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Abstract: Botulinum toxin (BTX) is widely used to treat muscle spasticity by acting on motor neurons.
Recently, studies of the effects of BTX on sensory nerves have been reported and several studies have
been conducted to evaluate its effects on peripheral and central neuropathic pain. Central neuropathic
pain includes spinal cord injury-related neuropathic pain, post-stroke shoulder pain, multiple
sclerosis-related pain, and complex regional pain syndrome. This article reviews the mechanism of
central neuropathic pain and assesses the effect of BTX on central neuropathic pain.

Keywords: botulinum toxin; BTX; central neuropathic pain; spinal cord injury; post-stroke
shoulder pain; complex regional pain syndrome

Key Contribution: This review summarizes the mechanism of central neuropathic pain and
botulinum toxin action against it based on preclinical and clinical studies.

1. Introduction

Botulinum toxins (BTXs) are neurotoxic substances produced by Clostridium botulinum,
a gram-positive anaerobic bacterium. In botulism poisoning, flaccid paralysis occurs by inhibiting
the release of neurotransmitters from the peripheral cholinergic nerve terminals of the skeletal and
autonomic nervous system. Paralysis begins at the ocular muscles and then spreads to the muscles of
the face, before reaching the respiratory muscles and causing respiratory failure.

BTX has traditionally been found in seven serotypes: A, B, C1, D, E, F, and G [1]. They have
similar molecular weights and common subunit structures, but differ in their reaction mechanisms,
durations of effect, and side effects.

In recent years, using molecular genetic analysis, many genes have been discovered that encode
new BTXs. Thus, subtypes, such as BTX/A1, BTX/A2, BTX/B1, and BTX/B2, and chimeric types,
such as BTX/DC, BTX/CD and BTX/FA, have been found.

Clinical use of BTX began in 1973, when Scott demonstrated that injecting the toxin into orbicularis
oculi muscles was effective in treating strabismus. Over the next several decades, its application
expanded to a variety of diseases.

BTX has a molecular weight of 150 kDa, consists of an inactive single-chain polypeptide, and folds
into a 3-domain structure. The light chain (50 kDa) is a zinc-dependent protease that constitutes
an active toxin and cleaves the soluble N-ethyl-maleimide-sensitive factor attachment receptor (SNARE)
complex [2,3]. The heavy chain (100 kDa) consists of an N-terminal translocation domain and
a C-terminal receptor binding domain, and it acts in neuron-specific binding. The light and heavy
chains are linked by disulfide bonds, which partially obscure the active sites of the toxin. When the
single-chain disulfide bond is reduced, the light chain metalloprotease can be released to act as a toxin.
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The main functional effect of BTX occurs in the neuromuscular junction, where it inhibits the
release of acetylcholine from the presynaptic nerve ending, resulting in muscular and autonomic
paralysis [4]. The toxin-mediated muscle relaxation process proceeds in three phases: Binding,
internalization, and the inhibition of neurotransmitter release. Specific binding to neurons is mediated
by heavy chains [5] and internalization is mediated by receptor-mediated endocytosis [6,7]. Once BTX
is internalized, the light chains within the vesicles are translocated across the vesicle membrane and
released into the neuronal cytoplasm. SNARE is involved in the exocytosis of acetylcholine vesicles,
located at the nerve endings, by attaching acetylcholine vesicles to the cell membrane, thus, allowing
acetylcholine exocytosis to occur [8]. BTX causes degradation of the SNARE protein, resulting in
paralysis. Based on these mechanisms, BTX is clinically used to treat muscle spasticity associated
with central nervous system (CNS) disorders, such as stroke, brain injury, spinal cord injury (SCI),
cerebral palsy, and multiple sclerosis (MS).

However, two other functional effects of BTXs exist: The effects on the afferent limb of the motor
nervous system and the analgesic effect on the sensory nerve system. Several preclinical studies
have shown that BTX inhibits neuromodulator and transmitter secretion, which is important for
neurotransmission in the sensory pathway, and, thus, BTX may reduce neuropathic pain.

Preclinical and clinical studies have reported the effects of BTX on peripheral neuropathic pain and,
generally, demonstrated a high level of evidence for some diseases [9]. However, few studies have
reported its therapeutic effects on central neuropathic pain, and its effects have not been proven.
The aim of this article is to review the mechanism of central neuropathic pain and to investigate the
effect of BTX on central neuropathic pain.

A PubMed and EMBASE search (1980~March 2018) was performed as follows: ‘Botulinum toxins’,
‘neuropathic pain’, ‘neuropathy’, ‘pain’, ‘allodynia’, ‘hyperalgesia’ and ‘spinal cord injury’,
‘post-stroke pain’, ‘multiple sclerosis’, and ‘complex regional pain syndrome’. The results included
animal studies, randomized controlled trials (RCTs), observational studies, case reports, and reviews.
Editorials, guidelines, and trial protocols were excluded. Two reviewers individually assessed the
abstracts to determine the eligibility of the studies. Articles not available in English and studies
conducted in children (≤18 years of age) were also excluded.

