Figure 3D).
The sensitivity of one-step dcELISA was 9-fold higher than two-step icELISA when the same isolated
AI-Nb was involved in two types of ELISA.

4.2. Anti-Idiotypic Nb-based ELISA

Anti-idiotypic antibodies are novel antigens and generated according to primary antibodies,
giving rise to humoral immune responses in syngeneic or xenogeneic systems [86]. The second antibody
targets the antigenic determinants of the primary antibody, which can replace the conventional
hapten-protein conjugates of small molecules, serving the same function in the competitive
immunoassay. The Nbs against primary antibodies can be used as anti-idiotypic antibodies and
work as non-toxic candidates for competing antigens in immunoassays [87] (Figure 3B).

Wang et al. [34] isolated AI-Nb from anti-aflatoxin mAb immunized alpaca library and then
applied to immunoassay (AI-ELISA) toward aflatoxin detection as a coating antigen. The best
immunoassay developed with the AI-Nb showed an IC50 value of 0.16 ng/mL toward AFB1 and
cross-reactivity toward aflatoxin B2, G1, G2, and M1 of 90.4%, 54.4%, 37.7%, and 37.4%, respectively.
The AI-ELISA was successfully applied to the aflatoxin analysis of peanuts, corn, and rice. The final
assay has a good sensitivity and can be used to detect AFB1 in agro-products. The newly developed
assay avoids the use of an aflatoxin standard in the synthesis of a hapten-protein conjugate as a coating
antigen, which was replaced by an AI-Nb.

Xu et al. [45,50] developed a simple and straightforward strategy to isolate AI-Nb as a CIT
mimotope from a naive phage display Nb library. The obtained AI-Nb was successfully used as
a competing antigen in establishing AI-ELISA and phage ELISA (AI-PELISA) for detection of CIT.
The AI-ELISA exhibited dynamic linear detection of CIT from 5.0 to 300.0 ng/mL, with an IC50 value
of 44.6 ng/mL, which was twice as good as that of icELISA (IC50 = 96.2 ng/mL) with CIT-OVA as a
coating antigen. The AI-PELISA performed dynamic linear range from 2.5 ng/mL to 100.0 ng/mL
with an IC50 value of 10.9 ng/mL, which was 9 times more sensitive than conventional CIT-OVA
conjugates-based icELISA.

Qiu et al. [48] selected AI-Nb, N-28, which bind to anti-DON mAb from a naive phage display
library and developed an AI-ELISA for sensitive detection of DON in cereals and feedstuffs. The IC50

value of the immunoassay developed was 8.77 ng/mL, which was 18-fold more sensitive than the
conventional coating antigen (DON-BSA) based immunoassay. In addition, the interaction mechanism
between isolated AI-Nb and anti-DON mAb was characterized and validated by molecular modeling
and alanine-scanning mutagenesis. The results showed that hydrogen bond and hydrophobic
interaction may contribute to their binding. Then, Qiu et al. [85] conducted site-saturation mutagenesis
at five residues of N-28 and constructed a mutant phage display library. The AI-PELISA based on the
best mutant N-28-T102Y was established and the IC50 value of the assay (IC50 = 24.49 ng/mL) was
3.2 times more sensitive than the wide-type N-28-based AI-PELISA (IC50 = 78.82 ng/mL). The linear
range of the assay was 9.51–180.15 ng/mL. The established AI-PELISA was applied into DON detection
in wheat, corn and feedstuff samples with good recovery values and the results of the real sample
detection by AI-PELISA were in agreement with commercial ELISA kit.

In another work, Shu et al. [49] made use of an anti-FB1 mAb as the target for panning FB1

substitute from a naive alpaca Nb phage display library. The isolated AI-Nb was subjected to an
AI-ELISA for the detection of FB1 contaminated in cereals and feedstuffs. The developed assay
showed an IC50 value of 0.95 ng/mL, with a limit of detection of 0.15 ng/mL, linear range of
0.27–5.92 ng/mL, and low cross-reactivity toward FB2 (4.93%). The sensitivity of AI-ELISA was
enhanced approximately 20-fold compared with that of the chemosynthetic FB1-BSA conjugates-based
ELISA (IC50 = 21.14 ng/mL). The established AI-ELISA was validated to be suitable for monitoring
the total fumonisin concentration under the current regulatory limits of fumonisins in most countries.
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4.3. Phage Display Mediated Immuno-Polymerase Chain Reaction

Phage display mediated immune-PCR (PD-IPCR) has been proved to be an ultrasensitive combined
method using immunoassay and PCR for determination of toxins and markers. The phage-Nb and phage
DNA can directly act as the detection antibody and PCR template, respectively.

