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Abstract: Alkaloids are usually thought to be responsible for protecting endophyte-infected (EI)
grasses from their herbivores. For EI grasses that produce few alkaloids, can endophyte infection
enhance their resistance to herbivores? Related studies are limited. In the Inner Mongolian steppe,
Achnatherum sibiricum is highly infected by Epichloë endophytes, but produces few alkaloids. Locusts
are the common insect herbivores of grasses. In this study, A. sibiricum was used as plant material.
Methyl jasmonate (MJ, when applied exogenously, can induce responses similar to herbivore damage)
treatment was performed. The effects of endophyte infection and MJ treatment on the resistance of
A. sibiricum to Locusta migratoria were studied. We found that locusts preferred EF (endophyte-free)
plants to EI plants in both choice and no-choice feeding experiments. Endophyte infection enhanced
the resistance of A. sibiricum to locusts. Endophyte infection decreased soluble sugar concentrations,
while it increased the total phenolic content and phenylalanine ammonia lyase (PAL) activity, which
may contribute to the resistance of A. sibiricum to locusts. There was an interaction effect between MJ
treatment and endophyte infection on the growth of the host. MJ treatment was a negative regulator
of the plant growth-promoting effects of endophyte infection. There was no interaction effect between
MJ treatment and endophyte infection on the defense characteristics of the host. In groups not
exposed to locusts, MJ treatment and endophyte infection had a similar effect in decreasing the
soluble sugar content, while increasing the total phenolic content and the PAL activity. In groups
exposed to locusts, the effect of MJ treatment on the above characteristics disappeared, while the effect
of endophyte infection became more obvious. All of these results suggest that even for endophytes
producing few alkaloids, they could still increase the resistance of native grasses to insect herbivores.
Furthermore, endophyte infection might mediate the defense responses of the host, independent of
jasmonic acid (JA) pathways.

Keywords: Achnatherum sibiricum; methyl jasmonate; Epichloë endophyte; resistance; soluble sugar
content; total phenolic

Key Contribution: Although endophytes infecting A. sibiricum produced few alkaloids, they still
enhanced the resistance of the host to insect herbivores. Endophyte infection and methyl jasmonate
treatment increased this resistance of the host independently.

1. Introduction

Epichloë endophyte species are characterized by their endophytic lifestyles in aerial parts of
cool-season grasses [1]. Up to 30% of cool-season grasses have been reported to be associated with
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Epichloë species [2]. In the symbionts, the grasses provide nutrients to the endophytes [3], and
the endophytes can benefit the grasses by stimulating growth [4,5], and increasing resistance to
abiotic and biotic stresses [6–11]. A remarkable characteristic of many Epichloë species is their ability
to produce biologically active alkaloids, which contribute to the deterrence of herbivores [12–14].
Up to now, four classes of alkaloids have been found, including lolines, peramines, ergot alkaloids,
and lolitrems [12–15].

Alkaloids are widely distributed in endophyte-infected grasses, but their profiles and
concentrations vary considerably [16–18]. Siegel et al. surveyed 48 grass samples infected by different
species of Epichloë, and they found that five symbionts had three classes of alkaloids, 19 contained
two, 19 contained one, and five did not contain alkaloids [16]. Can endophyte infection enhance the
herbivore deterrence of host plants that produce few alkaloids? The related studies are limited [19,20].

Jasmonates (jasmonic acid (JA) and methyl jasmonate (MJ)) are plant hormones synthesized
naturally in response to biotic and abiotic stresses, and they influence plant growth and
development [21–24]. The best-known function of jasmonates is their important role in herbivore-induced
responses in plants [25–28]. When applied exogenously, jasmonates induce responses that are similar to
those initiated following herbivore damage, and so provide a tool with which to induce defense-related
responses in plants without the removal of lamina tissue [29–33]. One of the most important
contributions of jasmonates is their stimulatory effect on plant secondary metabolites, including
alkaloids [34–36]. However, there are few studies on the interactions between plant responses
to jasmonates and to endophyte infection. The only relevant study was performed in tall fescue,
Lolium arundinaceum [32], with a high concentrations of alkaloids [14], and this study found that
endophyte-infected (EI) plants exposed to MJ were less resistant to aphids than unexposed plants,
which indicated that endophyte-associated defense was compromised by jasmonates. Therefore,
results from more endophyte-grass symbionts, producing few alkaloids, will expand upon the
previous findings.

