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Abstract: Antimicrobial peptides are potential molecules for the development of novel antibiotic
agents. The ZorO toxin of a type I toxin–antitoxin system in Escherichia coli O157:H7 is composed
of 29 amino acids and its endogenous expression inhibits E. coli growth. However, little is known
about its inhibitory mechanism. In this study, we demonstrate that the ZorO localized in the inner
membrane affects the plasma membrane integrity and potential when expressed in E. coli cells, which
triggers the production of cytotoxic hydroxyl radicals. We further show that five internal amino
acids (Ala–Leu–Leu–Arg–Leu; ALLRL) of ZorO are necessary for its toxicity. This result prompted us
to address the potential of the synthetic ALLRL peptide as an antimicrobial. Exogenously-added
ALLRL peptide to Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and a fungus,
Candida albicans, trigger cell membrane damage and exhibit growth defect, while having no effect on
Gram-negative bacterium, E. coli. The ALLRL peptide retains its activity under the physiological salt
concentrations, which is in contrast to natural antimicrobial peptides. Importantly, this peptide has
no toxicity against mammalian cells. Taken together, an effective and short peptide, ALLRL, would
be an attractive antimicrobial to Gram-positive bacteria and C. albicans.

Keywords: Toxin–Antitoxin system; ZorO; antimicrobial peptide

Key Contribution: A pentapeptide, ALLRL, derived from the ZorO toxin of a type I toxin–antitoxin
system in Escherichia coli O157:H7 functions as an effective antimicrobial.

1. Introduction

Antibiotic resistance remains a serious threat to human health and there is an urgent need for
novel antimicrobial compounds with unique functional mechanisms. Many organisms including
plants, insects, and humans produce peptides to escape from microbial infection [1]. Various microbes
also produce antimicrobial peptides for their own survival [2]. In many cases, antimicrobial peptides
target microbial cell membranes [1,3]. Because the compositions of cell membranes substantially
differ between prokaryotes and eukaryotes, antimicrobial peptides display highly selective toxicity.
Also, these peptides are less likely to promote resistance, as alterations of the lipid composition of cell
membranes are often toxic to bacteria. These advantages have led to the development of therapeutic
antimicrobial peptides [4], however, there are disadvantages that need to be overcome. For example,
the antimicrobial activity of natural peptides is relatively low but their cytotoxicity against mammalian
cells is high. Also, natural antimicrobial peptides are generally large, which are hard and expensive to
synthesize or purify [5]. In addition, many peptides unfold and lose their antimicrobial activity in
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solution containing physiological salt concentrations [6–8]. Therefore, it is desirable to discover potent,
yet smaller, less cytotoxic, and salt-insensitive antimicrobial peptides.

Toxin–Antitoxin (TA) systems are widely conserved in prokaryotic plasmids and chromosomes [9].
The functions of TA systems are being extensively investigated as more evidence links TA systems to
plasmid maintenance [10,11], general stress response [12,13], and phage defense [14,15]. TA systems
are composed of a stable toxin and a labile antitoxin that inhibits a harmful effect of the cognate toxin.
They are mainly divided into two types, I and II, although there are actually six different types but
only a few examples have been discovered in each type III, IV, V, and VI [16–19]. Toxins of type I TA
systems are small hydrophobic proteins and their antitoxins are small non-coding RNAs that inhibit
the translation of the cognate toxin mRNAs [20]. Fozo’s group previously identified and characterized
a type I TA system, zorO-orzO, that is encoded in the genome of Escherichia coli O157:H7 [21]. The orzO
antitoxin is a 174 nt non-coding RNA that inhibits zorO translation via base-pairing between orzO
and 5′UTR of zorO mRNA [22]. The ZorO toxin is a small protein composed of 29 amino acids and its
expression leads to growth arrest and/or cell death [21]. While ZorO has been proposed to be located
at the cell membrane through its putative transmembrane domain, it remains unclear how ZorO exerts
its toxicity.

To address the molecular mechanism of ZorO toxicity in E. coli cells, we investigated the distribution
of ZorO, its effect on cell membranes, and the production of cytotoxic highly reactive oxygen species.
In addition, we explored the antimicrobial activity of ZorO derivatives and identified a peptide
composed of five amino acids with potent antimicrobial activity against Gram-positive bacteria and a
fungus, Candida albicans.

