Supplementary Materials: The Isolation of New Pore-Forming Toxins from the Sea Anemone Actinia fragacea Provides Insights into the Mechanisms of Actinoporin Evolution

Koldo Morante, Augusto Bellomio, Ana Rosa Viguera Juan Manuel González-Mañas, Kouhei Tsumoto and Jose M. M. Caaveiro

Figure 1. Deconvoluted mass spectrum of fragaceatoxins on the true mass scale. **(A)** Mass spectrum of peak A (19728 \pm 3 Da), **(B)** peak B (19672 \pm 3 Da), **(C)** peak C (19720.5 \pm 3) **(D)** peak D (19721 \pm 3), and **(E)** peak E (19777.5 \pm 3 Da). The spectrum of panel B shows a second major peak of 19688 Da and corresponds to the protein with an oxidized methionine (+16 Da). The spectrum in panel D contains small sodium adducts (+23 Da).

A	1										S	А	Е	V	А	G	А	Ι	Т	D	G	А		12
			S	L	Т	F	D	V	L	Q	Т	V	L	К	Α	L	G	D	V	S	R	К		32
	1	Α	AGT	CTG	ACCT	TCG	ACG	тсст	GCA	GACO	CGTG	CTC	4AAC	SCAC	TCG	GTGA	TGT	CAG	TAG	۹AAG				
			Ι	Α	V	G	Ι	D	Ν	Е	Р	G	Μ	Т	W	Т	А	Μ	Ν	Т	Y	F		52
	62		ATT	GCC	GTC	GGT	ATC	GAC	AAC	GAG	CCGC	GGC	ATG/	ACGT	GGA	CCG	CAA	TGA	ACA	САТА	CTTC	2		
			R	S	G	Т	S	D	V	Т	L	Р	Н	Т	V	Ρ	Н	S	К	Α	L	L		72
	122		CGT	тсто	GGTA	ACCT	CTG/	ATGT	CAT	CCTT	cccc	CATA	CAG	птсс	ACAT	FAGT	AAG	GCA	CTG	CTC				
			Y	D	G	Q	Κ	Ν	R	G	Р	V	Т	Т	G	V	V	G	V	Т	А	Y		92
	182		TAC	GAC	GGT	CAGA	AAA	ATC	GTG	GTCC	AGT	TACO	SACT	GGC	GTGC	STTG	GAG	ΤAA	TTG	TTAT	A	М		
				S	D	G	Ν	т	L	Α	V	L	F	S	- I	Р	F	D	Y	Ν	L			112
	242		GC	CATO	GAGT	GAT	GGA	AAA	CACC	CTG	GCCO	GTTT	TAT	TCAG	GCAT	тсс	СТТТ	GA	CTAT	AAC	CTG			
			Y	S	Ν	W	W	'N	V	к	V	Y	К	G	н	R	R	Α	D	Q	А	М		132
	302		TAC	AGC	AAC	rggt	GGA	ATG	TCA	AGGT	CTA	TAAA	AGGA	CAT	AGA	GAG	GCAG	GACC	AGG	CGAT	GΥ	Е		
				Е	L	Y	Y	D	F	S	Р	F	R	G	D	Ν	G	W	н	Т	К			152
	362		TAC	GAG	GGAA	АСТС	ТАС	TAC	GATI	гтст	стсо	CATT	TCG	AGG	GGA	CAA	TGG	CTG	GCA	CACC	AAG			
			S	Т	G	Y	G	L	К	G	R	G	F	Μ	Ν	S	S	G	к	Α	T	L		172
	422		AG	CATT	GGA	TATG	iggt	TGA	AAG	GCCC	STGG	GATT	CATO	GAAC	AGC	TCTG	GAA	AAG	ICCA	TACT	G			
			Q	Т	Н	V	Ν	к	V	*														179
	482		CAA	ATT	CAC	GTG	AAC	AAA	GTTI	GAG	GTC	TTG	TTG	4AA/		ATC	AGT	TGA	AAT	GCTO	бССТ			
	542		CG	٩ĠĂ	ATAC	TGA	TGT	AAA	АСТИ	AGC	ΑΤΑ	AAT	TAT	ΑΑΤΤ	TTA	ссст	GTA	٩AG	۹ACA	AGA	AAA			