Achnatherum sibiricum (L.) Keng is a caespitose perennial grass that is widely distributed in the
Inner Mongolia steppe of China. In our previous studies, we found that A. sibiricum is normally infected
by two species of endophytes, Epichloë gansuensis and Epichloë sibirica, in its native populations [37,38].
As for the alkaloids in endophyte-infected A. sibiricum, the above-mentioned four classes of alkaloids
in seeds and leaf sheaths have been analyzed, and no known alkaloids were detected in seeds or
endophyte-infected plants when grown under normal conditions. After MJ treatment, only peramine
was detected in one sample, and its concentration in the sheaths of infected plants was 0.4 mg/kg.
It has been reported that the peramine alkaloid is a deterrent, and toxic to invertebrate herbivores
only at levels greater than 3.0 mg/kg [17,18]. Therefore, the benefits of infection to the host related to
herbivore deterrence via endophyte-related alkaloids seem improbable in A. sibiricum. In the native
grasslands where A. sibiricum is distributed, locusts are common insect herbivores, and they often
cause great damage to grasses, and compete with domestic animals for food resources. In the present
study, endophyte-infected (EI) and endophyte-free (EF) A. sibiricum was used as the plant material.
MJ treatment, including three levels (no MJ control, CK; low MJ concentration, MJL; and high MJ
concentration, MJH), was performed. We addressed the following questions: (i) Does endophyte
infection have a positive effect on the resistance of A. sibiricum to herbivores? (ii) Is there an interaction
between MJ treatment and endophyte infection on the resistance of A. sibiricum to herbivores, and if so,
is it antagonistic or synergistic?

2. Results

2.1. Leaf Consumption by L. migratoria

In the choice feeding experiment, the amount of mass consumed by L. migratoria was significantly
affected by endophyte infection (F = 17.405, p < 0.01), as well as the interaction of the endophyte and
MJ treatment (F = 6.841, p = 0.010). The highest rate of consumption occurred in EF plants under the
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control treatment. Both endophyte infection and MJ treatment significantly reduced the palatability of
A. sibiricum. There was no difference in leaf consumption between the EI plants and the EF plants that
were sprayed with MJ, as shown in Figure 1A.
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Figure 1. Comparison of the leaf consumption of endophyte-infected (EI) or endophyte-free (EF)
Achnatherum sibiricum by the locusts, L. migratoria, in choice (A) and no-choice (B) tests under different
MJ (methyl jasmonate) treatments (CK, no MJ control; MJL, low MJ concentration; MJH, high MJ
concentration). Different lower-case letters denote means that are significantly different (p < 0.05).

In the no-choice feeding experiment, the amount of mass consumed by L. migratoria was
significantly affected by endophyte infection (F = 117.35, p < 0.01), MJ treatment (F = 8.688, p < 0.01),
and the interaction between endophyte infection and MJ treatment (F = 8.348, p < 0.01). Endophyte
infection significantly reduced the leaf consumption of the host plants, and this effect was not affected
by MJ treatment. For EF plants, the amount of biomass consumed by the locusts decreased with MJ
treatment (F = 9.560, p < 0.01), but a significant reduction occurred only in the MJH treatment, as shown
in Figure 1B.

2.2. Growth and Biomass

Plant height was only significantly affected by MJ treatment, as shown in Table 1, and MJ treatment
reduced plant height (CK = 31.16 cm; MJL = 27.98 cm; MJH = 25.64 cm). Leaf number, tiller number,
and shoot biomass were significantly affected by the interaction between MJ treatment and endophyte
infection, as shown in Table 1. MJ treatment inhibited the vegetative growth of both the EI and EF
plants, but the inhibition degree was stronger for the EI than the EF plants. MJL significantly reduced
the leaf number and shoot biomass of the EI plants, but a significant reduction in the leaf number and
shoot biomass of the EF plants occurred only with the MJH treatment. MJL and MJH resulted in a 15%
and 23% reduction in tiller number for the EF plants, respectively, and a 24% and 40% reduction in
tiller number for the EI plants, respectively, as shown in Figure 2.
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Table 1. Two-way ANOVA (analysis of variance) for the vegetative growth of endophyte-infected (EI)
or endophyte-free (EF) Achnatherum sibiricum under MJ treatments.