2. Results

2.1. ZorO Affects the Plasma Membrane Potential and Integrity

Consisting of 29 amino-acid residues, ZorO is one of the smallest toxins in the bacterial TA systems.
To elucidate the mechanism of the ZorO toxicity, ZorO was expressed in E. coli K12 TY0807 cells.
As reported previously [21], ZorO inhibited the growth of the E. coli cells (Figure 1A). It was also
shown that the growth inhibition was associated with a significant reduction of the amount of ATP
(Figure 1B), suggesting that the toxicity involves negative effects on the cellular metabolism.

To examine the subcellular distribution of ZorO, FLAG-tagged ZorO was expressed in E. coli
TY0807 cells, and the cell lysates were fractionated and examined by Western blotting with an anti-FLAG
antibody (Figure 1C). The result indicated that ZorO was located solely in the inner membrane fraction,
compatible with the presence of a putative transmembrane helix [23,24]. We next examined whether
the presence of ZorO affects the membrane potential by using a membrane potential-sensitive dye,
DiBAC4(3), which enters the cells upon plasma membrane depolarization and increases the fluorescence
intensity though binding to intracellular proteins or membranes [25]. When E. coli TY0807 cells were
treated with DiBAC4(3) after ZorO induction, the cells exhibited strong fluorescence, indicating that
ZorO evokes membrane depolarization (Figure 1D). No significant fluorescence was detected from
the cells without ZorO induction. When the E. coli cells were treated with propidium iodide (PI) after
ZorO induction, PI-derived fluorescence was detected in most of the cells, revealing that the plasma
membrane was damaged (Figure 1E). Therefore, ZorO localized in the inner membrane affects the
membrane potential and integrity.
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Figure 1. Toxicity of ZorO (A) E. coli TY0807 cells harboring pBAD24-FLAG-zorO were treated with
(open squares) or without (closed circles) 0.1% arabinose (L-Ara). L-Ara was added to induce ZorO
expression when the OD660 reached approximately 0.3. (B) TY0807 cells harboring pBAD24-FLAG-zorO
were treated with 0.02% L-Ara for 30 min and diluted 10-fold with LB medium. Cell viability was
determined using BacTiter-Glo™Microbial Cell Viability Assay kit. The vertical axis indicates relative
light units and the furthest left column is the value of LB medium only. (C) TY0807 cells harboring
pBAD24-FLAG-zorO were treated with 0.1% L-Ara for 10 min. Cell lysate was fractionated as described
in Materials and Methods. The upper or lower panel show the Western blot with anti-FLAG antibody
or the CBB staining. M; marker, T; total cell lysate, C; cytoplasmic fraction, IM; inner membrane
fraction, OM; outer membrane fraction. Omps indicates outer membrane protein C and F. (D) TY0807
cells harboring pBAD24-FLAG-zorO were incubated with (right panels) or without (left panels) 0.01%
L-Ara for 30 min and then treated with a membrane potential-sensitive dye, DiBAC4(3). Upper or
lower panels show DiBAC4(3) staining or phase contrast images. Scale bar is 10 µm. (E) TY0807 cells
harboring pBAD24-FLAG-zorO were incubated with (right panels) or without (left panels) 0.01% L-Ara
for 30 min and then treated with PI and DAPI. Upper, middle or lower panels show PI staining, DAPI
staining, or phase-contrast images. Scale bar is 10 µm.
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2.2. ZorO Affects Cell Viability Though Production of Hydroxyl Radicals

Previous studies demonstrated that hydroxyurea and certain antibiotics cause cell death through
the production of highly reactive oxygen species (hROS), such as hydroxyl radicals [26,27], although
they are now controversial. Thus, the effect of ZorO on the level of hROS was also examined by using
hydroxyphenyl fluorescein (HPF), which increases its fluorescence intensity upon binding to hROS.
As shown in Figure 2A, ZorO-expressing E. coli TY0807 cells showed strong fluorescence, indicating
that hROS is indeed produced in those cells. Whereas the proportion of viable cells were reduced
to about 1% after ZorO induction (Figure 2B), treatment of the ZorO-expressing cells with thiourea
(a hydroxyl radical scavenger) increased viable cells by 10-fold, suggesting that hydroxyl radicals
are involved in the ZorO toxicity. Because hydroxyl radicals are produced from hydrogen peroxide
and free ferrous iron though Fenton reaction, we then examined the effect of 2,2′-bipyridyl (Dip),
a commonly used iron chelator for blocking Fenton reaction. As expected, a marked increase (~20-fold)
in the proportion of viable cells was observed when the ZorO-expressing cells were treated with Dip
(Figure 2C).