2. Mechanism of Central Neuropathic Pain

The International Association for the Study of Pain (IASP) defines neuropathic pain as pain
caused by a lesion or disease of the somatosensory nervous system [10]. Neuropathic pain is a clinical
description that requires a demonstrable lesion or a disease that satisfies the established neurological
diagnostic criteria. It has two typical symptoms, allodynia and hyperalgesia. Allodynia describes
a pain due to a stimulus that does not normally provoke pain and hyperalgesia refers to increased
pain from a stimulus that normally provokes pain [10].

Several molecular mechanisms are involved in the development of allodynia and hyperalgesia.
After nerve injury, changes in the expression of sodium and calcium channels cause spontaneous
activity in nerve endings, resulting in spontaneous pain. This is an important factor that causes
sensitization. In addition, various cytokines, including glutamate, substance P, and proinflammatory
cytokines, are involved in sensitization. Inflamed or ischemic tissues become acidified and this cellular
environment causes pain by stimulating the release of neuropeptides from the primary afferent nerve
tissue [11]. When neuropeptides, such as calcitonin gene-related protein (CGRP) and substance P,
are secreted into the endoneurium, they cause local blood flow and blood vessel leakage, leading to
edema and pain.

Because central neuropathic pain is defined by IASP as a pain caused by a lesion or disease of
the central somatosensory nervous system [10], central neuropathic pain is a heterogenous group of
neuropathic pain conditions. Major diagnostic conditions include: (1) Central pain associated with SCI;
(2) central post-stroke pain; and (3) central pain associated with MS.
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The mechanisms of neuropathic pain, following SCI, in various animal models have been
published (Figure 1). Cellular and molecular responses to SCI occur at various levels, from the
distal terminals of primary afferent neurons to the cortical area along the nervous system, leading to
neuropathic pain.

Several changes in the primary afferent neuron have been suggested. A definite factor that
mediates SCI-related pain is an increased excitability of dorsal root ganglion (DRG) neurons.
The spontaneous activity of nociceptive DRG neurons has been shown to increase after SCI [12],
and some authors have demonstrated that the expression of the capsaicin-sensitive cation channel
transient receptor potential vanilloid type 1 (TRPV1) in DRG neurons increases after SCI, which is
enhanced by capsaicin-evoked ion currents and calcium responses in DRG neurons [13].

Neuronal hyperexcitability in the spinal dorsal horn is also associated with SCI-related
neuropathic pain [14,15]. This phenomenon might occur through chronic glial cell activation [16,17],
dendritic spine remodeling [18,19], dysregulation of glutamate homeostasis [16], glutamate receptor
activation [20], loss of GABAergic inhibitory interneurons [21,22], interruption of descending inhibitory
modulation by serotonin [23,24], or upregulation of voltage-gated calcium channel alpha-2-delta-1
subunit proteins [25].

In patients with central pain following SCI, neurons in the somatosensory thalamus fire in
bursts of action potentials more frequently than do similar neurons in patients without pain [26].
In rats with contusive SCI, thalamic ventralis postero-lateralis neurons exhibited a dysrhythmia
in that a significantly higher proportion fired spontaneously when compared with neurons in
uninjured rats [27]. Based on these results, abnormal thalamic processes following SCI may mediate
neuropathic pain. Additionally, in rats with SCI, neurons in the primary somatosensory cortex
had significantly higher spontaneous firing rates, greater evoked responses to noxious mechanical
stimulation, and a greater tendency to fire bursts of action potentials [28]. Another study also revealed
that phosphorylation of AMPA-type glutamate receptors in the primary somatosensory cortex play
an important role in the development of hypersensitivity after SCI [29].

Toxins 2018, 10, x FOR PEER REVIEW  3 of 15 

 

terminals of primary afferent neurons to the cortical area along the nervous system, leading to 
neuropathic pain. 

Several changes in the primary afferent neuron have been suggested. A definite factor that 
mediates SCI-related pain is an increased excitability of dorsal root ganglion (DRG) neurons. The 
spontaneous activity of nociceptive DRG neurons has been shown to increase after SCI [12], and some 
authors have demonstrated that the expression of the capsaicin-sensitive cation channel transient 
receptor potential vanilloid type 1 (TRPV1) in DRG neurons increases after SCI, which is enhanced 
by capsaicin-evoked ion currents and calcium responses in DRG neurons [13]. 

