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Abstract: Recent technological advances have seen increasing numbers of complex structures from
diverse pore-forming toxins (PFT). The ClyA family of α-PFTs comprises a broad variety of assemblies
including single-, two- and three-component toxin systems. With crystal structures available for
soluble subunits of all major groups in this extended protein family, efforts now focus on obtaining
molecular insights into physiological pore formation. This review provides an up-to-date discussion
on common and divergent structural and functional traits that distinguish the various ClyA family
PFTs. Open questions of this research topic are outlined and discussed.

Keywords: pore-forming toxins (PFT); virulence factors; structural biology; x-ray crystallography;
cryo-electron microscopy

Key Contribution: Updated summary on the biochemistry and structural biology of ClyA-like PFTs
from human, insect and plant pathogens.

1. Introduction

Pore-forming toxins (PFTs) of pathogenic bacteria are well-characterized virulence factors. They
belong to an ancient and largely diverse protein family. PFTs are found across Gram-negative
and -positive clades of bacteria, with members amongst human, insect and plant pathogens [1,2].
Recent progress in the structural interrogation of increasingly complex pore-forming mechanisms
has been fueled by the advances in cryo-electron microscopy (cryo-EM) [3–8], allowing the structural
determination of heterogeneous pore assemblies. Together with X-ray crystallography of the soluble
toxin components, we now have a good grasp of how different PFTs achieve the transition to
membrane-bound oligomers.

Depending on the secondary structural nature of the membrane perforating channel, PFTs
are divided into two families: α-PFTs form α-helical pores, while β-PFTs produce β-barrel pores.
Historically, β-PFT structures have been overrepresented in the protein data bank (PDB), while reports
on α-PFTs are only recently becoming more frequent [6–10]. A comprehensive overview of known
bacterial PFT architectures is reported in a review by Da Peraro and Van Der Goot [2].

2. The Common Structural Topology of ClyA-Like Toxin Components

Crystal structures are currently available for at least one type of soluble subunit from each known
and compositionally diverse group within the ClyA toxin family (Figure 1a): ClyA [9] and Cry6Aa [11]
represent one-component toxins; members of the XaxAB family contain two modules [7,8,12,13] and
the Nhe and Hbl systems from Bacillus cereus are assembled from three distinct building blocks [14,15].
A common structural frame, harboring a five-helix bundle motif (5HB; α1, α2, α3, α6 and α7), is a
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general feature present in all toxin components analyzed to date (Figure 1b). However, the toxin
groups differ in the length and structure of the connecting region between the α4 and α5 helices, which
include experimentally validated membrane-active moieties (see below). In addition, bioinformatics
and biochemical studies have mapped putative parts of the lytic apparatus to corresponding protein
regions in Nhe and Hbl [15,16], whose peculiarities still need to be verified. Despite the conserved
topology of the 5HB fold, members within and between each of the wider ClyA family share low
sequence similarity, ranging between 15–45% (Figure 1c). Most probably, this fact resulted from the
divergent evolution of the members of this family of toxins, providing them with specific mechanistic
singularities in achieving the lytic pore arrangements. Nevertheless, as outlined in the following
sections, the common 5HB partakes in forming important intersubunit contact sites.
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ClyA) [17], 2WCD (protomeric ClyA) [9], 6EK7 (soluble YaxA) [7], 6EL1 (protomeric YaxA, 
protomeric YaxB) [7], 6EK4 (soluble PaxB) [7], 4K1P (soluble NheA) [15], 5KUC (Cry6AA) [11], 2NRJ 
(Hbl-B) [14]. Ribbons are colored blue (N-terminus) to red (C-terminus). Dashed lines highlight the 
5HB core motif and grey rectangles delineate the approximate membrane boundaries. (b) Topology 
diagrams of ClyA family members in soluble and protomeric states. (c) Comparison of pairwise 
amino acid sequence identities (%). Proteins with available crystal structures are framed in red. Pairs 
with a sequence identity above 20% are highlighted with a pink background. Alignments were 
performed with Clustal Omega [18]. 