Figure 2. Effect of hROS on the ZorO toxicity: (A) TY0807 cells harboring pBAD24-FLAG-zorO were
incubated with (right panels) or without (left panels) 0.01% L-Ara for 30 min and then treated with
a reactive oxygen species indicator, hydroxyphenyl fluorescein (HPF), for 15 min. Upper or lower
panels show HPF staining or phase-contrast images. Scale bar is 10 µm. (B,C) TY0807 cells harboring
pBAD33-5′UTR-zorO were first treated with or without 250 mM Thiourea (B) or 2,2′-Bipyridl (Dip) (C)
for 10 min and then treated with or without 0.05% L-Ara for 20 min. CFU in the absence of L-Ara and
Thiourea or Dip is set to 1 and relative CFU was plotted. Gray or white bar graphs indicate the values
of cells treated with or without L-Ara. An error bar shows a standard deviation deduced from at least
three independent experiments.

2.3. Amino Acid Residues of ALLRL Are Required for the Toxicity of ZorO

To identify the amino acids of ZorO required for the toxicity, we truncated the N- and the
C-terminal residues (Figure 3A). As shown in Figure 3B, truncation of 8 and 13 N-terminal residues did
not affect the toxicity of ZorO, indicating that the N-terminal 13 amino acids are dispensable. Likewise,
the C-terminal 5 amino acids of ZorO appeared to be dispensable for its toxicity. On the other hand,
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when the C-terminal 10 amino acids were deleted, its toxicity was no longer observed (Figure 3B; open
circles). The results indicate that Ala–Leu–Leu–Arg–Leu (ALLRL) spanning between positions 20 and
24 of ZorO are necessary for the toxicity. The ZorO-derived protein with the deletion of ALLRL did
not inhibit the cell growth (Figure 3B; open triangles), confirming the importance of the five amino
acids for the toxicity of ZorO.

Figure 3. Toxicity of ZorO deletion mutants: (A) Amino acid sequences of wild-type and
deletion mutants of ZorO are shown. Amino acids deleted from the ORF of ZorO are described
in gray and the predicted transmembrane region is underlined. (B) TY0807 cells harboring
pBAD24, pBAD24-zorO(∆8N), pBAD24-zorO(∆13N), pBAD24-zorO(∆5C), pBAD24-zorO(∆10C) or
pBAD24-zorO(∆ALLRL) were treated with 0.2% L-Ara when the OD660 reached approximately 0.3.
Symbols: �: pBAD24, 3: pBAD24-zorO(∆8N), �: pBAD24-zorO(∆13N), �: pBAD24-zorO(∆5C),
#: pBAD24-zorO(∆10C), and 4: pBAD24-zorO(∆ALLRL).

2.4. The ALLRL Peptide Exhibits Antimicrobial Activity against Gram-Positive Bacteria and Candida

The result that the stretch of five amino acid residues, ALLRL, was important for the ZorO toxicity
prompted us to address the potential of the synthetic ALLRL pentapeptide as an antimicrobial. Here,
the effects of the ALLRL peptide on the growth of various microorganisms were tested. As shown in
Figure 4A, the ALLRL peptide by itself failed to exhibit toxic effects against E. coli K12 or O157:H7
even at the high concentration of 200 µg/mL. Interestingly, growth of Gram-positive bacteria, such as
methicillin-sensitive and -resistant strains of Staphylococcus aureus, and Bacillus subtilis, was clearly
inhibited immediately after the addition of the ALLRL peptide (160 µg/mL) (Figure 4B–D). Proportions
of viable cells of the Gram-positive bacteria were decreased to about 10% and less than 0.01% by the
addition of 80 and 160 µg/mL, respectively, of the ALLRL peptide (Figure 4F). Consistently, the ATP
levels were also reduced by the ALLRL peptide in a dose-dependent manner (Figure 4G). Importantly,
the effects of the ALLRL peptide were observed in both Meuller-Hinton Broth (No NaCl) and LB
medium (171 mM NaCl) (Figure 4B,D,I), indicating that the peptide can exert the antimicrobial activity
in the solution containing physiological salt concentrations. This is remarkable, given that some
antibacterial peptides, such as human β-defensin-1, and a cathelin-associated peptide of human
neutrophils, LL-37, significantly diminish their activities at physiological salt concentrations [6–8].
Surprisingly, the ALLRL peptide similarly inhibited the growth of a fungus, Candida albicans (Figure 4E).
The synthetic peptide corresponding to the full-length ZorO showed no inhibitory effect on any
microorganisms tested (Figure 4H).
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Figure 4. Cont.
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Figure 4. Antimicrobial activities of the ALLRL peptide (A) E. coli K12 BW25113 or O157:H7 were treated
with 200 µg/mL of the ALLRL peptide or DMSO as a control when the OD660 reached approximately
0.2. (B) The methicillin-sensitive S. aureus was treated with 0, 20, 80, or 160 µg/mL of the ALLRL
peptide when the OD660 reached approximately 0.2. (C) The methicillin-resistant S. aureus (MRSA)
was treated with DMSO or 200 µg/mL of the ALLRL peptide when the OD660 reached approximately
0.2. (D) B. subtilis was treated with 0, 20, 80, or 160 µg/mL of the ALLRL peptide when the OD660

