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Abstract: Among plant fungal diseases, those affecting cereals represent a huge problem in
terms of food security and safety. Cereals, such as maize and wheat, are very often targets of
mycotoxigenic fungi. The limited availability of chemical plant protection products and physical
methods to control mycotoxigenic fungi and to reduce food and feed mycotoxin contamination
fosters alternative approaches, such as the use of beneficial fungi as an active ingredient of biological
control products. Competitive interactions, including both exploitation and interference competition,
between pathogenic and beneficial fungi, are generally recognized as mechanisms to control plant
pathogens populations and to manage plant diseases. In the present review, two examples concerning
the use of competitive beneficial filamentous fungi for the management of cereal diseases are discussed.
The authors retrace the history of the well-established use of non-aflatoxigenic isolates of Aspergillus
flavus to prevent aflatoxin contamination in maize and give an overview of the potential use of
competitive beneficial filamentous fungi to manage Fusarium Head Blight on wheat and mitigate
fusaria toxin contamination. Although important steps have been made towards the development
of microorganisms as active ingredients of plant protection products, a reasoned revision of the
registration rules is needed to significantly reduce the chemical based plant protection products
in agriculture.

Keywords: beneficial filamentous fungi; Aspergillus flavus; Fusarium graminearum; Trichoderma;
Fusarium Head Blight; aflatoxin; biocontrol agent; plant protection products; maize; wheat

Key Contribution: The present review focuses on the use of filamentous fungi able to compete for
space and nutrients (exploitation competition) and/or combat pathogen (interference competition) for
the biocontrol of aflatoxin producing fungi in maize and of Fusarium Head Blight (FHB) causal agents
on wheat. The use of competitive beneficial isolates in the field represents a valid tool to prevent risks
associated with mycotoxin contamination in these two staple crops.

1. Introduction

1.1. Food Security and Food Safety: The Two Big Challenges towards 2050

World population may increase from 6.6 billion (in 2009) to 10.5 billion in 2050, based on a
projection in 2012 by Alexandratos and Bruinsma (FAO) “World agriculture towards 2030/2050:
the 2012 revision”. In some developing countries, particular some African ones, in 2050, populations
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are projected to be sizeable multiples of current ones, thus raising the serious issue of food (in)security
because of constraints on increases in food production [1].

In this scenario, food security is one of the main challenges the world will have to confront in the
next few years. At the same time, food safety, i.e., “The assurance that food will not cause harm to the
consumer when it is prepared and/or eaten according to its intended use” (CODEX, 2009) is another
huge issue. Food safety does not imply only the use of food not harmful for consumers but, in a more
global view, it implies also the development of sustainable production tools with a low impact for the
environment [2]. This is perfectly in line with the EU Directive 2009/128/EC (EU 2009/128/EC), where
rules for the sustainable use of pesticides are listed in order to reduce risks and impacts on people’s
health and on the environment. Furthermore, developing new tools for a sustainable agriculture
perfectly fits with the public concerns constantly addressed to safe, high quality, and pesticide-free
food and feed [3].

Among all the causes that can be attributed to decreasing crop productivity, yield loss due to plant
pathogens plays a crucial role since plant diseases are, directly or indirectly, responsible for losses of an
estimated 40 million every year [4], corresponding to 20–40% of total losses in crop yield [5].

Within the scenario of plant disease management, biocontrol based on the use of beneficial
microorganisms, such as filamentous fungi, bacteria, and yeasts, is a valid and eco-friendly alternative
to chemical based plant protection products. Biocontrol approaches can be used alone or as part of an
integrated approach, in combination with chemical based pesticides and/or resistant cultivars resulting
from breeding strategies [6].

1.2. Use of Beneficial Filamentous Fungi for a Sustainable Crop Protection

Starting in the 1970s, research on biological control has been intensified and much information as
well as implementation of practical use has been reported [7,8]. Although biocontrol of plant disease is
far from widespread, if compared with chemical based plant protection control, many commercial
products containing one or more microorganisms as bioactive ingredients are currently commercially
available [3,9]. In addition, new research methods, the so called “omics” approaches, are now available,
thus leading to greater knowledge of the mechanisms of the actions of biocontrol agents and of their
interaction with pathogens, plants, and the environment [10].

Beneficial microorganisms can interact with plant pathogens by direct or indirect mechanisms;
commonly, more than one mechanism of action is involved. However, independently of the strategy
used by the biocontrol agent, the result is a reduction in plant disease symptoms or toxic metabolites
released, as well as an improvement in yield quantity and quality [11,12].

As regards beneficial filamentous fungi, mechanisms such as mycoparasitism, antibiosis, and
competition are those which most frequently directly affect pathogen structures and activity. Instead,
the induction of resistance, i.e., the stimulation of plant defense mechanisms through a cross talk
involving signal molecules produced by the biocontrol agent, leads to a reduction of the disease
without a direct physical contact between the biocontrol agent and the pathogen [8,13].