Neuronal hyperexcitability in the spinal dorsal horn is also associated with SCI-related 
neuropathic pain [14,15]. This phenomenon might occur through chronic glial cell activation [16,17], 
dendritic spine remodeling [18,19], dysregulation of glutamate homeostasis [16], glutamate receptor 
activation [20], loss of GABAergic inhibitory interneurons [21,22], interruption of descending 
inhibitory modulation by serotonin [23,24], or upregulation of voltage-gated calcium channel alpha-
2-delta-1 subunit proteins [25]. 

In patients with central pain following SCI, neurons in the somatosensory thalamus fire in bursts 
of action potentials more frequently than do similar neurons in patients without pain [26]. In rats 
with contusive SCI, thalamic ventralis postero-lateralis neurons exhibited a dysrhythmia in that a 
significantly higher proportion fired spontaneously when compared with neurons in uninjured rats 
[27]. Based on these results, abnormal thalamic processes following SCI may mediate neuropathic 
pain. Additionally, in rats with SCI, neurons in the primary somatosensory cortex had significantly 
higher spontaneous firing rates, greater evoked responses to noxious mechanical stimulation, and a 
greater tendency to fire bursts of action potentials [28]. Another study also revealed that 
phosphorylation of AMPA-type glutamate receptors in the primary somatosensory cortex play an 
important role in the development of hypersensitivity after SCI [29]. 

The pathophysiology of central post-stroke pain, another important disease constituting central 
neuropathic pain, remains uncertain. Recent advances in brain imaging technology have increased 
the understanding of the role of specific anatomic locations. Several reports have suggested that 
central post-stroke pain commonly occurs in lesions affecting the thalamus, parietal cortex, dorsal 
putamen, posterior internal capsule, dorsal basal ganglia, brainstem, and lateral medulla [30–33]. 
Particularly, spinothalamic tracts terminated with the ventral posterolateral thalamus and lesions of 
the ventral posteromedial thalamus and medial lemniscal thalamocortical pathway were found to be 
the major factors causing central post-stroke pain [34,35]. These results have also been demonstrated 
in animal model experiments. Thermal hypersensitivity was observed in a rat model of the ventral 
posterior thalamic infarction [36], with thermal and mechanical hyperalgesia developing in rats with 
a thalamic hemorrhagic lesion [37]. 

 
Figure 1. Illustrated mechanism of central neuropathic pain associated with spinal cord injury (SCI). 
These mechanisms include transient receptor potential vanilloid type 1 (TRPV1) overexpression in 
dorsal root ganglion (DRG) neurons, glial cell activation, dendritic spine remodeling, glutamate 
receptor activation and loss of GABAergic interneuron in the spinal dorsal horn, and spontaneous 
firing of neurons in the thalamus and primary somatosensory cortex. It has been suggested that the 
antinociceptive mechanism of botulinum toxins (BTXs) applied to the nerve endings not only affects 

Figure 1. Illustrated mechanism of central neuropathic pain associated with spinal cord injury (SCI).
These mechanisms include transient receptor potential vanilloid type 1 (TRPV1) overexpression in
dorsal root ganglion (DRG) neurons, glial cell activation, dendritic spine remodeling, glutamate
receptor activation and loss of GABAergic interneuron in the spinal dorsal horn, and spontaneous
firing of neurons in the thalamus and primary somatosensory cortex. It has been suggested that the
antinociceptive mechanism of botulinum toxins (BTXs) applied to the nerve endings not only affects
the primary afferent neurons but also acts on the DRG and spinal dorsal horn through retrograde
axonal transport.

The pathophysiology of central post-stroke pain, another important disease constituting central
neuropathic pain, remains uncertain. Recent advances in brain imaging technology have increased the
understanding of the role of specific anatomic locations. Several reports have suggested that central
post-stroke pain commonly occurs in lesions affecting the thalamus, parietal cortex, dorsal putamen,
posterior internal capsule, dorsal basal ganglia, brainstem, and lateral medulla [30–33]. Particularly,
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spinothalamic tracts terminated with the ventral posterolateral thalamus and lesions of the ventral
posteromedial thalamus and medial lemniscal thalamocortical pathway were found to be the major
factors causing central post-stroke pain [34,35]. These results have also been demonstrated in animal
model experiments. Thermal hypersensitivity was observed in a rat model of the ventral posterior
thalamic infarction [36], with thermal and mechanical hyperalgesia developing in rats with a thalamic
hemorrhagic lesion [37].

In the middle cerebral artery occlusion rat model, increased N-methyl-D-aspartate (NMDA)
and AMPA receptor mediated excitatory transmission of the dorsal horn, decreases in GABA and
glycine receptor mediated inhibitory transmission, and an increase in descending facilitation was
proposed to be involved in the development of central post-stroke pain [38]. In the ventral posterior
thalamic lesion rat model, P2X7 expression in the medial thalamus was directly involved in nociceptive
transmission, and short-term P2X7 inhibition led to a reduction of glutamatergic facilitation and
neuronal hyperexcitability [39].