Figure 1. Overview of ClyA-like toxin structures. (a) Cartoon depiction of soluble (top) and protomeric
(bottom) states of ClyA family member structures reported so far. PDB ID: 1QOY (soluble ClyA) [17],
2WCD (protomeric ClyA) [9], 6EK7 (soluble YaxA) [7], 6EL1 (protomeric YaxA, protomeric YaxB) [7],
6EK4 (soluble PaxB) [7], 4K1P (soluble NheA) [15], 5KUC (Cry6AA) [11], 2NRJ (Hbl-B) [14]. Ribbons
are colored blue (N-terminus) to red (C-terminus). Dashed lines highlight the 5HB core motif and grey
rectangles delineate the approximate membrane boundaries. (b) Topology diagrams of ClyA family
members in soluble and protomeric states. (c) Comparison of pairwise amino acid sequence identities
(%). Proteins with available crystal structures are framed in red. Pairs with a sequence identity above
20% are highlighted with a pink background. Alignments were performed with Clustal Omega [18].
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3. Homooligomeric ClyA and Cry6Aa Toxins

The first reported structure of an α-PFT was the homododecameric ClyA pore complex, which
was solved by X-ray crystallography in 2008 [9]. The mechanism of ClyA pore formation has been
well described [19,20]. More recently, Cry6Aa was discovered as a new member of the structurally
diverse group of the so-called ‘crystal proteins’ from Bacillus thuringiensis. These PFTs have gained
widespread biotechnological attention as orally active insecticidal and nematocidal toxins [21–23].
Crystal structures of Cry6Aa confirmed that the protein belonged to the wider family of ClyA-like
proteins [11], which are topologically closest to Hbl-B and NheA (Figure 1b). Current evidence points
to a homooligomeric assembly state of Cry6Aa, and the pore formation has recently been verified [24].
It is curious that within the ClyA family, Cry6Aa holds greatest structural resemblance to Hbl-B and
NheA (see Figure 1a), which are components of the tripartite Hbl and Nhe toxins, respectively (see
below). Thus, the assembly mechanism most likely differs between the two known one-component
systems in this toxin family.

4. Two-Component Heterooligomeric ClyA-Like Toxins

Currently, cryo-EM reconstructions of two orthologous XaxAB-like pores from Xenorhabdus nematophila
(XaxAB) [8] and Yersinia enterocolitica (YaxAB) [7] have been reported. These structural characterizations
allow for direct comparison of pore architectures within the wider family of ClyA-like toxins
(Figure 2). While limited heterogeneity in ClyA pores can be observed [25], XaxAB-like toxins possess
broad distributions, ranging from 8–16-fold symmetric pores [7,8]. Despite apparent differences
in stoichiometry, the assembly principle of the two toxin components in XaxAB and YaxAB is
uniform. The central core structure is composed of a tightly interacting A-B pair, representing the
quasi-protomeric unit, which interacts with adjacent heterodimers in trans. Here, a large interface
is buried between the 5HB motifs within each A-B dimer, whereas the extended coiled-coils are
solvent exposed. This latter observation contrasts with the ClyA homooligomer, wherein extensive
intermolecular contacts are formed along the entire protomer. The interface between A and B protomers
is resumed at the membrane-active domains formed between the protein regions encompassing helices
α4 to α5. Notably, as previous crystallographic studies have shown [9], the soluble monomer of ClyA
undergoes significant conformational changes to form the transmembrane pore, which in particular
entails a large rearrangement of the helix α1 (Figure 1a,b). In the XaxAB-type system, the 5HB integrity
is conserved following the conformational transition to the membrane-bound protomer (Figure 1a,b).
As identified through recent biophysical work on ClyA [19], the major structural changes undergone by
this one-component PFT are accompanied by a transiently populated, off-pathway intermediate with a
molten globule character. Why toxin systems with more than one component arose from the simpler
ClyA PFT remains an open question. From direct comparison of toxin architectures (Figure 1a,b and
Figure 2), it is apparent that the two-component YaxAB complex features modest, distinctly localized
structural motions of its two subunits, which is in contrast to the major reorganization observed
in ClyA.
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detergent in vitro) [9]. This module, together with helix α1, undergoes a substantial morph to form 
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Figure 2. Structural comparison of ClyA and YaxAB pore architectures. (a) The homo-12meric ClyA
toxin (PDB ID: 2WCD) [9]. The protomeric unit is colored red. (b) The hetero-20meric YaxAB toxin [7]
(PDB ID: 6EL1). The protomeric subunits of the YaxA-YaxB heterodimer are shown in blue and
pink, respectively.