During mycoparasitic interactions, one living filamentous fungus can directly use another fungus
as a nutrient source with necrotrophic or biotrophic parasitism. Necrotrophic (destructive) agent
actions result in the death and destruction of one or more components of the host mycelium while, in
biotrophic (balanced) parasitism, a living host structure favors parasite activity [14]. Necrotrophic
parasites are usually more aggressive, have a wide host range, and exhibit a relatively non-specialized
mode of parasitism compared to biotrophic ones. In these filamentous fungi, after the first two phases
of the mycoparasitic interaction, consisting of (i) a directional growth of the antagonist towards the prey
and (ii) the establishment of physical contact between the hyphae of the two fungi, the antagonistic
activity is due to the production of antibiotics, toxins, or lytic enzymes that kill the pathogen [15].

The release of antibiotics and/or lytic enzymes directly affecting pathogen growth and
survival-without contact between the antagonist and the pathogen- is another antagonistic strategy
of beneficial fungi [16]. At the same time, the involvement of hydrolytic enzymes, also able to
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act synergistically with fungitoxic antibiotics, has been demonstrated in a large group of beneficial
filamentous fungi, such as Trichoderma spp. [17,18].

The last direct mechanism used by biocontrol agents is competition for space and nutrients.
In 1989, Keddy defined competition as “The negative effects which one organism has upon another
by consuming, or controlling access to, a resource that is limited in availability” [19]. This definition
implies two types of competition: by consumption of the resource (exploitation competition) and by
controlling access to it (interference competition). Exploitation competition occurs when one organism,
by exploiting the resource, reduces its availability to another organism and no contact between them
is necessary. It occurs when two or more organisms have the same nutritional requirement and the
organism that uses the resource more efficiently will outcompete the less efficient competitor [20].
In the case of fungi, a good competitor should have a good competitive saprotrophic ability and the
ability to rapidly germinate and grow from spores [21].

Interference competition is a quite different mechanism that results in a monopolization of the
habitat by antagonistic combat [19]. This kind of competition can be physical, if it involves a direct
hyphal contact, or involves the production of soluble or volatile compounds for at a distance interaction
with hyphal growth, or of enzymes causing the lysis of the hyphae of one fungus by another [21].

1.3. Mycotoxigenic Fungi: The Main Risk Affecting Cereal Production

According to a recent FAO forecast, one of the main targets of global agricultural production is
staple foods, i.e., what is eaten regularly, and in such quantities as to constitute the principal part
of a diet and to supply a major proportion of energy and nutrient needs. Cereals, particularly rice,
wheat, and maize, represent two-third of the world’s food energy intake and are the staple food of
over 4000 million people. For example, cereals represent 46% of diets, in terms of energy, of Africans,
whereas in Europe, they represent 26% [22].

Cereals are the principal nutritional source for a large part of the world’s population, but they
are also the target of many diseases, mostly caused by fungi, and therefore, a risk for both food
security and safety. Plant pathogenic fungi are the main causes of serious diseases affecting plants [10],
leading to significant reductions in yield quantity and quality, and consequently, economic losses
worldwide. However, devastating plant epidemics in less developed countries frequently affect
crops destined directly for human consumption and not for trade and have a social impact definitely
outstripping their economic impact [23]. It is estimated that around 30% of emerging diseases are
caused by fungi [24] and among this large number of specialized organisms, many are also able
to produce mycotoxins, naturally occurring secondary metabolites, which, in some cases, can be
extremely harmful to humans and animals, mainly by ingestion. Mycotoxins cause a variety of health
problems, from acute poisoning to long-term consequences; depending on the compound, genotoxicity,
carcinogenicity, immunodepression, estrogenic effects, and loss of appetite are only the main adverse
effects that can be mentioned. Concern about mycotoxins and efforts aimed at minimizing consumer
exposure are thus generally justifiable [25]. Regulations fixing the maximum content of mycotoxins in
agricultural products, admitted or suggested, are applied almost worldwide as basic tools for consumer
protection [26], and cereals, maize, and small grain, are included regarding several mycotoxins (Table 1).
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Table 1. Maximum levels of some mycotoxins occurring in maize and wheat (table modified from
Eskola et al., 2019 [27]).