There are two forms of phage-borne Nb used to construct real-time IPCR (RT-IPCR) assay, one of
which is antigen-specific Nb phage-based RT-IPCR (Nb-IPCR) and the other is AI-Nb phage-based
RT-IPCR (AI-Nb-IPCR). The former phage-Nb is able to recognize immobilized antigen and compete
with free analytes while the latter AI-Nb phage (phage-AI-Nb) against anti-hapten mAb can be used
as surrogate for competitive antigen. Both of these two types of phage-displayed Nbs (phage-Nb and
phage-AI-Nb) can be used as signal-amplification carrier with specific recombinant DNA to develop
an environmentally friendly IPCR for chemical contaminant detection in agriculture and environment.
Figure 4 shows the schematic diagram of the PD-IPCR assay format.
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Liu et al. [82] generated OTA-specific Nb from an immunized alpaca Nb library and then applied
phage-Nb to IPCR for ultrasensitive detection of OTA in cereal samples. The detection limit of the
Nb-IPCR was 3.7 pg/L (LOD = 3.7 × 10−6 ng/mL), and with a wide linear range of 0.01–1000 pg/mL
(LR: 10−5–1.0 ng/mL). The validation results indicated the reliability of Nb-IPCR in the detection of
OTA in cereal samples. This method is the most sensitive assay reported to date for the detection of
OTA and indicates that Nb-IPCR has great potential in the ultrasensitive detection of mycotoxins and
other toxic small molecular compounds.

In another study, Ji et al. [47] developed a sensitive and non-toxin quantitative AI-Nb-IPCR for
OTA based on phage-AI-Nb against anti-OTA mAb. The limit of detection of assay was 4.17 pg/mL,
which exhibited a 9-fold improvement over AI-PELISA (LOD = 300 pg/mL). Moreover, a wide linear
range (LR: 10–10,000 pg/mL) was available. The developed method was successfully validated with
OTA contaminated agro-products.

Lei et al. [83] developed AI-Nb-IPCR assay for the accurately quantitative detection of major
aflatoxins (AFB1, B2, G1 and G2) in agro-products based on phage-AI-Nb against anti-aflatoxins mAb.
The limit of detection of the established assay was 0.02 ng/mL, which was 4-fold improvement over
AI-PELISA (LOD = 0.08 ng/mL) for AFB1 detection. The developed method was successfully validated
with the samples of corn, rice, peanut, and feedstuff. Then, Wang et al. [44] also developed AI-Nb-IPCR
for ultrasensitive determination of ZEN in cereals. The limit of detection of the assay was 6.5 pg/mL,
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which was 12 times improved than that of exclusive AI-PELISA (LOD = 0.25 ng/mL), with a linear
range of 0.01–100 ng/mL. The proposed method was successfully applied for the determination of
ZEN in cereal samples.

4.4. Nb-Based Fluorescence Polarization Immunoassay

Doyle et al. [59] isolated Nb against 15-acetyl-DON from a hyper-immunized llama library,
followed by soluble expression of monomeric and pentameric Nb for application in fluorescence
polarization immunoassay. DON was conjugated with fluorescein and used as tracer. Serial dilutions
of Nb were mixed with tracer to react in the dark and followed by fluorescence polarization analysis
with excitation and emission wavelengths of 488 and 530 nm, respectively. A standard curve of
competition between DON-fluorescein and free DON was prepared using a competitive fluorescence
polarization assay. The assay inhibition with 15-acetyl-DON determined an IC50 value of 1.24 µM
(419.5 ng/mL) and 0.50 µM (167.175 ng/mL) for monomer and pentamer Nb, respectively.

4.5. Nb-based Lateral-Flow Immunoassays

Antibody-based immunochromatographic assay is widely used in rapid detection of mycotoxins
in agro-products. Tang et al. [84] developed time-resolved fluorescence immunochromatographic assay
(TRFICA) using two AI-Nbs for rapid, quantitative, and simultaneous detection of AFB1 and ZEN
in maize and its products. A novel lanthanides Eu/Tb(III) nanosphere with enhanced fluorescence
was conjugated to two anti-hapten mAbs—one is against AFB1 and the other is against ZEN—and
used as detectors. Two AI-Nbs, AFB1 surrogate and ZEN surrogate, serving as coating antigen and
immobilized on two separating test lines as capture antigens. The pattern of competitive time-resolved
strip methods (AI-Nb-TRFICA) was established and the standard carve was built. The IC50 value of
AI-Nb-TRFICA was 0.46 and 0.86 ng/mL for AFB1 and ZEN, respectively. The simultaneous detection
of dual mycotoxins by AI-Nb-TRFICA was established, which provided a quantitative relationship
ranging from 0.13 to 4.54 ng/mL for AFB1 and 0.20 to 2.77 ng/mL for ZEN, with a detection limit of
0.05 and 0.07 ng/mL in the buffer solution, respectively. The assay showed good recoveries in samples
and was applied to detect dual mycotoxins in maize samples with satisfied results. Figure 5 displays
the schematic diagram of the AI-Nb-based TRFICA assay format.
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This research is the first report about time-resolved strip method based on AI-Nb for dual
mycotoxins detection, which provides evidence that the Nb reagent possesses a broad potential for a
wide range of application in the field of food quality control in the future.