reached approximately 0.2. (E) C. albicans was treated with DMSO or 200 µg/mL of the ALLRL peptide
when the OD660 reached approximately 0.1. (F) S. aureus (left panel) or B. subtilis (right panel) was
grown in LB medium until the OD660 reached approximately 0.2, and then treated with the ALLRL
peptide (0, 10, 20, 40, 80, or 160 µg/mL) for 1 h. Cell culture was serially diluted 10-fold; dilutes were
spotted onto LB-agar plates and incubated at 37 ◦C overnight. (G) S. aureus (left graph) or B. subtilis
(right graph) was treated with DMSO or the ALLRL peptide (12.5, 50, or 200 µg/mL) for 1 h or 30 min.
Cell viability was determined using BacTiter-Glo™ Microbial Cell Viability Assay kit. The vertical
axis indicates relative light units and the furthest left column is the values of cell culture without any
treatment. (H) S. aureus, B. subtilis, or E. coli K12 BW25113 was treated with DMSO or 200 µg/mL of the
full-length ZorO peptide when the OD660 reached approximately 0.1. (I) S. aureus or B. subtilis was
grown in MHB medium and treated with DMSO or 100 µg/mL of the ALLRL peptide when the OD660

reached approximately 0.1.
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2.5. The ALLRL Peptide Induces the Plasma Membrane Damage

In order to address the mechanisms by which the ALLRL peptide inhibits the growth of the
Gram-positive bacteria and Candida, we examined the PI uptake by these microorganisms after
treatment with the peptide. When S. aureus, B. subtilis and C. albicans cells were treated with the ALLRL
peptide (200 µg/mL) for 30 min, the cells demonstrated a marked increase of PI uptake (Figure 5A–C).
Nisin is an antimicrobial peptide with 34 amino acids produced by Lactococcus lactis subsp. lactis and
induces the plasma membrane damage against Gram-positive bacteria [28]. S. aureus and B. subtilis cells
treated with the nisin also exhibited the increase of PI uptake. These results suggest that, similar to the
effects of the ZorO toxin expressed in E. coli cells, the ALLRL peptide damages the plasma membrane
of Gram-positive bacteria and Candida, probably leading to the antimicrobial effects. Notably, the
treatment of E. coli cells with the ALLRL peptide did not cause increased PI uptake (Figure 5D).

Figure 5. Cell membrane damage by the ALLRL peptide Overnight culture of S. aureus (A), E. coli
TY0807 (D) or B. subtilis (B) was diluted 100-fold with LB medium and incubated at 37 ◦C for 2 h or
2 h 40 min. Ten microliters of DMSO or the ALLRL peptide (200 µg/mL) was added to 1 mL cells and
incubated for 30 min. S. aureus or B. subtilis cell were also treated with nisin (N5764, Sigma-Aldrich)
at the final concentration of 16 or 8 µg/mL for 20 min. C. albicans (C) was grown in 1 mL Sabouraud
medium at 37 ◦C until the OD660 reached approximately 0.1 and then treated with 40 µL DMSO or the
ALLRL peptide (200 µg/mL) for 40 min. Each cell was incubated with PI and DAPI. Upper, middle or
lower panels show PI staining, DAPI staining, or phase contrast images. Scale bar is 10 µm.
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2.6. The ALLRL Peptide Has no Cytotoxicity Against Mammalian Cells