Treatment
Plant Height Leaf Number Tiller Number Shoot Biomass Root Biomass

F p F p F p F p F p

Endophyte
(E) 2.155 0.155 0.070 0.793 22.617 <0.01 11.170 <0.01 17.078 <0.01

MJ 12.007 <0.01 35.715 <0.01 181.574 <0.01 24.986 <0.01 0.350 0.708
E × MJ 1.199 0.319 3.449 0.048 19.904 <0.01 3.832 0.036 3.145 0.061

MJ denotes methyl jasmonate. F and p denote F-ratio and p-value produced in the ANOVA test, respectively.
Significant p-values are in bold.
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Figure 2. Comparison of leaf number (A), tiller number (B), and shoot biomass (C) of endophyte-free
(EF) and endophyte-infected (EI) Achnatherum sibiricum under different MJ (methyl jasmonate)
treatments (CK, no MJ control; MJL, low MJ concentration; MJH, high MJ concentration). Different
lower-case letters denote means that are significantly different (p < 0.05).

2.3. Physiological Variables

There was no significant interaction effect between endophyte infection and MJ treatment on
soluble sugar, total phenolics, phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO),
as shown in Table 2. In the no-feeding groups, soluble sugar content was significantly reduced by
both endophyte infection and MJ treatment, while PAL was significantly enhanced by both endophyte
infection and MJ treatment. Total phenolics and PPO were enhanced by endophyte infection and MJ
treatment, separately, as shown in Figure 3. After locust feeding, the above physiological variables were
significantly affected only by endophyte infection, but not by MJ treatment. Furthermore, endophyte
infection reduced the plants’ soluble sugar content, while it enhanced PPO and PAL activities, as shown
in Figure 4.

Table 2. Two-way ANOVA for the physiological responses of endophyte-infected (EI) or endophyte-free
(EF) Achnatherum sibiricum under MJ treatments.

Treatment
Soluble Sugar Total Phenolics

Phenylalanine
Ammonia Lyase

(PAL)

Polyphenol Oxidase
(PPO)

F p F p F p F p

No feeding

Endophyte
(E) 6.631 0.017 5.656 0.026 7.841 0.012 3.797 0.063

MJ 7.212 0.004 2.908 0.075 10.215 0.001 5.012 0.015
E × MJ 0.111 0.896 0.964 0.396 2.790 0.088 0.671 0.520

Feeding

E 8.529 0.008 2.555 0.124 10.780 0.003 6.589 0.019
MJ 0.572 0.573 0.215 0.808 1.377 0.272 1.735 0.205

E × MJ 0.651 0.531 0.466 0.634 2.043 0.152 0.347 0.711

MJ denotes methyl jasmonate. F and p denote F-ratio and p-value produced in the ANOVA test, respectively.
Significant p-values are in bold.
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Different lower-case letters denote means that are significantly different (p < 0.05).
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Figure 4. Comparison of soluble sugar content (A), phenylalanine ammonia lyase (PAL, B), and
polyphenol oxidase (PPO, C) of endophyte-infected (EI) or endophyte-free (EF) Achnatherum sibiricum
with locust feeding. Different lower-case letters denote means that are significantly different (p < 0.05).

3. Discussion

Epichloë endophytes can protect the host grass from insect herbivores, and endophyte-associated
alkaloids are thought to be primarily responsible for feeding deterrence [14,39–44]. In our experiments,
only peramine was detected in one sample, and its concentration is not high enough to deter
insects [17,18]. However, we found that infected A. sibiricum had significant resistance to locusts
in both the choice and no-choice tests, as shown in Figure 1, which suggests that aside from alkaloid
defense, additional mechanisms are likely to be involved in endophyte-associated insect deterrence.
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Phytophagous insects depend on plants for their nutrients, so that their growth and development
are affected directly by the makeup of the food source. Primary metabolites such as carbohydrates
are important nutrients for animal growth [45]. Secondary metabolites such as plant phenols play an
important role in the resistance of the host plant to herbivores [46,47]. In the present study, we found
that endophyte infection significantly increased the total phenolic content in the host plants, as shown
in Table 2 and Figure 3. Similar results have been reported in perennial ryegrass, Lolium perenne [48,49]
and tall fescue [50]. Moreover, PAL and PPO are enzymes that are involved in phenol oxidation,
and they are correlated with plant defense mechanisms [51]. Higher levels of PAL [52,53] and PPO
activity [54–56] have been reported to be associated with the resistance of plants to insects. Here,
the higher phenol concentration, PAL and PPO activity, combined with the lower soluble sugar
concentration of the EI leaves may be responsible for the higher locust deterrence of A. sibiricum.