Mycotoxin Food Crop Established Levels
(µg/kg)

Codex Alimentarius Standard

Fumonisins
(FB1+FB2) Unprocessed maize 4000

Deoxynivalenol Cereal grains (wheat, maize, and barley) for processing 2000
Ochratoxin A Unprocessed wheat, barley, rye 5

European Union: Maximum and Guidance Levels

Aflatoxins (total) All cereals except maize and rice 4
Maize and rice for processing 10

Fumonisins (FB1+FB2) Unprocessed maize 4000
Maize intended for direct human consumption 1000

Deoxynivalenol Unprocessed durum wheat, oats, maize 1750
Ochratoxin A Unprocessed cereals 5

Cereals intended for direct human consumption 3
Zearalenone Unprocessed cereals other than maize 100

Unprocessed maize 350
Cereals intended for direct human consumption 75
Maize intended for direct human consumption 100

T-2/HT-2 Unprocessed barley and maize 200 *
Unprocessed wheat, rye, and other cereals 100 *

Maize intended for direct human consumption 100 *
Other cereals intended for direct human consumption 50 *

USA: Action and Guidance Levels

Aflatoxin B1 All food crops 20
Fumonisins (FB1+FB2+FB3) Maize 4000 *

Canada: Guidance Levels

Deoxynivalenol Unprocessed soft wheat 2000 *

Japan: Maximum and Provisional Maximum Levels

Aflatoxin B1 All food crops 10
Deoxynivalenol Wheat 1100 **

China: Maximum and Guidance Levels

Aflatoxin B1 Maize 20
Wheat, barley, other cereals (no rice) 5

Deoxynivalenol Maize, barley, wheat, other cereals 1000 *
Ochratoxin A Cereals 5
Zearalenone Wheat and maize 60 *

Aflatoxins (total) = AFB1, AFB2, AFG1, and AFG2, * Guidance level, ** Provisional maximum levels.

Aflatoxins (AFs), mainly produced by Aspergillus flavus [28], are a matter of concern in maize, as
for many other crops, such as nuts (peanuts, pistachio nuts), figs, almond, chili peppers, sorghum,
sunflower, cotton, typically in tropical subtropical areas [29–33]. Recently AFs have been for the first
time also reported in wild fruit in Zambia [34]. AFs may be present in many other crops/fruits not
yet investigated.

Aflatoxin B1 (AFB1), classified by the International Agency for Research on Cancer (IARC) is a
class 1 toxin, the highest hazard classification, confirmed carcinogenic for humans. It is also genotoxic
and carry over from animals fed with contaminated feed to milk has been confirmed. Very strict limits
have therefore been fixed both for food and dairy animal feed in Europe (5 µg/kg of AFB1), but AFs
are also regulated almost everywhere. Toxins produced by Fusarium spp. are also among the most
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relevant natural contaminants in maize and wheat; fumonisins (FUMs), with Fusarium verticillioides
and F. proliferatum as main producers, substantially coexist with maize, while deoxynivalenol (DON)
and zearalenone (ZEN), produced mainly by F. graminearum, are prevalent in mild and rainy areas
during maize growing. Fusarium graminearum is also the main actor in the Fusaria complex causing
FHB of small grains.

The areas of prevalence of each mycotoxin are currently changing, due to climate change, and
a wide variability in the quality and quantity of contamination has recently been reported [35,36],
suggesting that mycotoxins are the most important food safety hazard affected by climate change [37].
Aflatoxins, still mentioned as a cause of death in African countries [38–42] are now spreading over a
wider area, especially in Europe [43–46], and an increase in the risk of contamination has also been
predicted in the future [47].

According to a recent survey undertaken by the BIOMIN Company on cereals and derived
cereal products, DON (66%), FUMs (56%), and ZEN (53%) are the most prevalent mycotoxins in the
world [48].

As regards the geographic origin of reported mycotoxin contamination, on maize, the AF/FUM
mixture is the most prevalent in Africa, Asia, and South America. However, because of the movement
of agricultural commodities around the globe, no region of the world is aflatoxin-free. In Europe and
North America, more temperate and cold regions, mixtures of trichothecenes and a combination of
trichothecenes and ZEN are the most common [29].

In the present review, two examples concerning the use of competitive beneficial filamentous
fungi for the management of cereal diseases will be discussed, focusing on mycotoxins producing
fungi. The authors will retrace the history of the well-established use of non-aflatoxigenic isolates of
A. flavus to control aflatoxigenic isolates and AF contamination in maize, and will give an overview of
the potential use of competitive beneficial filamentous fungi to manage FHB causal agents in wheat.

2. Aspergillus flavus and Aflatoxins in Maize

Maize (Zea mays) production in the period 2013–2017 was slightly above 1,000 million metric tons,
the most produced cereal in the world and with about 192 million ha the second for growing area
(FAOstat http://www.fao.org/faostat/en/#home). More than 60% of global production is used for feed
purposes and the rest is used for food or industrial uses [49]. In Africa, maize is principally used as
food and it is considered a staple, since it forms the largest percentage of calorie intake in national
diets [50].