5. Exposure of the Transmembrane Domains in ClyA-Like Toxins

α-PFTs from the ClyA family bear crucial membrane-active domains in the protein regions
encompassing helices α4 to α5, which includes the toxin-specific structural building blocks located
between them. For ClyA and XaxAB/YaxAB, structures are available both for the monomeric and
protomer states, offering insights into the remarkable conformational transitions en route to membrane
insertion (Figure 3). Intriguingly, in ClyA (Figure 3a) there is a hydrophobic cluster centered on
phenylalanine 190 (as part of a structural element termed the ‘beta tongue’) in the soluble state,
which suffers major rearrangements in the presence of a membrane (or an appropriate detergent
in vitro) [9]. This module, together with helix α1, undergoes a substantial morph to form the α-helical
transmembrane segment in the resulting protomeric ClyA.
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Schubert et al. [8]. The protomeric conformation of XaxB is stabilized by forming a tight interface with 
XaxA. (c) Sequence conservation of transmembrane domains in XaxA and XaxB orthologues. 
Residues highlighted in b) are indicated by colored circles below their positions. The hinge elements 
(P204 and G243) of the B-component are framed in red. Pl = (Photorhabdus luminescens), Pm = (Proteus 
mirabilis), Pa = (Providencia alcalifaciens), Ps = (Pseudomonas syringae). 
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mechanism for the release of the XaxAB transmembrane domain by modeling a possible dimeric pre-
pore form of XaxA and XaxB in protomeric and soluble conformations, respectively. Figure 3b 
illustrates the shift from this putative intermediate to the all-protomeric state. In the proposed model, 
Xa xAprotomer delivers a series of solvent-exposed hydrophobic side chains, decorating its foot domain 
(encompassing helices α4 and α5), in close proximity to hydrophobic residues of the XaxBsoluble 

counterpart (including the α4′ and α4′′ helices unique to the B component). Upon transformation to 
the all-protomeric XaxA-XaxB dimer, these residues now form a tight apolar interface. Furthermore, 
proline 204 and glycine 243 might act as hinge regions that facilitate the opening of the B-component 
foot domain [7,8]. Notably, the hydrophobic character of the residues in both the A and B subunits 
engaged in this transmembrane segment are conserved across human, insect and plant pathogens 
(Figure 3c), pointing to a unified lytic principle. 

Figure 3. Differences in the lytic apparatus between one- and two-component ClyA-like toxins.
(a) Exposure of the ClyA transmembrane domain by rearrangement of the hydrophobic core centered
on F190 (colored gold). The remaining residues repack into the hydrophobic core of the protomer
while F190 now projects into the membrane interior. (b) Exposure of XaxB’s (soluble: PDB ID 6GY7;
pore: PDB ID 6GY6) lytic domain upon interaction with XaxA (soluble: PDB ID 6GY8), adapted from
Schubert et al. [8]. The protomeric conformation of XaxB is stabilized by forming a tight interface with
XaxA. (c) Sequence conservation of transmembrane domains in XaxA and XaxB orthologues. Residues
highlighted in b) are indicated by colored circles below their positions. The hinge elements (P204 and
G243) of the B-component are framed in red. Pl = (Photorhabdus luminescens), Pm = (Proteus mirabilis),
Pa = (Providencia alcalifaciens), Ps = (Pseudomonas syringae).

Recent X-ray and cryo-EM structures on the bimolecular XaxAB and YaxAB systems shed light on
the lytic principles of these ClyA-related α-PFTs. Schubert et al. [8] proposed a plausible mechanism for
the release of the XaxAB transmembrane domain by modeling a possible dimeric pre-pore form of XaxA
and XaxB in protomeric and soluble conformations, respectively. Figure 3b illustrates the shift from this
putative intermediate to the all-protomeric state. In the proposed model, Xa xAprotomer delivers a series
of solvent-exposed hydrophobic side chains, decorating its foot domain (encompassing helices α4
and α5), in close proximity to hydrophobic residues of the XaxBsoluble counterpart (including the α4′

and α4′ ′ helices unique to the B component). Upon transformation to the all-protomeric XaxA-XaxB
dimer, these residues now form a tight apolar interface. Furthermore, proline 204 and glycine 243
might act as hinge regions that facilitate the opening of the B-component foot domain [7,8]. Notably,
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the hydrophobic character of the residues in both the A and B subunits engaged in this transmembrane
segment are conserved across human, insect and plant pathogens (Figure 3c), pointing to a unified
lytic principle.