We also tested the effect of the ALLRL peptide on cultured mammalian cells, Vero and BHK.
The ALLRL peptide was diluted two-fold serially with growth medium, both cells were incubated with
the medium containing DMSO or the ALLRL peptide for 24 h and then cell viability was measured by
the MTT assay. As shown in Figure 6, the ALLRL peptide failed to affect the viability of Vero and BHK
cells, except that the peptide at the concentration of 200 µg/mL showed toxic effects. Both cells were
shown to be sensitive to DMSO used as the solvent of the peptide (the second bar from the left of each
graph). The concentration of DMSO in growth medium containing 200 µg/mL of the ALLRL peptide is
4%. Therefore, it is most likely that the apparent toxicity of the ALLRL peptide upon cells was caused
by the effect of a relatively large amount of DMSO added. From these results, the ALLRL peptide is
not toxic against mammalian cells.

Figure 6. Cytotoxicity of the ALLRL peptide against mammalian cultured cells. Two mammalian
cultured cells, Vero (A) or BHK (B), were treated with DMSO or the ALLRL peptide at final concentrations
of 6.25, 12.5, 25, 50, 100, or 200µg/mL for 24 h. Cell viability was measured by the MTT assay. The furthest
left bar or the second bar from the left of each graph indicate the values of cells without any treatment
or cells treated with 4% DMSO. The concentration of DMSO in growth medium containing 200 µg/mL
of the ALLRL peptide is 4%. An error bar shows a standard deviation deduced from triplicate samples
of each treatment group. Duplicate measurements were performed independently, similar results were
obtained for each measurement, and a representative result was shown.

3. Discussion

In this study, we first investigated the molecular mechanism of ZorO toxicity and next explored
the possibility of using its derivatives as antimicrobial peptides. When ZorO expressed in E. coli cells,
it localized to the inner membrane (Figure 1C) and induced cell membrane depolarization (Figure 1D)
and damage (Figure 1E). Most type I TA toxins including ZorO comprise short (typically less than
60 amino acids) peptides rich in highly hydrophobic residues and harbor a putative transmembrane
domain. Previous studies demonstrated that three E. coli TA toxins, TisB, GhoT and HokB, provoke
cell membrane damage, which in turn lowers the ATP level [29–31]. Another study showed that,
a S. aureus type I TA toxin, PepA1, also localizes to the cell membrane, and eventually triggers cell
death [24]. Our data suggest that ZorO may act in a similar way for its toxicity. In addition, we
demonstrated that ZorO promotes hROS production (Figure 2A) and that reducing the hydroxyl
radical level with thiourea or 2,2′-bipyridyl partially restored the viability of cells treated with ZorO
(Figure 2B,C). These results suggest that hydroxyl radicals play a key role in ZorO-mediated cell
death. Cell membrane damage by ZorO may interfere with the electron transport chain, leading to the
production of superoxide that is converted to hydrogen peroxide. At the same time, ZorO insertion
may trigger iron uptake and increase the level of free ferrous iron. These changes may facilitate the
Fenton reaction and consequently increase the production of hydroxyl radicals.
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Nisin is an antimicrobial peptide with 34 amino acids produced by Lactococcus lactis subsp. lactis
and has a broad spectrum of the activity against Gram-positive bacteria [28] and C. albicans [32].
In the United States, nisin is generally considered safe and has been approved for use in some
processed-cheese spreads to prevent the proliferation of a pathogenic bacterium, Clostridium
botulinum [33]. Its functional mechanism against Gram-positive bacteria has been well characterized.
Nisin binds to the negatively-charged cell membrane through its positively charged amino acids and
interacts with the cell wall precursor lipid II. Eight nisin peptides and four lipid II molecules assemble
into a membrane pore with a diameter of 2.5 nm, which results in the leakage of cellular components
and eventually cell death [28,34,35]. It is possible that the ALLRL peptide also interacts with Lipid II
and forms a membrane pore.