JA is a ubiquitous wound hormone. Repeated wounding of mature leaves induces a rapid
increase in endogenous JA concentrations, thus resulting in reduced leaf growth [57]. Exogenous
applications of JA or MJ can mimic the temporal and quantitative characteristics of endogenous JA
responses [58–61]. In the present study, MJ treatment inhibited the vegetative growth of both the EI
and EF plants, as shown in Table 1 and Figure 2. This is in agreement with other studies that found
a reduction in both root growth [62,63] and shoot growth [64–66] under exogenous JA treatments.
On the contrary, jasmonates might act as negative regulators of plant primary metabolic products,
such as sugars [23,67–71] and as positive regulators of plant secondary metabolic products, such as
phenolic compounds [72]. In the present study, we also found that MJ treatment decreased soluble
sugar content, while it increased the PPO and PAL activities of the treated plants, as shown in Table 2
and Figure 3.

A JA-dependent pathway is mainly induced by chewing insects [73–75]. Additionally, these
hormones also regulate the interactions of plants with beneficial organisms, such as the symbiosis with
arbuscular mycorrhizal fungi (AMF) [76,77] and root endophytes [78]. For example, mycorrhization
had a positive effect on floral traits, but its benefits were lost with JA application. JA signaling
and JA biosynthesis mutants caused a significant reduction in Piriformospora indica colonization [78].
In the present study, MJ treatment reduced the growth-promoting effects of endophyte infection.
Similar results have also been found regarding the effects of the root endophyte P. indica on
Nicotiana attenuata [79]. Recently, P. indica has been found to promote the growth of JA-insensitive
mutants more strongly than wild-type (WT) rice [80]. All these results suggest that JA signaling is a
negative regulator of the plant growth-promoting effects induced by endophytes. It has been suggested
that auxin and gibberellic acid (GA) released by endophytic fungi may explain growth enhancements
in host plants [81–83]. The negative effect of JA on the growth-promoting effects of endophyte infection
might be mediated via antagonistic interactions with the auxin/GA signaling pathway [84–86].

In the present study, MJ treatment and endophyte infection had a similar effect in decreasing
plants’ soluble sugar contents, while increasing the total phenolic content and PAL activity in the
no-feeding groups, but there were no interactions between MJ treatment and endophyte infection,
as shown in Table 2 and Figure 3. In a previous study, JA inhibitors were found to suppress both
JA and volatile oil production, but fungal inoculation could still induce volatile oils [87]. All of
these results suggest that endophyte infection might mediate the defense responses of the host via
different pathways, such as H2O2-dependent pathways [87]. In the feeding groups, the effects of MJ
treatment on the above characteristics disappeared, while the effects of endophyte infection became
more obvious. The reason for this might be that endophyte pre-infection and late locust feeding led to
a much stronger induction of the plants’ defense responses, as similar results have also been found
in AMF-plant systems [77]. Certainly, interactions among endophytes, endogenous hormone levels,
and the host defense traits depend on the specific species, strain, or very likely, the plant-endophyte
combination, and further research using more combinations of plants and endophytes is still needed.
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4. Conclusions

In this study, we found that endophytes significantly improved the resistance of the host to
locusts, although the host produced few alkaloids. Here, the lower soluble sugar concentration,
higher total phenolics concentration, and higher PAL activity contributed to the higher resistance
of the host plants to the locusts. MJ treatment inhibited the vegetative growth of both the EI and
EF plants. MJ treatment is a negative regulator of the plant growth-promoting effects of endophyte
infection. However, regarding plants’ defense characteristics, the effects of endophyte infection may
be independent of JA pathways.