6. Assembly Pathways of ClyA-Like Pores

Recently, the precise assembly pathway of the homooligomeric ClyA pore has been characterized
by single-molecule spectroscopic studies [19]. These experiments have revealed that in the presence
of target membranes or detergent, soluble ClyA evolves to its binding-competent protomeric
conformation. Membrane-bound protomers proceed to form oligomers, which in turn associate rapidly
with sterically compatible multimers, yielding closed dodecameric pores (Figure 4a). Structural and
biochemical investigations of the orthologous XaxAB and YaxAB two-component toxins [7,8] have shed
light on the diverging roles played by each subunit in the process of pore formation. The A-B dimer
was identified to be quasi-protomeric, exhibiting a large functional interface and exposing contact
sites to bind adjacent dimers. Although X-ray and cryo-EM studies have depicted the initial and final
assembly states of the pore maturation process of XaxAB-like toxins, data about the dynamics of the
process remains absent. Biochemical dissection of subunit membrane activity in vitro was performed
on the YaxAB system [7], which supports a sequential mode of action on target membranes. In this
scenario, YaxA binds first and recruits YaxB to initiate pore assembly. In contrast, data on XaxAB
suggest that subunits dimerize first, followed by membrane insertion and further oligomerization [8].
Both routes are illustrated in Figure 4b, which eventually form protomeric, membrane-bound A-B
dimers. Once heterodimer formation is completed, the pathway might proceed analogous to ClyA,
with multimers of A-B dimers associating to form closed pore complexes [19].
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Figure 4. Assembly of one- and two-component ClyA-like PFTs. (a) Suggested pathway of ClyA pore
formation [19]. In presence of a membrane, the ClyA monomer (M) adopts its protomeric conformation
(P), and inserts into the membrane (1). Initial dimerization (2) leads to formation of multimers (3), which
associate rapidly to closed dodecameric pores (4). (b) Proposed pathway of XaxAB-like assemblies,
based on structural and biochemical data [7,8]. A-B dimers consecutively oligomerize on the target
membrane (1a) or in solution (1b). Once the A-B dimer is membrane inserted (2), it associates with
additional A-B units to form multimers (3) that assemble into closed pores (4).
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7. Assembly of Three-Component Membrane Pores: Nhe and Hbl Toxins

Many years of research have established important roles in virulence for the B. cereus tripartite
PFTs Nhe and Hbl [26–31]. These PFTs have been described as instrumental in conferring the diarrhea
type of food poisoning. Progress on obtaining structural data on the pore assemblies of these complex
toxins has been slow, while a body of biochemical investigations on Nhe in particular has substantiated
several common features of their sophisticated mode of action.

The sequence identity of the individual subunits suggests a functional correspondence between
NheA and Hbl-L2, NheB and Hbl-L1, as well as NheC and Hbl-B (Figure 1c). These striking similarities
mirror current models on how each subunit contributes to the mechanism of pore formation. Indeed,
pairwise binding experiments in solution could show stable complexes between NheB and NheC [32],
as well as Hbl-B and Hbl-L1 [33]. Moreover, experiments have suggested that NheA and Hbl-L2
recruitment represent the final step in pore assembly for Nhe and Hbl toxins, respectively [16,34].
Interestingly, NheA itself cannot insert into membranes, whereas a subcomplex of NheBC forms
permeable “pro-pores” in lipid bilayers [32]. These observations of consecutive association and
divergent membrane-binding abilities recall the YaxAB system. In this simpler two-component regime,
only YaxA is able to bind to membranes. Next, YaxB is recruited to initiate oligomerization of the
lytic pore [7]. However, whether this sequential mechanism also holds in vivo for either two- or
three-component toxins still remains to be clarified.

Intriguingly, biochemical analyses indicate a non-stoichiometric ratio between the three subunits
of the Nhe pore [29]. Highest lytic activity was observed when the three components were present
in a 10:10:1 stoichiometry (NheA:NheB:NheC). A study utilizing subunit and conformation-selective
antibodies has provided first insights into the interaction between NheA and NheB in the context of the
membrane-bound tripartite complex [35]. From a structural point of view, this suggests a 1:1 binding
of NheA and NheB (akin to the YaxA-YaxB protomer), with a single NheC subunit eventually fulfilling
a yet to be defined role. Consequently, molecular insights into these heterooligomeric supercomplexes
are essential to reconcile biochemical investigations on these fascinating and multifaceted assemblies.
Notably, the eukaryotic membrane attack complex (MAC), which adopts a spiral-shaped pore
composed of 24 subunits, is so far the only other known PFT with asymmetric subunit composition [36].
MAC features one copy each of C5b, C6, C7, C8α, C8β, C8γ plus 18 copies of C9.

8. Conclusions

With the arrival of cryo-EM, more structures of ClyA-like pores will be reported in the near
future. Amongst the established classes of PFTs, proteins of the ClyA-like family possess remarkable
compositional variety. Nevertheless, since representative monomer X-ray structures are available
for all known members of this extended toxin family, a common topological frame encompassing
the 5HB is unambiguously confirmed. Therefore and as a result of divergent pore-forming
mechanisms, encompassing homooligomeric, bipartite and tripartite systems, it can be expected
that the membrane-active regions outside the common 5HB core motif will feature major structural
distinctions (Figure 1a,b). Given the wide target spectrum of these toxins, including pathogens of
humans, plants, insects and nematodes, α-PFTs will certainly be an important focus of structural
infection biology in the coming years.
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