3. Mechanism of BTX for Central Neuropathic Pain

The initial analgesic effect of BTX is caused by a decrease in muscle spasms. However,
many preclinical and clinical studies suggest that a different mechanism underlies the analgesic
effect of BTX. The hypothesis is that BTX inhibits the secretion of neuropeptides and suppresses
inflammation and pain.

Several preclinical studies have shown that BTX-A inhibits the release of neurotransmitters that
regulate pain and inflammation. McMahon et al. showed that BTX preferentially attenuates the slow
phase of KCl-evoked glutamate release, which may be associated with synaptic vesicle mobilization
according to a study that utilized a guinea pig formalin-induced pain model [40]. Welch et al.
reported that BTX inhibits potassium-evoked substance P secretion from cultured embryonic rat
DRG neurons [41], and Durham et al. demonstrated that BTX-A can directly decrease the release of
CGRP from cultured rat trigeminal ganglion neurons [42].

Xiao et al. demonstrated that BTX significantly reduces TRPV1 expression [43]. A neuropathic
pain model was induced by transection of the lumbar 5 ventral root in male rats. BTX-A or normal
saline was administered to the plantar surface by subcutaneous injection. TRPV1 expression increased
significantly in the lumbar 4–5 DRG after the transection of the lumbar 5 ventral root, and this increase
persisted for at least 21 days. Subcutaneous injection of BTX-A significantly, and dose-dependently,
reduced the expression of TRPV1 in the DRG neuron and significantly reduced hyperalgesia. A similar
effect occurred on the expression of P2X3, one of the purinergic receptors associated with nociceptors,
in a study that evaluated the effect of BTX on P2X3 expression, with the same method. Subcutaneous
administration of BTX-A significantly, and bilaterally, reduced mechanical allodynia and inhibited the
P2X3 overexpression induced by the transection of the lumbar 5 ventral root [44].

One possible interpretation of these findings is that BTX reduces peripheral sensitization and
afferent input to the spinal cord by inhibiting the release of neurotransmitters from peripheral nerve
endings, thereby, indirectly a decreasing central sensitization. However, it has been hypothesized
that the central effect may be direct by retrograde axonal transport of BTX along the branches of
nociceptive neurons.

Immunohistochemical experiments have revealed that cleaved SNAP-25, a product of
BTX-A action, is found not only in the peripheral region but also in the facial nucleus in the brain
stem [45], superior colliculus [46], and motor region of the spinal cord [47,48]. Antonucci et al. found
cleaved SNAP-25 in the ipsilateral facial nucleus after a BTX-A injection into rat whisker muscles [45].
Matak et al. found that cleaved SNAP-25 fragments were present in the ventral horn and dorsal horn
of the spinal cord after low-dose toxin injections into the gastrocnemius muscle and sciatic nerve [47].
These authors also identified that cleaved SNAP-25 was not detected in the spinal cord when they
injected BTX-A into a sciatic nerve pretreated with colchicine, an axonal transport blocker. Therefore,
they suggested that BTX-A showed a central effect by microtubule-dependent retrograde axonal
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transport [49]. Wang et al., however, cited the possibility that disassociated cleaved SNAP-25 might
have migrated from the terminal to the cell body, suggesting that the discovery of cleaved SNAP-25 in
the CNS does not necessarily reflect the activity of BTX-A in the CNS [50].

Retrograde axonal transport is well known as a transport pathway for various substances, such as
tetanus toxin, and this fact suggests that BTX may also use the same pathway. Several studies have
reported that the heavy chain, or the entire toxin, undergoes retrograde transport after a peripheral
injection of BTX-A. Restani et al. directly monitored the endocytosis and axonal transport of BTX-A,
and they showed that BTX-A was internalized by spinal cord motor neurons and underwent fast
axonal retrograde transport [51]. Wang et al. reported that fluorescently labeled BTX heavy chains were
detected in spinal cord motor neurons after injection into the mouse hindlimb, which demonstrated
retrograde transport of BTX [50].

Several studies of the behavioral effects of BTX-A have demonstrated the central antinociceptive
effect of BTX-A. Bilateral pain associated with experimental diabetes [52], carrageenan-induced
hyperalgesia, and paclitaxel-induced peripheral neuropathy [53] or acidic saline-induced
mirror pain, [54] can be bilaterally reduced by the unilateral injection of BTX-A in rats.
Bach-Rojecky et al. reported that mechanical and thermal hypersensitivity of the ipsilateral side,
as well as the contralateral side, were decreased after subcutaneous unilateral BTX injection into
the plantar surface of the hindlimb [52]. In addition, Favre-Guilmard et al. reported a significant
anti-hyperalgesic effect in the uninjected contralateral hindpaw after subcutaneous administration of
BTX-A to the plantar surface in carrageenan-induced hyperalgesia and paclitaxel-induced peripheral
neuropathy models. These results suggest that the antinociceptive effect of BTX-A cannot be explained
by the peripheral action and it is possible that BTX-A has a central action through the retrograde axonal
transport [53]. This process is also expected to be a major mechanism in the BTX-A action on central
neuropathic pain.