Like nisin, the ALLRL peptide does not inhibit the growth of Gram-negative bacteria (Figure 4A).
One possible explanation is that the outer membrane prevents these peptides from approaching the
inner membrane. This idea may be supported by the result that electroporation is required for the
antimicrobial activity of the type I TA toxin, Hok, against E. coli and Pseudomonas putida [36]. Indeed,
a previous study demonstrated that the simultaneous treatment with nisin and a chelating agent,
such as EDTA, inhibits the growth of Gram-negative bacteria [37]. This is probably because EDTA
chelates magnesium ions and destabilizes the lipopolysaccharide layer of the outer membrane, which
facilitates the entrance of nisin. We performed a similar experiment using the ALLRL peptide and
EDTA but failed to observe an inhibitory effect on E. coli (unpublished data). Likewise, we could not
see an inhibitory effect on E. coli O157 mutants, which lack lipopolysaccharides on the outer membrane
(unpublished data). Therefore, the other mechanism would exist as to why the ALLRL peptide does
not kill Gram-negative bacteria. It will give a hint for understanding its mechanism to test the bacterial
spheroplast that lacks the outer membrane completely.

In conclusion, we discovered a small peptide to block the growth of Gram-positive bacteria
including MRSA and of a fungus, Candida (Figure 4). To the best of our knowledge, the ALLRL
peptide is the smallest antimicrobial peptide characterized so far. Also, most natural antimicrobial
peptides reduce the activity in physiological salt concentrations but the ALLRL peptide exhibits
the activity in the presence of 171 mM NaCl, which is suitable for antimicrobial drug development.
Furthermore, the ALLRL peptide has no cytotoxicity against mammalian cultured cells, Vero and BHK
(Figure 6). The ALLRL peptide, therefore, will be an attractive candidate for the development of an
antimicrobial drug.

4. Materials and Methods

4.1. Bacterial and Fungus Strains and Mammalian Cultured Cells

Escherichia coli K12 strains, TY0807 (sup0 araD139 hsdR ∆lacX74 rpsL araD+), BW25113 (rrnB3 ∆
lacZ4787 hsdR514 ∆ (araBAD)567 ∆ (rhaBAD)568 rph-1) and E. coli O157:H7 strain (ATCC43888), were
used [15,38,39]. Isolates of the methicillin-susceptible Staphylococcus aureus, the methicillin-resistant
S. aureus (MRSA), Bacillus subtilis and Candida albicans used in this study were confirmed by sequencing
of 16S or 18S rRNA. Primers used for sequencing are listed in Table 1. Luria-Bertani (LB) medium
and Mueller Hinton Broth (MHB) were used for bacteria and Sabouraud medium (2% Glucose,
1% peptone, pH 5.5) for C. albicans. Vero cells from green monkey kidney were grown at 37 ◦C with
5% CO2 in Eagle’s Minimal Essential Medium (MEM) supplemented with 10% fetal bovine serum
(FBS), 10 mM nonessential amino acid (NEAA; Life Technologies, Carlsbad, CA, USA) and Penicillin
(1000 unit/mL)-streptomycin (100 µg/mL) (PS). BHK cells from the baby hamster kidney were grown at
37 ◦C with 5% CO2 in Dulbecco’s modified Eagle’s MEM supplemented with 10% FBS, 10 mM NEAA
and PS.
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Table 1. Oligonucleotides used in this study.

Primer Name Sequence (5′–3′)

Construction of plasmids

YO-57 GCCTGCAGCTACTTCAACAAATCAATCAACCG

YO-69 AGGAATTCACCATGGATTACAAGGATGACGACGATAAGATGGACTCGCTGACA
CAAAAG

YO-76 GCAAGCTTCTACTTCAACAAATCAATCAACC
YO-79 GCCTGCAGCTACAACCGTAACAGAGC
YO-81 AGGAATTCGTTGGGACGTTGCGCCGGATCGA
YO-82 AGATTAGCGGATCCTACCTG
YO-284 CACTAATAACTCCAGTACGGCAATGAGCAC
YO-285 ATTGATTTGTTGAAGTAGCTGCAGGCATGC
YO-370 AGGAATTCACCATGGTGCTCATTGCCGTACTG
YO-371 AGGAATTCACCATGGACACGCTGACAC
YO-372 AGGAATTCACCATGCTGGAGTTATTAG
YO-373 GCCTGCAGCTACACTAATAACTCCAG

Sequencing for bacterial 16S rRNA gene or C. albicans 18S rRNA gene

9F GAGTTTGATCCTGGCTCAG (for bacteria)
785F GGATTAGATACCCTGGTAGTC (for bacteria)

