Metabolome Variation between Strains of *Microcystis aeruginosa* by Untargeted Mass Spectrometry

Marianne Racine, Ammar Saleem and Frances R. Pick

Table S1. Possible MC variants for the three unknown metabolites from *M. aeruginosa* presented in Table 1. Corresponding molecular weights are expressed in Daltons (Da). List of MC variants from Spoof & Catherine (2017).

MC Variants	[M+H]	Molecular Formula	
Unknown 1			
[Asp ³]MC-M(O ₂)R (oxidation artefact)	1031.4865	$C_{47}H_{71}N_{10}O_{14}S$	
[d-Asp ³ , Dha ⁷]MC-HtyR			
[Asp³, DMAdda ⁵]MC-HtyR			
[Asp ³]MC-RY			
[Dha ⁷]MC-RY			
[Asp ³ , Dhb ⁷]MC-RY	1031.5197	$C_{51}H_{71}N_{10}O_{13}$	
[d-Asp ³]MC-YR			
[Dha ⁷]MC-YR			
[Asp ³ , (E)-Dhb ⁷]MC-YR			
[DMAdda ⁵]MC-YR			
Unknown 2			
[Met ¹]MC-LR	1055.5594	C51H79N10O12S	
[Leu ¹ , NMeSer ⁷]MC-LR	1055.6136	$C_{52}H_{83}N_{10}O_{13}$	
Unknown 3			
[D-Asp³, ADMAdda⁵, Dha ⁷]MC-HilR			
[Gly ¹ , Asp ³ , ADMAdda ⁵ , Dhb ⁷]MC-LHAr			
[d-Asp³, ADMAdda⁵]MC-LR	1009.5353	C49H73N10O13	
[ADMAdda ⁵ , Dha ⁷]MC-LR			
[Asp³, ADMAdda ⁵ , Dhb ⁷]MC-LR			
[MeAla1]MC-LR or [MeLeu2]MC-LR	1000 5717	CalHaNiaOra	
MC-HilR			
MC-Lhar			
[d-Glu(OCH3)6]MC-LR	1009.3717	C501 17/1 N10 012	
[Mdhb ⁷]MC-LR			
[Leu ¹ , Asp ³ , DMAdda ⁵]MC-LR			

Fragment Structure	Molecular Formula	<i>m/z</i> (Da)
€ O O	C9H11O (ADDA moiety)	135.0808
H_2N	C9H13N2O4	213.0799
$\begin{array}{c} O \\ HN \\ HN \\ O \\ HN \\ HN \\ H \\$	C49H75N10NaO12	509.2528
$CH^{+} + NH^{+} + N$	C40H63N10O11	861.4587

Table S2. Major fragments of MC-LR detected in the standard solution at a RT of 2.84 min. m/z is presented as detected under positive ionization mode without mass correction.

Fragment Structure	Molecular Formula	RT (min)	m/z
	C5H12N	2.25	86.0940
		2.13	157.0983
	C6H13N4O	2.25	157.0983
mclr-5ppm1ul mclr-may14			1: TOF MS ES+ 995.555 0.0250Da 2.55e
0.50 1.00 1.50 2.00 2.50 3.	00 3.50 4.00 4.50	5.00	5.50
asp-3mclr-may14)		1: TOF MS ES+ 981.529 0.0250Da 2.27e
- - - - - -			
0.50 1.00 1.50 2.00 2.50 3.	00 3.50 4.00 4.50	5.00	5.50

Table 3. Major fragments of cyanopeptolin CPT911 detected in the samples at RT 2.13 min and 2.25 min. m/z is presented as detected under positive ionization mode without mass correction.

Figure S1. Separation of standards in a positive ionization mode (**a**) MC-LR (2.87 min); (**b**) [Asp³]-MC-LR (2.88 min). In this case, fragmentation is the only way to differentiate between the two metabolites.

(b)

Figure S2. Unknown 1 separation chromatogram at RT 3.19 min (**a**), and spectra under high energy (**b**) and low energy (**c**) collision in positive ionization mode. The m/z of 134.0975 Da corresponds to the mass of the ADDA moiety present in all microcystins.

Figure S3. Unknown 2 separation chromatogram at RT 2.98 min (**a**), and spectra under high energy (**b**) and low energy (**c**) collision in positive ionization mode. The m/z of 135.0808 Da corresponds to the fragment mass of the ADDA moiety present in all microcystins.

Figure S4. Unknown 3 separation chromatogram at RT 3.34 min (**a**), and spectra under high energy (**b**) and low energy (**c**) collision in positive ionization mode. The m/z of 135.0975 Da corresponds to the fragment mass of the ADDA moiety present in all microcystins.

Figure S5. (a) Chromatography of [Leu¹]-MC-LR variant; (b) high energy spectrum of [Leu¹]-MC-LR; (c) high-energy spectrum of the standard solution of MC-LR. The arrows point to the common fragments between the two molecules.

Figure S6. CPT911 detection in *Microcystis aeruginosa* strain CPCC464; (**a**) Separation of two isomers, CPT911A at RT 2.13 min and CPT911B at RT 2.25 min; (**b**) High energy spectra for CPT911B. Signals corresponding to identified fragments are indicated by an arrow. The pseudo molecule [M + H] represents the signal of the mass of the whole molecule under positive ionization mode.