4. Clinical Studies of BTX for Central Neuropathic Pain

4.1. Neuropathic Pain after Spinal Cord Injury

Two case series of clinical reports with very small sample sizes have evaluated the effect of
BTX-A on neuropathic pain in patients with SCI. Jabbari et al. [55] reported cases of two patients
with burning pain in a dermatome due to spinal cord lesion at the cervical level (tumor or stroke).
BTX-A (OnabotulinumtoxinA) was injected subcutaneously at multiple points in the area of the burning
pain and allodynia. The effect was assessed by the visual analogue scale (VAS) and clinical changes.
One patient received 100 units of BTX-A. One week after the injection, the VAS score decreased from
8–10 to 2–3 points, and the frequency of severe spontaneous pain was reduced by 80%. The second
patient received 80 units; skin sensitivity and spontaneous burning pain were significantly reduced
after approximately 10 days, and this effect lasted approximately three months. Han et al. [56]
reported a case of a patient with allodynia and dysesthesia of the lower limb. BTX-A was injected
subcutaneously at ~10 units into the painful foot area and the effect was evaluated by the change in
VAS score. After four weeks, the pain severity and burst frequency were reduced.

A recent study has been reported on the effect of BTX-A on SCI-associated neuropathic pain.
Han et al. [57] reported the effects of BTX-A in a randomized, double-blind, and placebo-controlled
study in 40 patients with SCI-associated neuropathic pain. Patients were treated with subcutaneous
injections of BTX-A (200 units) or normal saline and the VAS score, the Korean version of the short-form
McGill Pain Questionnaire, and the WHOQoL-BREF quality of life assessment were assessed at four
and eight weeks. Thus, BTX-A has been shown to be effective in treating intractable chronic neuropathic
pain in patients with SCI. The above studies are summarized in Table 1.
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Table 1. Summary of studies of botulinum toxin (BTX) for central neuropathic pain.

Author, Year Study Design Sample Size (N) Diagnosis Injection Site/Dose Follow up Pain Measure Results

Jabbari, 2003
[55] Case series 2 SCI

Subcutaneous injection at the
site of allodynia/BTX-A 16–20

U/site
VAS

Pain was decreased;
frequency of severe

spontaneous pain was
reduced

Han, 2014
[56] Case report 1 SCI Subcutaneous injection in the

painful foot/BTX-A Week 4 VAS
Pain severity and the

frequency of burst was
reduced

Han, 2016
[57]

Double-blind,
randomized

controlled study
40 SCI Subcutaneous injection/BTX-A

200 U Week 4, 8 VAS (100 mm), McGill
Pain Questionnaire

Pain was reduced
significantly in BTX-A treated

group

Yelnik, 2007
[58]

Double-blind,
randomized

controlled study
20 stroke

Subscapularis muscle/BTX-A
500 U/injection + physical

therapy
Week 1, 2, 4 verbal scale (10 point) Pain improvement with

BTX-A from first week

Marco, 2007
[59]

Double-blind,
randomized

controlled study
31 stroke

Pectoralis major muscle/BTX-A
500 U/injection + TENS for 6

weeks

Week 1, 4, 12,
24 VAS (100 mm)

Significantly greater pain
improvement from the first

week in BTX group

Kong, 2007
[60]

Double-blind,
randomized

controlled study
17 stroke Pectoralis major, biceps brachii

muscles/BTX-A 500 U Week 4, 8, 12 VAS (0–10) No difference in shoulder
pain

Lim, 2008
[61]

Double-blind,
randomized

controlled study
29 stroke

Infraspinatus, pectoralis and
subscapularis muscles + IA

saline injection; IA
triamcinolone (40 mg) injection

+ saline to the same
muscles/BTX-A 100 U

Week 2, 6, 12 NRS
Significantly greater pain

improvement in the
BTX-A–treated at 12 weeks

Boer, 2008
[62]

Double-blind,
randomized

controlled study
22 stroke Subscapular muscle/BTX-A 50

U, twice Week 6, 12 VAS (vertical 100 mm) No significant changes in pain

Shaw, 2011
[63]

Double-blind,
randomized

controlled study
333 stroke

Elbow, wrist and finger flexor
muscles/ BTX-A, 4

times/injection + physical
therapy 4 weeks

Week 4, 12, 48 verbal scale, NRS Significant decrease at 12
months in the BTX group

Castiglione,
2011 [8] Pilot study 5 stroke IA shoulder joint/BTX-A 500 or

100 units Week 2, 8 VAS Decreased pain at 2 and 8
weeks after BTX-A injection
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Table 1. Cont.