	602		CTA	GAT	CTT	CCCG	STA	ACAT	AAA	GAC	GAA	TAA	AAC	GAA	GCAC	CCCG	iaaa	AAA		AAA	AAAA	4		
	662		AA	٩AA	ATAG	GGA	ТСС	AAT	CAG															
						Ba	a <i>m</i> H I	[
В											-		_			~				_	~			
			_		_	_	_				5	A	D	v _	A	G	A	V	1	D	G		11	
		A	G	L	G	F	D	V	L	K	 	V	L	E	A	L	G	N	V	ĸ	R		31	
1			ΤG	CAG	GTCT	GGG	CTT	CGA	CGTC	CTG	AAAA	ACCG	itgc	TCGA	AGC	CACT	CGG	TAA	IGTC	AAA	GA			
		К	I	Α	V	G	1	D	N	E	S	G	R	т	W	Т	Α	Μ	Ν	Т	Y		51	
62			AA	GAT	TGC	CGTC	GGT	ATCO	GACA	۱ACG	AGT	CGG	GCA	GGAC	GTG	GAC	CGC	AAT	GAAC	CACA	TAC			
		F	R	S	G	Т	S	D	I	V	L	Р	н	К	V	A	Н	G	К	A	L		71	
122				TTC	CGTI	CTG	GTA	ССТС	TGA	TATC	GTC	СТТС	CCC	ΑΤΑΑ	AGT	TGC	ACAT	ſGG	raag	GCA	CTG			
		L	Y	Ν	G	Q	К	Ν	R	G	Р	V	А	Т	G	V	V	G	V	I	A		91	
182			С	ТСТА	ACAA	CGG	TCA	GAAA	۹AAT	CGT	GGT	CAG	STTG	CGA	CTGG	CGT	GGT	TGG	AGTA	ATTO	GCT			
		Y	S	М	S	D	G	Ν	Т	L	А	V	L	F	S	V	Ρ	Y	D	Y	Ν		111	
242				TAT	ГССА	TGA	GCG	ATG	GAAA	ACAC	ССТО	GGC	GTT	TTGT	TCA	GCG	гтсс	CTA	TGAC	CTAT	٩AC			
		W	Y	S	Ν	W	W	Ν	V	R	V	Y	К	G	Q	К	R	А	Ν	Q	R		131	
302			ΤG	GTAC	CAGC	CAAC	TGG	TGG	AATO	STTA	GGG	ТСТА	TAA	AGG	ACAA	AAA	CGA	GCA	AAC	CAGA	GG			
		М	Y	Е	Е	L	Y	Y	н	R	S	Ρ	F	R	G	D	Ν	G	W	н	S		151	
362			A	TGT	ACG	AGG	AAC	ГСТА	CTAC	CAT	CGG	тстс	CAT	TTCG	AGG	GGA	CAA	TGG	CTG	SCAC	ТСС			
		R	S	L	G	Y	G	L	Κ	S	R	G	F	Μ	Ν	S	S	G	Н	А	I		171	
422			A	GGA	GCCT	TGG	ATA	TGG	ATTG	iaag	AGC	CGT	GGAT	TCA	ГGAA	ACAG	CTC	TGG	ACAT	GCC	٩ΤΑ			
		L	Е	I.	Н	V	Т	К	А	*													179	
482				CTGO	SAAA	TTCA	ACG	TGAC	CAA	AGC	ΤΤΑΑ	GAT	стте	STTG	AAAA	ACAA	ATC	AAT	TGA	ATG	СТТ			

CTGGAAATTCACGTGACCA<u>AAGCTT</u>AAGATCTTGTTGAAAACAAATCAATTGAAATGCTT *Hin*dIII

542 CCCCGAGGAAACTGATGTAAAACTAGCTAAAAGACTCTAATTTTACCCTGTAAGACAAAA

662 AAAAAAAATAG<u>GGATCC</u>AATCAG

BamHI

Figure 2. Partial cDNA and amino acid sequences. **(A)** Fra B. **(B)** FraE. The first 35 nucleotides of FraB, and the first 32 nucleotides of FraE correspond to the primers ol_fra3b and ol_fra1 (Supplementary Table S1), respectively, and the corresponding amino acids are extracted from the N- terminal protein sequence. GenBank accession for FraB and FraE have been deposited under entry codes MK936900 and MK936901, respectively.