Aspergillus flavus is a ubiquitous fungus and is considered the main cause of AF contamination
throughout the world [28]. It survives as sclerotia in soil and mycelium or sclerotia in crop debris; conidia
are air dispersed and ear infection occurs after silk emergence, more efficiently at silk browning [51,52].
Damage caused by insects, such as the European corn borer (Ostrinia nubilalis) are reported to contribute
significantly to kernel invasion and therefore AF accumulation [53–56]. Aflatoxins are commonly
detected in kernels during ripening, with a rapid increase when kernel humidity drops below 30% [57].
Even if other factors than kernel water content may contribute, the final ripening period, when water
activity goes below 95%, is the most suitable for rapid AF accumulation [58].

Aflatoxin production behavior varies widely between strains; strains may be able to synthetize
AFB1 and AFB2 and/or cyclopiazonic acid (CPA), another mycotoxin, or completely lack production
of mycotoxins. Strains that are able to produce AFs are generally called aflatoxigenic or toxigenic
and strains that are not able non-aflatoxigenic or atoxigenic. Populations of A. flavus can be classified
based on the size of the sclerotia produced in L-morphotype, sclerotia size >400 m, and S-morphotype,
sclerotia size <400 m [59]. On average S-morphotypes are able to produce higher quantities of AFs
compared to the L-morphotype [60]. Each morphotype is further classified in Vegetative Compatibility
Groups (VCGs) controlled by a series of het loci [61,62]. Probably the vegetative compatibility system
has been developed by the fungus to avoid the transmission of deleterious viruses and/or damaged
genetic materials to members that do not belong to the same VCG [63–66]. Only members that belong
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to the same VCG can exchange genetic material after successful hyphal fusion and formation of the
heterokaryon [61]. Characters are better maintained among members that belong to the same VCG
compared to members that belong to different VCGs. Aspergillus flavus is heterothallic with one of two
mating-type alleles, MAT1-1 and MAT1-2 carried by each single individual [67].

Twenty-five genes are involved in the biosynthesis of AFs. These genes in A. flavus are clustered
within a 70-kb DNA in a subtelomeric region in chromosome III [68], and three genes encoding for the
fatty acid synthase (FAS) alpha (5.8 kb) and beta (5.1 kb) subunits and the polyketide synthase (PKS;
6.6 kb) occupies around 25% of the region [69]. The AF biosynthesis genes are enclosed within a 2-kb
DNA region with no specific genes (5′ end) and four genes that codify for the sugar utilization gene (3′

end) [69,70]. In the toxigenic strain of A. flavus all the 25 genes are present. Conversely, atoxigenic
strains can lack the production of AFs because one or more, sometimes all, genes are missing or a
single nucleotide polymorphism (SNP) in a key gene for AF biosynthesis, polyketide synthase, is
present [68,71–75].

Similar to AF genes, CPA genes are organized in a cluster. The region of 87-kb DNA with 18
predicted genes is located beyond the AF gene cluster suggesting a physical link between the two
clusters [76].

At least 16 types of AFs have been characterized [69] and AFB1 has been recognized as the most
toxic natural compound known due its cancerogenic, immunosuppressive, and teratogenic effect
on humans and animals [77]. The effects of AFs can be chronic, as a consequence of the intake of
small amounts for long periods, or acute, caused by the consumption of highly contaminated food.
The consumption of highly AF contaminated food can in some cases be fatal, as recently happened in
Kenya and Tanzania, especially for children or immunocompromised people [38–42].

Aflatoxin contamination is a main concern for its impact on health, but it also poses a threat for
trade. Many countries have fixed strict limits for these toxins (Table 1). It is estimated that the African
continent loses in exports more than $650 million [78] every year because it is not able to meet the
standards fixed by markets such as the European one.

2.1. Mitigation Actions

As aforementioned, AFs are mainly produced by A. flavus and Aspergillus parasiticus and maize is
one of the crops most prone to contamination. Many strategies’ either pre- or post-harvest, have been
investigated to reduce and/or prevent AF contamination in maize.

Good agricultural and management practices have been developed and they contribute to mitigate
AF contamination, but they are not effective enough for safe maize production [30]. Although
considerable investment and great efforts have been made to develop resistant varieties, acceptable
results on large scale trials have not yet been achieved [79,80]. The effect of chemical based fungicides,
with different modes of action, on mycelial growth and conidial germination of A. flavus has been
evaluated in vitro and in the field. Although in vitro some fungicides totally block mycelial growth
and conidial germination [81,82], in the field poor results have been reported and this approach was
almost abandoned for many years. Recently, two chemical-based fungicides were tested in field
trials, prothioconazole and boscalid, and they reduced A. flavus contamination at values of 75% and
56%, respectively; however, AF contamination was not considered in the study [83]. Another study
considered a mixture of prothioconazole and tebuconazole for AF reduction in maize grown in north
Italy. Fungicide treatment reduced the AF content, compared to the untreated maize, by 62% and 72%
when applied 7 and 15 days after silking, respectively. Although the authors reported that field trials
were conducted for 4 years and in two locations (eight field trials in total), only AF data for two fields
have been reported [84]. Therefore, those recent studies are not sufficient to support the efficacy of
chemical based fungicides in reducing AF contamination.
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2.2. Competitive Exclusion of Aspergillus flavus