Author, Year Study Design Sample Size (N) Diagnosis Injection Site/Dose Follow up Pain Measure Results

Marciniak,
2012 [64]

Double-blind,
randomized

controlled study
21 stroke Pectoralis major ± teres major

muscles/BTX-A 140–200 units Week 2, 4, 12 VAS Decreased pain scores at 4
weeks

Choi, 2016
[65]

Retrospective,
unblinded,

uncontrolled study
6 stroke Subscapularis muscle/BTX-A Week 1, 2, 4, 8 PI-NRS Pain improvement with

BTX-A injection

Carroll, 2009
[66]

Double-blind,
randomized

controlled study
18 CRPS LSB/Bupivacaine 0.5% + 75

units of BTX-A Week 4 VAS (10 cm)
The rate of pain return was

significantly lower after LSB
with BTA

Safarpour,
2010 [67]

Double-blind,
randomized

controlled study
Uncontrolled,

unblinded,
open-label study

14 (6 control) CRPS

Intradermally and
subcutaneously into the

allodynic area/ 5 units per site
(total 40–200 units)

Week 3, 8

Brief pain inventory,
PIQ, McGill pain

questionnaire, QST,
patients satisfaction

scale

No significant response after
injection; study terminated

prematurely because of
intolerance

Kharkar,
2011 [68]

Retrospective,
unblinded,

uncontolled study
37 CRPS

Upper limb girdle
muscles/BTX-A 10–20 units per

muscle (total 100 units)
Week 4 Likert scale (11 point) 43% decrease in local pain

scores

Safarpour,
2010 [69] Case series 2 CRPS Trigger point in the proximal

muscle/BTX-A 20 units per site � VAS (1–10)

Alleviate both myofascial
pain syndrome and the distal
allodynia, discoloration and,

tissue swelling

Birthi, 2012
[70] Case report 1 CRPS

Subcutaneous injection on the
dorsum of the hand/BTX-A 5
units per site (total 100 units)

weekly, 12
weeks

McGill Pain
Questionnaire

Able to decrease daily opioid
medication by 20% at 8th

week; pain returned to
baseline at 12th week

Choi, 2015
[71] Case series 2 CRPS

Lumbar sympathetic
block/levovupivacaine 0.25% +

5000 units of BTX-B
Week 8 VAS, LANSS

Pain intensity and LANSS
score were significantly

reduced

Buonocore,
2017 [72] Case report 1 CRPS

TP, FDL, FHL muscles, tibial
nerve around the tarsal

tunnel/BTX-A 120 units per
muscle, twice

Week 36 �
Significant decrease in the

frequency of acute
dysesthesias

SCI: Spinal cord injury; CRPS: Complex regional pain syndrome; VAS: Visual analog scale; NRS: Numeric rating scale; IA: Intra-articular; LANSS: Leeds assessment of neuropathic
symptoms and signs; LSB: Lumbar sympathetic block; TP: Tibialis posterior; FDL: Flexor digitorum longus; FHL: Flexor hallucis longus.
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4.2. Post-Stroke Shoulder Pain

Central post-stroke pain occurs after a cerebrovascular event, including lesion of the brainstem,
thalamus, and cerebral cortex, and may affect half of the body [73]. Several authors have described
central post-stroke pain as a central neuropathic pain syndrome that can occur after a stroke in the
body part that corresponds to the cerebrovascular lesion and is characterized by pain and sensory
abnormalities, where other causes of obvious nociceptive, psychogenic, or peripheral neuropathic
origin have been ruled out [74,75].

Post-stroke shoulder pain is a common disease with an incidence rate ranging from 21–72% [76,77].
Many studies have examined the effects of BTX on the treatment of post-stroke shoulder pain, but the
results are conflicting, and, thus, drawing conclusions remains difficult.