1510R GGCTACCTTGTTACGA (for bacteria)
YO-301 TATCTGGTTGATCCTGCCAGTAGTC (for C. albicans)
YO-303 TTGATGCGTACTGGACCCAGCCG (for C. albicans)
YO-304 GCGATAACGAACGAGACCTTAACC (for C. albicans)

4.2. Construction of Plasmids

Primers used for constructing plasmids are listed in Table 1. To construct pBAD24-zorO, pBAD24-
FLAG-zorO, pBAD24-zorO(∆8N), pBAD24-zorO(∆13N), pBAD24-zorO(∆5C), or pBAD24-zorO(∆10C),
a DNA fragment was amplified by PCR using E. coli O157:H7 DNA as a template and the primers,
YO-371 and YO-57, YO-69 and YO-57, YO-370 and YO-57, YO-372 and YO-57, YO-371 and YO-79,
or YO-371 and YO-373. The amplified fragments were digested with EcoRI and PstI and ligated
into the corresponding sites of pBAD24 [40]. pBAD24-zorO(∆ALLRL) were generated using a
KOD-Plus-Mutagenesis kit (Toyobo) with pBAD24-zorO as the template and the primers YO-284 and
YO-285. To generate pBAD33-5′UTR-zorO, a DNA fragment was amplified by PCR using O157:H7
DNA as a template and the primers YO-81 and YO-76, digested with EcoRI and HindIII, and ligated
into the corresponding sites of pBAD18. Next, this plasmid (pBAD18-5′UTR-zorO) was digested with
BamHI and HindIII and ligated into pBAD33. All plasmid constructs were confirmed by sequencing
with YO-82 primer.

4.3. Peptides

The peptides were synthesized commercially by Sigma-Aldrich and dissolved with DMSO
at the final concentration of 10 or 20 mg/mL. The amino acid sequences of the peptides are
MDTLTQKLTVLIAVLELLVALLRLIDLLK and ALLRL.

4.4. Growth of Bacteria and Fungus

TY0807 cells harboring pBAD24-FLAG-zorO, pBAD24-zorO(∆N8), pBAD24-zorO(∆N13),
pBAD24-zorO(∆C5), pBAD24-zorO(∆C10), pBAD24-zorO(∆ALLRL) or empty pBAD24 vector were
grown in LB medium supplemented with 50 µg/mL ampicillin (Amp). When the optical density
at 660 nm (OD660) reached approximately 0.2–0.3, ZorO expression was induced with L-arabinose
(L-Ara). Cell densities were monitored by the OD660 every 20 min using the biophotorecorder
(Advantec TVS062CA). To detect the effects of the peptides, the methicillin-susceptible S. aureus, MRSA,
B. subtilis, E. coli or C. albicans were grown in LB, MHB, or Sabouraud medium until the OD660 reached
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approximately 0.1–0.2; peptides were added at appropriate concentrations, and cell densities were
monitored every 20 min. Duplicate or triplicate measurements were performed and similar results
were obtained for each measurement. A representative result is shown for each figure.

4.5. Microbial Cell Viability Assay

TY0807 cells harboring pBAD24-FLAG-zorO were diluted 100-fold with LB medium supplemented
with 50 µg/mL Amp, incubated for 2 h at 37 ◦C, and then treated with 0.02% L-Ara for 30 min. S. aureus
or B. subtilis was grown in LB medium at 37 ◦C until the OD660 reached approximately 0.1 and then
treated with the ALLRL peptide for 0.5 or 1 h. Cell viability was determined on triplicate samples of
each treatment group using BacTiter-Glo™Microbial Cell Viability Assay (Promega). Luminescence
was measured using a luminescent reader (Lumat LB9501, Berthold).