In the late 1980s, it was demonstrated that an atoxigenic strain of A. flavus, when co-inoculated on
cotton bolts with a toxigenic strain of A. flavus, was able to significantly reduce AF content compared
to cotton bolts inoculated exclusively with the toxigenic strain [85]. This experiment opened the way
to a most promising and, over the years, what has been confirmed as the most effective technology in
reducing pre-harvest AF contamination in crops.

Aspergillus flavus AF36 was the first atoxigenic A. flavus strain-based product registered worldwide
for the biological control of AFs in the field. The product was registered in the USA by the Environmental
Protection Agency (EPA) in 2003 [86] for use on cotton and there were subsequent amendments for
use on maize, pistachio, almond, and fig [87,88]. Aspergillus flavus strain NRRL18543 is the active
ingredient and it is atoxigenic because of a SNP, that generates a premature stop codon in the sequence,
on the polyketide synthase gene of the AF biosynthesis pathway [71]. Although the strain NRRL18583
has a full and functional CPA cluster, to date no solid data have been published to demonstrate that
a crop treated with the biocontrol product has a higher content of CPA compared to an untreated
one. Considering that A. flavus AF36 has been used for more than 20 years, the first commercial field
treatment, on a limited scale, was authorized by the EPA in 1996, registration released in 2003, and is
still active, it is reasonable to consider that robust data on the absence of a positive correlation between
the treatment and the content of CPA would have been presented.

In 2004, EPA registered also Aflaguard, another biocontrol product for AF reduction in maize and
groundnuts [89]. In this case the active ingredient, strain NRRL21882 completely lacks both AF and
CPA clusters [90].

Aflasafe (www.aflasafe.com) is the trade name of biocontrol products developed for African
countries by the International Institute of Tropical Agriculture (IITA) in partnership with the US
Department of Agriculture-Agricultural Research Service (USDA-ARS). To date, Aflasafe products have
been developed, registered, and made commercially available for application in maize and groundnuts
in Nigeria (2014), Kenya (2015), Senegal and The Gambia (2016), Burkina Faso (2017), Zambia (2018),
Tanzania (2018), and Mozambique (2019) (R. Bandyopadhyay, personal communication, 2019). Aflasafe
products are at different stages of development also in Malawi, Rwanda, Uganda, Benin, Burundi,
Cameroon, Democratic Republic of Congo, Ethiopia, Mali, and Zimbabwe (www.aflasafe.com).

In Italy, the selection of Italian atoxigenic strains to use as a biocontrol of AF in maize began
in 2003 [75,91,92] and the first field trials were conducted in 2012 [12]. Following positive results
gained in field trials, the commercial rights of the atoxigenic A. flavus strain MUCL54911 [12] were
acquired by Pioneer Hi-Breed Italia (now Corteva Agriscience) and used to develop a biocontrol
product named AF-X1. The product has been authorized in Italy for emergency use to control AF
contamination in maize, intended for feed, based on art. 53 of Regulation 1107/2009 (EC, 2009) for
4 consecutive years (2016–2019, http://www.salute.gov.it/portale/temi/p2_6.jsp?lingua=italiano&id=

1110&area=fitosanitari&menu=autorizzazioni).
The development of atoxigenic A. flavus based-strain products is also in progress in

Argentina [93,94], Australia [95], China [96,97], Iran [98], and Thailand [99], but also in Romania,
Serbia, Pakistan, Spain, Mexico, and Costa Rica [99].

The use of atoxigenic strains of A. flavus has been demonstrated to be significantly effective in
reducing AF contamination in maize fields [12,94,100,101] and in other crops [31–33,102]; a mean
AF reduction of around 80%, but also greater than 90%, in treated fields, was reported [12,41,103].
In addition, efficacy is enhanced in conducive conditions for A. flavus and AF production [104];
therefore, in more challenging years, with high AF contamination, the distribution of biocontrol
products based on atoxigenic strains contributes significantly to making products compliant with
legislation in force [105].