4.6. Nb-Based Immunoaffinity Method

Sample pretreatment and purification are usually needed previous to pollutants analysis.
Antibody-based immunoaffinity method is a common tool used for samples clean-up. Nb has been
proved to possess high degeneration resistance that would enable the purification reagent reuse
and further replace conventional antibodies. Xiong et al. [88] applied anti-AFB1 Nb into magnetic-
bead-based immunoaffinity extraction (M-IAE) method for purification of AFB1 from corn samples.
Magnetic beads carrying poly (acrylic acid) brushes (MB@PAA) were fabricated as an “Nb container”
for improving AFB1 adsorption capacity. The developed MB@PAA@Nb could be reused at least
10 times, without obvious loss of the capture efficiency for AFB1. This proposed MB@PAA@Nbs-based
immunoaffinity extraction method is a highly promising, novel sample pre-treatment platform for
AFB1 as well as other mycotoxins.

5. Challenge of Nb Application in Analytical Chemistry

Nbs have many favorable properties compared with conventional and other recombinant
antibodies. The smaller number of CDRs does not seem to threaten the ability of Nbs to bind
macromolecular antigens with high affinity, such as AI-Nb binding to mAb is easy to be obtained.
However, the lack of a light chain possibly hampers their ability to bind small haptens that conventional
antibodies typically recognize by the interplay of the VH and VL domains and six CDRs [89]. This is
the case for the isolation of Nbs against small molecules, like mycotoxins.

Recently, only three anti-mycotoxin Nbs are generated. Failures in the generation of Nbs that
recognize small haptens in solution are common [43]. It seems difficult to get out of dilemma even
sophisticated screening routine operated [60]. The reason may be the camelid immune response
against small molecules is predominated by conventional IgG1, with lower ratios of single domain
subclasses of IgG2 and IgG3 [54]. Additional structural analysis of small molecule-Nb complexes
would be helpful in understanding the interaction and leading a more rational design of immunizing
and selecting haptens. However, there is very little information on the way in which Nbs bind
small molecules. So far, only three crystal structures of hapten-Nb complexes have been revealed,
corresponding to the azo dyes Reactive Red 1 (733 Da) [90], Reactive Red 6 (717 Da) [91], and the
chemotherapy agent methotrexate (454 Da) [92]. Among these three complexes, all Nbs can provide
cavities to accommodate haptens like the VH-VL crevice, even in the absence of a VL. The three CDRs
usually contribute to form the groove except methotrexate, which is bound in a non-canonical way,
being deeply buried in a “tunnel” roofed by CDR1 and a loop of FR3 that the authors identified as
“CDR4”. As a result, more efforts are needed to generate Nbs against small haptens and to further
determine the structure characteristic and molecular recognition mechanism. Owing to their small
size and ease of expression, Nbs are usually easy to crystallize or operate nuclear magnetic resonance
(NMR) determination for structure study. It suggests that more Nb structures may be elucidated soon.
Those emerging structures will help to identify the possible mechanisms and patterns of the interaction
between Nbs and their targets, especially as to Nbs recognizing small haptens. Understanding the
structure of the combining pocket will help to adjust Nbs characteristics through in vitro antibody
maturation techniques, and in addition, to guide artificial antigens design rationally.

Additionally, Nb-based immunodetection formats are still limited and need to be further explored
for mycotoxin detection, such as biosensors and portable devices [93,94]. It has been reported that the
anti-hapten Nbs can be employed as recognition element and incorporated into two biosensor formats.
The Nb can be coated on the surface of an electrode for electrochemical impedance detection [62],
and coated onto a PDMS membrane for a lab-on-a-chip sensor [95]. These studies demonstrate the
potential of developing novel and reliable assays for mycotoxin detection by Nb technology.
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6. Conclusions

Ever since their discovery, Nbs have emerged as powerful antigen binders and have become
a very promising tool for the monitoring of food quality. In this review, we summarized the recent
advancements of Nb-based immunoassays for mycotoxin detection, including indirect competitive
ELISA, direct competitive ELISA, phage-displayed Nb-mediated immuno-PCR, fluorescence
polarization immunoassay, immunochromatographic assay, and immunoaffinity methods. Lots of
studies have demonstrated Nb technology to be a powerful and potential technique for advanced
applications in mycotoxin detection. As already mentioned, Nbs have striking properties such as high
solubility, ease of genetic manipulation, and high thermal and conformational stability. However, it is
still very challenging to select desirable Nbs binding to the small molecule epitopes from the phage
display Nb repertoire, hampering the more extensive applications of Nbs in mycotoxin detection.
Efforts should be made as follows to cope with the difficulties: (1) improve the success rate of Nb
generation. It is necessary to ensure the immunogenicity of the designed hapten-protein conjugate,
the capacity and diversity of the constructed Nb repertoire, as well as the optimization of the screening
strategy; (2) the elucidation of the structure of Nbs and their complex with small molecules is
a promising way to modify the properties of Nbs and to provide clues to the rational design of
immunogen for the anti-hapten Nbs generation; and (3) innovative immunodetection formats should
be further exploited to improve the performance of Nb-based assay and to expand the applicability of
Nbs for the mycotoxin detection.
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