4.6. Subcellular Fractionation and Western Blotting Analysis

TY0807 cells harboring pBAD24-FLAG-zorO were grown in 50 mL LB medium supplemented
with 50 µg/mL Amp until the OD660 reached approximately 0.3 and then treated with 0.1% L-Ara for
10 min. Cells were harvested, washed once with the phosphate buffered saline (PBS), and suspended
with 1 mL PBS. After cells were lysed by sonication, cell debris were removed by centrifugation at
5000× g for 5 min. The supernatant (0.8 mL) was centrifuged at 100,000× g for 45 min and the resulting
supernatant was used as a cytoplasmic fraction and the pellet was used as a membrane fraction.
To separate the inner and outer membranes, the pellet was resuspended with 0.4 mL PBS containing
0.4% Sarcosyl and incubated for 30 min at room temperature [23]. This mixture was recentrifuged at
100,000× g for 15 min and the supernatant was used as an inner membrane fraction. The pellet was
resuspended with 0.4 mL PBS and used as an outer membrane fraction. Proteins from each fraction
were separated though two 16% polyacrylamide gels containing tricine and SDS and detected either by
Coomassie Brilliant Blue (CBB) or by Western blot using a mouse anti-FLAG M2 monoclonal antibody
(Sigma-Aldrich) and a horseradish peroxidase-conjugated sheep anti-mouse IgG (GE Healthcare).
FLAG-tagged ZorO were detected with Immobilon Western Chemiluminescent Substrate (Millipore)
and a LAS-1000 image analyzer (Fujifilm).

4.7. CFU Assay

Overnight culture of TY0807 cells harboring pBAD33-5′UTR-zorO were diluted 30-fold with LB
medium supplemented with 30 µg/mL chloramphenicol and incubated at 37 ◦C for 110 min. Thiourea
or 2,2′-Bipyridl (Dip) was added to the cells at the indicated final concentrations and incubated for
10 min. Cells were then treated with 0.05% L-Ara for 20 min, diluted with PBS, spread on LB-agar
plates, and incubated at 37 ◦C overnight to count viable cells. S. aureus or B. subtilis were grown in LB
medium until the OD660 reached approximately 0.1 and treated for 1 h with the ALLRL peptide at final
concentrations of 0, 10, 20, 40, 80, or 160 µg/mL, respectively. Cell culture was serially diluted with
PBS, and 5 µL of dilutes were spotted onto LB-agar plates and incubated at 37 ◦C overnight.

4.8. Microscopy

After treatment with L-Ara or the ALLRL peptide, each cell was recovered by the centrifugation
at 3300× g for 5 min and suspended with 1 mL PBS. Twenty microliters of propidium iodide (P3566,
Invitrogen) was added and incubated for 5 min at room temperature. After PI incubation, 0.5 µL of
DAPI (4′, 6-diamidino-2-phenylindole dihydrochloride, 2.5 µg/mL) (D21490, Invitrogen) was added
and further incubated for 5 min. After centrifugation, each cell pellet was resuspended with 100 µL PBS
and cells were observed under the fluorescence microscopy (BZ-9000, KEYENCE). In experiments of the
cell membrane depolarization and the production of highly reactive oxygen species, overnight cultures
of TY0807 cells harboring pBAD24-FLAG-zorO were diluted 100-fold with LB medium containing Amp
and incubated at 37 ◦C for 2 h. Cells were then treated with 0.01% L-Ara for 30 min, recovered by the
centrifugation at 3300× g for 5 min and suspended with 1 mL PBS. Five microliters of DiBAC4(3) (B438,
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ThermoFisher Scientific) or 2 µL HPF (H36004, ThermoFisher Scientific) was added and incubated for
15 min at room temperature. After centrifugation, each cell pellet was resuspended with 100 µL PBS,
and cells were observed with the fluorescence microscopy. Duplicate experiments were performed in
figures, and similar results were obtained for each experiment.

4.9. Cytotoxicity Assay (MTT Assay)

The cytotoxicity of the ALLRL peptide against Vero and BHK cells was determined by the
Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay [41]. The ALLRL peptide was diluted
two-fold serially with appropriate growth medium, and then cells at 70–90% confluency prepared
in 96-well plates were treated with 4% DMSO or the ALLRL peptide at final concentrations of 6.25,
12.5, 25, 50, 100, or 200 µg/mL for 24 h at 37 ◦C in a humidified 5% CO2 incubator. After the medium
was removed, 100 µL of 1 mg/mL MTT (M2128, Sigma-Aldrich) solution prepared in Eagle’s MEM
containing 1% FBS was added to each well. After incubation for 4 h at 37 ◦C, the MTT solution was
removed and 120 µL of isopropanol was added to dissolve the MTT crystals. After shaking the plates
gently for 10 min, whereby crystals were completely dissolved, the absorbance at 560 nm was read on
an iMark plate reader (BIO-RAD).
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