Different atoxigenic A. flavus based biocontrol products have been developed throughout the
world; all of them have in common that they are native A. flavus strains and have been selected in the
area where they are going to be used.

www.aflasafe.com
www.aflasafe.com
http://www.salute.gov.it/portale/temi/p2_6.jsp?lingua=italiano&id=1110&area=fitosanitari&menu=autorizzazioni
http://www.salute.gov.it/portale/temi/p2_6.jsp?lingua=italiano&id=1110&area=fitosanitari&menu=autorizzazioni
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2.3. Strain Selection Rationale

Atoxigenic strains of A. flavus are able to displace toxigenic strains through a mechanism called
“competitive exclusion” [106]. Therefore, toxigenic strains are excluded, or at least considerably
limited in their development, because of the competitiveness of the atoxigenic strains applied.
The competitiveness of atoxigenic towards toxigenic strains varies significantly between strains and
it requires a wide adaptation to the agroecological zones to be effective in field [107]. It happens
that the most effective strain in in vitro competition trials is scarcely effective in field in reducing AF
production [12,103]. Wide distribution in an agroecological zone tests the wide adaptation [108] and it
is a prerequisite indicator for competitiveness in the field [41].

Therefore, strain selection is crucial to obtain an effective biocontrol agent. Native strains are
naturally the best adapted to an agroecological zone; their prevalence in different years, in the same
zone, further supports their fitness. In vitro preliminary results and in field confirmations must support
the selection procedure, after the polyphasic confirmation of atoxigenicity [12,75,92,103].

It is a common question in the scientific community if the competitive exclusion mechanism alone
can justify the strong impact of atoxigenic A. flavus on AF production. A recent work suggested a role
of extrolites and volatiles produced by atoxigenic strains. It is an interesting topic, but a preliminary
result that needs to be confirmed and better supported by scientific data [109].

2.4. Impact on Mycotoxins Produced by Fusaria

The field application of a living organism, atoxigenic strain of A. flavus, causes some concern about
the effect on other microorganisms, principally mycotoxin producing ones, present in the treated crop.
The main concern in maize is the effect on Fusaria population and FUM production [110]. Fumonisin
content was quantified in 136 maize fields treated with Aflasafe in two states in Nigeria; FUM content
in neighboring untreated control plots was not statistically different from the FUM content detected in
the treated plot [41].

Similar results were also obtained in Italy. Mauro et al. reported no significant difference in FUM
content between maize treated with an atoxigenic strain and an untreated control [12].

3. Fusarium Head Blight on Wheat

With a production of about 742 million tonnes (mt) over the 5-year period from 2013 to 2017
(FAOStat http://www.fao.org/faostat/en/#home), wheat is the third most important crop in terms of
global production. This crop is a major source of starch and energy, as well as of other components
essential or beneficial for health and nowadays included in the diet of the so called “western
lifestyle” [111].

Different diseases, such as rusts (wheat stem rust, caused by Puccinia graminis f. sp. tritici Ericks
and Henn; wheat stripe rust caused by P. striiformis Westend. f. sp. tritici; wheat leaf rust caused by
Puccinia triticina Eriks) and blotches (Zymoseptoria tritici, Parastagonospora nodorum, and Pyrenophora
tritici-repentis, causal agents of Septoria tritici blotch, Septoria nodorum blotch and tan spot, respectively)
can compromise wheat production, as well as recently emerged or relatively unnoticed diseases, such as
wheat blast and spot blotch [112]. However, FHB, also known as wheat scab or ear blight, is identified
as one of the most serious problems in almost all the wheat growing regions in the world. Fusarium
Head Blight is caused by a complex of fungal species, around 20, mostly belonging to Fusarium genus,
with F. graminearum species complex (FGSC) and related species, such as F. avenaceum, F. culmorum,
and F. poae [113], as the major ones associated with the disease. Other species such as F. acuminatum, F.
chlamydosporum, F. equiseti, F. langsethiae, F. sporotrichiodes, F. cerealis, and F. tricinctum can be considered
less important in the global incidence of this disease [114–118].

From an epidemiological point of view, cultural debris, such as wheat straw, and heads at anthesis
are crucial in the disease cycle. The saprotrophic lifestyle of FHB causal agents allows the pathogens to
survive on crop residues [119] in the absence of the host by developing macroconidia or, as in the case
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of F. graminearum, perithecia, where ascospores are produced. Both these asexual and sexual spores
constitute the primary inoculum causing infection of wheat heads at flowering. Fusarium Head Blight
infection is favored by long periods of high moisture or relative humidity (>90%) and moderately
warm temperatures (between 15 to 30 ◦C). If these conditions occur before, during, and after flowering,
they can support inoculum production and floret infection as well as the colonization of developing
grains [120,121].

Fusarium Head Blight can affect both food security and safety: the disease is not only responsible
for significant yield loss—by up to 30%—and for the reduction of kernel size and weight, germination
rate, and protein content, but the main concern is the risk of mycotoxin contamination of grains [122].
Trichothecenes, such as DON and its acetylated forms, nivalenol (NIV) and T2/HT2 toxins, together
with ZEN are among the main mycotoxins associated with FHB in wheat. These secondary metabolites
are dangerous contaminants of food and feed and affect human and animal health [123]. Trichothecenes
can inhibit eukaryotic protein synthesis, thus altering polypeptide chain initiation or elongation, or
can inhibit polypeptide chain termination. In addition, this class of mycotoxins affects mitochondrial
protein synthesis, interacts with protein sulfhydryl groups and eventually produces free radicals that
generate harmful levels of oxidative stress [124]. Harvested grain may also be contaminated with ZEN,
a non-steroidal pseudo-estrogenic mycotoxin, experimentally associated with estrogenic syndromes in
pigs and experimental animals [125].