Yelnik et al. [58] conducted a double-blind RCT of the effect of BTX on post-stroke shoulder
pain in 20 patients. Ten patients were injected with 500 units of BTX-A (AbobotulinumtoxinA)
in the subscapularis muscle, and 10 patients in the control group underwent a placebo injection
in the same muscle. All participants underwent rehabilitation, including stretching exercises.
Pain was improved in the BTX injection group at one week, and pain scores using a 10-point verbal
scale at four weeks showed a significant difference between the two groups. Marco et al. [59]
reported a double-blind RCT for evaluating the effect of BTX. In 14 patients, 500 units of BTX-A
(AbobotulinumtoxinA) was injected into the pectoralis major muscles, and 15 patients in the control
group were injected with a placebo. Transcutaneous electrical nerve stimulation was applied for
six weeks. After one week, pain during shoulder movement decreased in both groups, but the VAS
score in the BTX injection group decreased more significantly, and this trend continued until six months.
However, no significant difference in the shoulder range of motion or spasticity was found between
the two groups. Kong et al. [60] conducted a double-blind RCT of 17 patients. Five hundred units of
BTX-A (AbobotulinumtoxinA) was injected into the pectoralis major and biceps brachii muscles in the
experimental group and normal saline was injected into the same region in the control group. The VAS
scores at 4, 8, and 12 weeks after injection were not significantly different between the two groups.
The median baseline VAS score of the patients was 6, and the scores decreased by 2–3 points in
both groups.

Lim et al. [61] reported a double-blind RCT of 29 patients. In the experimental group, 100 units
of BTX-A (OnabotulinumtoxinA) was injected into the infraspinatus, pectoralis, and subscapularis
muscles, along with intra-articular saline. In contrast, the control group received an intra-articular
triamcinolone (40 mg) injection and saline was injected into the muscles described above. The numeric
rating scale at 12 weeks was reduced by 4.2 ± 0.4 points in the BTX-A intramuscular injection group
and by 2.5 ± 0.8 points in the intra-articular triamcinolone injection group. Intramuscular injection of
BTX-A was superior to intra-articular injection of triamcinolone (p = 0.051). Boer et al. [62] conducted
a double-blind RCT of 22 patients. They injected 100 units of BTX-A (OnabotulinumtoxinA) into the
subscapularis muscle in the experimental group and injected saline in the control group. Vertical VAS
scores were not significantly different between the two groups at 6 weeks and 12 weeks. Shaw et al. [63]
reported the effects of BTX-A (AbobotulinumtoxinA) on spasticity, function, and pain in patients with
spasticity of the upper limb after stroke. This study was a multicenter RCT called BoTULS. The pain
rating and pain scale evaluated at one and three months showed no significant difference between
the two groups, but the pain rating evaluated at 12 months showed a significant decrease in the
injection group. Marciniak et al. [64] evaluated the effects of BTX by injecting 140–200 units of BTX-A
(OnabotulinumtoxinA) or saline into a pectoralis major muscle, with or without a teres major muscle.
At four weeks, worst pain ratings decreased in both groups, but no significant difference was found
between the two groups. The above studies are summarized in Table 1.

Post-stroke shoulder pain is thought to be caused by multiple factors, including both the nervous
system and mechanical factors. Post-stroke shoulder pain may be associated with spasticity, but it
is difficult to determine whether spasticity acts as a mechanism to cause post-stroke shoulder pain,
whether it is increased by the shoulder pain, or both. It is well known that the improvement of
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spasticity may be associated with an improvement of pain, but the correlation between spasticity
and pain is not linear, and multiple factors may be involved [78]. Several studies have suggested
a musculoskeletal origin for post-stroke shoulder pain. Musculoskeletal conditions, such as
subluxation, tendinitis, adhesive capsulitis, rotator cuff tear, and subacromial bursitis, may contribute
to post-stroke shoulder pain. Whether these diseases can cause post-stroke shoulder pain is
controversial, because these conditions may result from stroke.

In a study by Zeilig [79], those with post-stroke shoulder pain had higher heat-pain thresholds
and exhibited higher rates of hyperpathia, allodynia, and dysesthesia in the affected shoulder and leg
than those without post-stroke shoulder pain. The authors suggested that the finding of altered thermal
sensitivity, which indicates damage to the spinothalamic-thalamocortical tract, was not restricted to the
shoulder, but rather characterized the affected side. An additional support to this central neuropathic
pain proposition was the higher rate of damage to the parietal cortex in the post-stroke shoulder
pain group. From these results, various factors appear to cause post-stroke shoulder pain, but it seems
to be attributable to central neuropathic pain.

Two systematic reviews of the effects of BTX on shoulder pain, including post-stroke shoulder pain,
have been reported. In a Cochrane report that focused on BTX-A for shoulder pain, the authors
included six RCTs comparing BTX with a placebo or active treatment. Five RCTs in participants
with post-stroke shoulder pain indicated that, compared with placebo, a single intramuscular
injection of BTX-A significantly reduced pain at three to six months postinjection, but not at one
month [80]. Another systematic review included nine RCTs of BTX injections in patients with
shoulder pain. The shoulder pain was due to hemiplegia in six studies, adhesive capsulitis in one study,
subacromial bursitis or shoulder impingement syndrome in one study, and arthritis in one study [81].
They concluded that BTX injection resulted in minor to moderate pain relief and an increase in
shoulder abduction in patients with chronic shoulder pain. Based on these two reviews, BTX injection
in post-stroke shoulder pain is expected to be effective in reducing pain.