5. Materials and Methods

5.1. Plant Material and Treatment

Seeds of A. sibiricum were collected from the National Hulunber Grassland Ecosystem Observation
and Research Station of China. After examining the endophyte status of both seeds and seedlings
following staining with aniline blue [88], we found that the endophyte infection rate was 100%
(infection rate = the number of infected seedlings (or seeds)/total seedlings (or seeds) [88]).
Endophyte-free (EF) seeds were obtained by high temperature treatment [89]. The seeds were planted
in white plastic pots (20 cm in diameter and 20 cm in depth) filled with vermiculite. After 30 days’
cultivation, the endophyte infection status of each plant was further inspected, and 10 plants of
approximately equal size were maintained in each pot. Meantime, MJ treatments were processed.
The experiment had a completely randomized 2 × 3 × 2 factorial design, with endophyte infection
status (EI and EF), MJ treatment (no MJ control, CK; low MJ concentration, MJL; and high MJ
concentration, MJH), and locust feeding (no-feeding and feeding) as the variables. There were
six replicates per treatment group for the choice feeding experiment, and five replicates for the
no-choice feeding experiment. The experimental plants were watered and fertilized with modified
Hoagland nutrient solution as needed. The composition of the nutrient solution was (µM) [90]:
Ca(NO3)2 5000, KNO3 5000, MgSO4·7H2O 2500, KH2PO4 2000, Na2C10Hl4O3N2 29, FeSO4·7H2O 20,
H3BO3 45, MnSO4 6.6, ZnSO4·7H2O 0.8, H2MoO4 0.6, CuSO4·5H2O 0.4. The experiment was conducted
in a greenhouse at Nankai University, Tianjin, China, with temperatures ranging from 19 to 25 ◦C,
a relative humidity of 40–50%, and natural daylight.

5.2. Locusta Migratoria

Locust eggs were purchased from a local pet shop. Fourth instar nymphs were used in
the experiments.

5.3. Methyl Jasmonate (MJ) Treatment

MJ (purity: 98% HPLC-grade) was bought from 3B Pharmachem (Wuhan, China) International
Co., Ltd. MJ was firstly dissolved in absolute ethyl alcohol, and then dispersed in water to the
desired concentration. MJ was applied with a backpack sprayer to plants until run-off; if necessary,
the surrounding leaflets were shielded with a piece of paper. Control plants were sprayed with water
that contained alcohol at the same concentration used for the MJ treatments. Neighboring plants
were shielded from the spray with a large sheet of plastic. Plants were divided randomly into three
treatment groups: control (no MJ), low MJ (25 mg/L, 0.025 mg of MJ per plant), and high MJ (400 mg/L,
0.4 mg of MJ per plant).

5.4. Choice Feeding Experiment

After starvation for 24 h, the fourth-instar locust nymphs were transferred to transparent plastic
containers (19 cm height and 8 cm diameter). Locust nymphs were provided with 0.5 g leaf blades per
pot per treatment as food. These leaf blades were cut 24 h after MJ treatment, and were transferred to
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the above containers simultaneously with the locusts. There were 12 plastic containers in total. Eight
locusts were added to each of the six containers. Another six containers were used as a control to
calculate the reduced leaf quality due to evaporation. After 1 h of exposure to herbivory, plants were
harvested to record the fresh biomass.

5.5. No-Choice Feeding Experiment

Twenty-four hours after MJ treatment, we equipped every pot with a steel frame (45 cm height
and 20 cm diameter), which was covered with a nylon stocking. Three fourth-instar locust nymphs,
starved for 24 h, were introduced into half of these resulting cages. The feeding exposure lasted 3 h.
Before and after the feeding, we immediately measured the length (L) and maximum width (W) of
each leaf with a ruler. We estimated leaf area (S) according to the following equation: S = K (L × W),
where K is 0.9, based on our previous study using A. sibiricum plants of similar sizes (unpublished
data). At the same time, 10 fully expanded leaves per no-feeding pot were chosen to measure the area
and were weighed separately for determination of specific leaf area (SLA). Leaf mass consumed was
obtained from consumed leaf area divided by SLA.

5.6. Growth and Biomass

Growth variables were measured only in the no-feeding plants in the no-choice experiment.
Twenty days after MJ treatment, regular measurement of tiller number, leaf number, and shoot height
of the longest tiller were made on all ramets. Subsequently, the shoot and the root were harvested
separately. The harvested material was oven-dried at 80 ◦C for biomass measurement [91].

5.7. Physiological Variables

Physiological variables were sampled before and 24 h after no-choice feeding, separately.
The soluble sugar concentration was analyzed using the colorimetric method [92] [93]. The total
phenolic concentration was determined according to Malinowski et al. [50]. Polyphenol oxidase
(PPO) activities were determined spectrophotometrically according to the methods described in
Thaler et al. [94], and phenylalanine ammonia lyase (PAL) was determined using modified procedures
described by Assis et al. [95].

5.8. Statistical Analysis

All statistical analyses were performed with SPSS software (Version 21.0, SPSS, Chicago, IL,
USA, 2012). Endophyte status and MJ treatment were analyzed using two-way analysis of variance
(ANOVA). The differences between the means among different factors were compared using Duncan’s
multiple-range tests, and significance was set at p < 0.05.
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