Different strategies have been proposed to manage FHB. In the specific case of FHB, fungicides do
not represent a winning strategy to completely control the disease and prevent mycotoxin contamination;
furthermore, other approaches, such as the use of resistant cultivars as well as agronomical practices,
cannot assure complete protection of the crop [3].

Beneficial Competitive Filamentous Fungi for the Biocontrol of Fusarium Head Blight

In general terms, the use of beneficial microorganisms, such as filamentous fungi, in both biological
and integrated disease management strategies, is a valid tool to confront the consequences of an
exasperated and repeated use of chemical based plant protection products. Thus, biological control
of F. graminearum, and other species involved in FHB would be a valuable addition to the available
pre-harvest preventive measures like crop rotation, tillage, cultivar resistance, forecasting systems,
or chemical based plant protection products that, as listed before, are often not sufficient to control
FHB [126]. Despite intense research concerning the possible use of filamentous fungi as biocontrol
agents against FHB, as far as we know, no commercial product, containing a competitive mold as a
bioactive ingredient, is currently commercially available for the management of this disease.

From an ecological point of view, the main FHB causal agent, F. graminearum, is considered an
r-strategist. This means that it can grow quite rapidly when simple nutrients are available and that
it is a poor competitor over time, if compared with other Fusarium species or other fungi [121]. It is,
therefore, possible to limit the pathogen’s survival and growth on residues by adding other fungi that
can outcompete for substrates [3,127]. This makes the application of beneficial filamentous fungi on
cultural debris a sharp strategy to reduce FHB development and to prevent the risk of mycotoxin
contamination of grain.

Examples of competitive filamentous fungi that are able to access the territory previously held by
the pathogen when applied on cultural residues are available, while, as far as we know, no beneficial
yeasts are reported to be effective as competitors for cultural debris against FHB causal agents. Isolates
of Clonostachys rosea and Microsphaeropsis spp. seem to be very promising competitive filamentous
fungi, even if those belonging to Trichoderma genus are the most efficient to outcompete with FHB
causal agents and to reduce pathogen growth and sporulation on cultural debris [128,129]. In 2005,
Luongo et al. described a screening of possible wheat straw competitors isolated from crop debris,
resulting in the ability of C. rosea to suppress sporulation of F. graminearum and F. culmorum under
controlled conditions [130].
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The positive effect of C. rosea was confirmed later, when Gilbert and Haber showed a reduction of
F. graminearum (Gibberella zeae) perithecia development on different substrates [116]. Clonostachys rosea
strain ACM941—isolated in Manitoba, Canada—was tested under greenhouse and field conditions
exhibiting an ability to reduce the FHB index by 46% and to increase crop productivity by 7%, when
compared with chemical-based fungicide treatments. In addition, a significant reduction of DON
contamination in grain (up to 33%) was reported after application of this isolate onto the heads of
flowering wheat [131,132].

In 2015, Schöneberg et al. demonstrated the ability of C. rosea to compete with F. graminearum
(G. zeae) for wheat straw possession, where perithecia and ascospores were affected both when the
antagonist was inoculated before and after the pathogen; in the latter case, the competition allowed a
reduction of perithecia and ascospore production by 73 and 100%, respectively [133].

Certain mycoparasitic species are characterized by the ability to tolerate high levels of toxic
metabolites produced by the fungal prey during interaction [134]. In addition to its mycoparasitic
and saprotrophic competitive lifestyle, C. rosea IK726 is able to detoxify ZEN through the enzyme
zearalenone lactonohydrolase (ZHD101) as part of antagonistic interaction with F. graminearum [135].
Since C. rosea genome harbors a large repertoire of putative biosynthetic gene clusters encoding
a plethora of secondary metabolite synthases, secretion of antifungal metabolites combined with
tolerance to xenobiotics was suggested as one of the principal modes of C. rosea antagonism against
Fusarium spp. [136].

When transcriptomic analyses were performed with the aim to better understand the underlying
mechanisms resulting in the successful biocontrol activity of C. rosea, both common and specific gene
expression was detected during interactions with F. graminearum. Genes encoding proteins involved in
membrane transport, biosynthesis of secondary metabolites and carbohydrate-active enzymes were
induced during the mycoparasitic attack as well as facilitator superfamily (MFS) transporters (54% of
the induced genes), with predicted functions in drug resistance and transport of carbohydrates and
small organic compounds [137].