4.3. Multiple Sclerosis

MS is a chronic disease in which focal demyelinating lesions of the CNS occur at multiple sites
due to autoimmune inflammatory processes. The plaques, located in the subcortical, brainstem,
or spinal cord, cause neurological symptoms and signs, including abnormal coordination, motor,
sensory, and cognitive function. According to one report, approximately 65% of MS patients with
spasticity are known to suffer from pain [82]. Pain appears in the form of central dysesthetic pain,
trigeminal neuralgia, Lhermitte’s phenomenon, and tonic spasm. In a review published in 2013,
the authors classified MS-related pain into nine categories and described each possible mechanism [82].
According to the authors, ongoing extremity pain is caused by thalamic or cortical deafferentation
by multiple lesions along the spinothalamocortical pathways. In addition, Lhermitte’s phenomenon
and painful tonic spasm are caused by demyelination of the dorsal column primary afferents and the
corticospinal pathway, respectively, providing a possible mechanism for central neuropathic pain.

Various double-blind RCTs of BTX effects on MS-associated detrusor overactivity and spasticity
are available. A preliminary report on the effects of BTX on spastic dysphagia, myokymia,
tonic spasm, and internuclear ophthalmoplegia also exists. However, no RCT has been performed to
evaluate whether BTX is effective for MS-related pain. In a recent prospective, open-label study of
131 patients with spasticity, 19% were patients with MS, and 60% reported a significant reduction in
spasticity-related pain after BTX-A treatment [83]. MS-related pain has the characteristics of central
neuropathic pain and conducting well-designed research on whether BTX is effective for MS-related
pain will be necessary in the future.

4.4. Complex Regional Pain Syndrome

Complex regional pain syndrome (CRPS) is a painful disease that can result from an imbalance
due to trauma. Unlike other neuropathic pain syndromes, CRPS is accompanied by additional signs,
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such as abnormal blood flow control, sweating, and active and passive motor impairment. Not all
CRPS signs can be fully explained by the peripheral mechanism and several studies suggest there
might be a central mechanism [84]. The CNS undergoes functional and structural changes in people
with chronic pain and these changes are thought to be particularly important in CRPS because they
cause central sensitization [85,86]. CRPS is often spread beyond the original injury and in many cases,
it has been reported to spread to the contralateral extremity in a mirror pattern [87,88]. Regarding
the bilateral spreading of CRPS signs, it was suggested that trans-synaptic changes in the spinal
cord dorsal horn, contralateral to the affected side, may underlie this spreading [89]. It is unclear
whether CNS alterations are a primary abnormality in the disease or a secondary change due to pain,
but changes in the CNS play an important role in CRPS, thus, this review addresses the disease.

Carroll et al. prospectively investigated 18 subjects with CRPS [66]. Lumbar sympathetic blocks
were accomplished with bupivacaine alone or an additional 75 units of BTX-A. The rate of pain return
was significantly lower and the duration of pain reduction was longer in the group with BTX-A
injection compared to that with local anesthetic alone. Safarpour et al. conducted a double-blind,
randomized, controlled, and open-label extension study [67]. BTX-A was injected intradermally
and subcutaneously into the allodynic area, but no significant response occurred after treatment.
Kharkar et al. injected 10–20 units of BTX-A per muscle in 37 patients with CRPS-related spasm or
dystonia in the neck and/or upper limb girdle [68] and found a statistically significant decrease in
local pain scores compared with baseline. Several additional case reports and case series with very
small sample sizes are listed in Table 1.

Although no systematic review of the effect of BTX on CRPS is available, most studies have
shown BTX to be effective in reducing pain. CRPS also has a multifactorial mechanism, but as central
sensitization is reported as a major mechanism, BTX is expected to effectively reduce the pain.

5. Conclusions

The mechanism of central neuropathic pain has been examined according to various hypotheses,
including neuronal hyperexcitability and dysfunction of the spinothalamic tract. To date, various
preclinical and clinical studies have been published on whether BTX may be effective for central
neuropathic pain. BTX inhibits the secretion of substance P and CGRP from DRG, inhibits the
expression of TRPV1 and P2X3, and induces a central effect through retrograde axonal transport.
In addition, several studies have demonstrated its effect on central neuropathic pain associated
with SCI, stroke, MS, and CRPS. Effects of BTX on neuropathic pain after SCI, post-stroke shoulder pain,
and CRPS has been shown; therefore, it can be considered as one of the treatment options.
In the future, well-designed studies will be necessary to assess the effects of BTX on central
neuropathic pain, and, furthermore, effective injection sites, injection techniques, and adequate doses
should be considered.
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