Application of Microsphaeropsis spp. to crop residues in the field as post-harvest or pre-planting
treatment significantly reduced the number of perithecia produced on two sampling dates, thus
reducing the initial inoculum of F. graminearum (G. zeae) [128].

Concerning Trichoderma, literature is rich with examples illustrating the use of these fungi as
competitors for cultural debris in the biocontrol of FHB. In addition to its ability to reduce F. graminearum
and F. culmorum growth [138], and to control FHB development under field conditions [139], T. gamsii
T6085 is a good competitor for natural substrates where a pathogen is growing and it reduces mycotoxin
production, thus, demonstrating that good competitors not only reduce pathogen growth, but they are
extremely efficient in reducing mycotoxin-associated risks [140]. Recently, the ability of this beneficial
isolate to colonize wheat straw and, as a consequence, to significantly reduce F. graminearum growth and
perithecia development was demonstrated (Sarrocco, personal communication). To follow biopesticide
science evolution, and to confront the sometimes erratic effects of biocontrol products, T. gamsii T6085
has been tested in combination with another good competitor, F. oxysporum [141], in a multitrophic crop
protection strategy. The combined effects of the two beneficial microorganisms resulted in a strong
reduction of FHB causal agent development on natural substrates [139].

Finally, when Schoneberg et al. tested a list of Trichoderma isolates for their ability to reduce G. zeae
wheat straw colonization and perithecia development, a T. harzianum isolate (T-22) resulted in a great
reduction of up to 96% [133].

Although competition is one of the most difficult mechanisms of action to be investigated and,
undoubtedly, the most fascinating in its complexity, it is also a useful instrument that beneficial
filamentous fungi can use to limit FHB causal agent survival on crop residues. Controlling the
decomposition process of cultural debris is a way to reduce the primary inoculum of the disease [127]
with clear consequences in terms of food security (reduction of disease severity) and food safety
(reduction of mycotoxin contamination) in wheat.
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4. Conclusions and Future Perspective

Two examples of competitive beneficial filamentous fungi selected as active ingredients for
microrganism based plant protection products have been reported in this review. The use of atoxigenic
A. flavus for the competitive exclusion of toxigenic strains and the prevention of AF contamination
is consolidated in several countries worldwide. In Europe, after 15-years of activity, a registered
commercial product is still not available. Reports on filamentous fungi able to compete with the Fusaria
complex involved in FHB, and therefore, potentially useful in fusaria-toxin mitigation, are available,
but not yet switched to commercial fungicides.

The logical follow-up for the development of microbial biopesticides derives directly from the
industrial approach of modern agriculture. In other words, biopesticides, using microorganisms as
active ingredients, must be products suitable for industrial production and likely to be used following
practices that have already been developed for chemical based plant protection products. They really
represent one more tool available for farmers to reduce the synthetic chemical input in agricultural
production, much requested by all stakeholders.

To date, to bring a plant protection product with a microorganism as active ingredient to the
market is not easy, because it must conform to the same regulations as active chemical ingredients.
Active substances undergo intensive evaluation and peer-review by Member States and the European
Food Safety Authority (EFSA) before approval by the European Commission. Registration costs are
very high, but the potential market of microorganism based plant protection products is extremely
limited if compared with chemical based products; therefore, it is inconceivable to market consortia of
microorganisms as plant protection products, given that each single tiny component of the consortium
must be registered (at least in Europe) separately, at very great expense.

A reasoned revision of the registration rules is strongly to be desired, for the protection of both
the environment and the population with the cost-effectiveness of the new crop protection tools.

Microorganisms that act with competition-based mechanisms require a thorough knowledge of the
relationships that are established between the different factors involved in a disease (plant, pathogen,
and other biotic and abiotic environmental factors). The knowledge acquired for their development
may be the starting point for new approaches to plant protection and can be shifted to different
patosystems. This knowledge, along with the development of the “omics” sciences, and in particular
metagenomics, already allows us to glimpse a possible evolution of the system towards the use of
consortia of microorganisms. These can be selected from all those that make up the microbiome [142]
and that can contribute to making plants less susceptible to specific diseases [143].

Another possible alternative is to breed microbe-optimized plants that are able to recruit beneficial
microorganisms from the environment [144]; if such beneficial microorganisms are not present, they
can be distributed as consortia along with plants. This approach, not yet exploited, seems less prone
to regulatory restrictions as such beneficial microorganism consortia should not fall under the plant
protection product rules.

Starting from the “Prelude to biological control” of Baker and Snyder [145], a long road has been
travelled, but a significant reduction in chemical based plant protection products in agriculture is not
just around the corner. However, we can see approaching on the horizon new strategies that should
enable the sustainable production of safe food for all human beings in the world.
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