Toxins 2019, 10, 401

Figure 3. Structure of actinoporins. **(A)** Degree of disorder of residues in FraB, FraC, and FraE and **(B)** in several actinoporins. The disorder score (Y-axis) was computed with PONDR VLTX [1]. Large PONDR scores correspond to highly disordered residues. In several segments, the profile of FraE perfectly overlaps that of FraC given the high similarity between them.

Fable 1. Primer sequences used in	the amplification	of fragaceatoxin sec	juences.
-----------------------------------	-------------------	----------------------	----------

Name	Sequence	Restriction site
ol_fra1	5'ATATAT <u>CCATGG</u> CTGACGTTGCTGGTGCTGTTATCGACGG	Ncol
ol_fra3b	5'ATATAT <u>CCATGG</u> TTGCTGTTGCTGGTGCTATCATCCAAGGTGC	Ncol
ol_pTb	5'CTGATT <u>GGATCC</u> CTATTTTTTTTTTTTTTTTTTTTTTT	BamHI
fwd FraE	5'GAGATATAT <u>CCATGG</u> CAGATGTGGCCGGTGCCGTGAT'3	Ncol
rev FraE	5'ATACTC <u>AAGCTT</u> TCAGGCTTTGGTCACATGAATTTCCAGGATGG'3	Ncol
fwd dest vector	5'TGA <u>AAGCTT</u> GAGTATTCTATAGTGTCACC'3	Ncol
rev dest vector	5' <u>CCATGG</u> ATATATCTCCTTCTTAAAG'3	HindIII

Table 2. Data collection and ref	inement statistics	. Statistical	values given i	n parenthesis	refer to t	the highest
resolution bin.						

Data Collection	FraE
Space Group	P 1 21 1
Unit cell	
a, b, c (Å)	55.0, 42.9, 71.9
α, β, γ (°)	90.0, 97.6, 90.0
Resolution (Å)	36.7 – 2.22
Wavelength	1.0000
Observations	85,841 (12,714)
Unique reflections	16,687 (2,412)
Rmerge.	0.16 (0.59)
$R_{p.i.m.}$	0.078 (0.28)
CC1/2	0.987 (0.800)
I / σ (I)	7.7 (2.6)
Multiplicity	5.1 (5.3)
Completeness (%)	99.9 (100)
Refinen	nent
Resolution (Å)	36.7 – 2.22
Rwork / Rfree (%)	18.7 / 23.0
No. protein chains	2
No. atoms	

Protein	2784
Solvent	150
B-factor (Å ²)	
Protein	22.8
Water	23.7
Ramachandran	
Preferred (%)	90.7
Allowed (%)	9.3
Outliers (%)	0
RMSD bond (Å)	0.014
RMSD angle (°)	1.83
PDB entry code	6K2G

Table 3. Number of residues classified accordin	ng to conservation and accessible surface area	(ASA). ^{a, b, c, d}
---	--	------------------------------

		Fragaceatoxins			
Conservation	High ASA	Partial ASA	Low ASA	Total	%
I down the cold I I i colo	27	46	69	142	79
Identical High	3	3	4	10	6
Low	2	2	0	4	2
None	12	9	2	23	13
Total	44	60	75	179	100
		Actinoporins			
I down the cold I I i colo	10	20	35	65	36
Identical High	5	14	22	41	23
Low	3	4	8	15	8
inone	26	22	10	58	32
Total	44	60	75	179	100

^a The degree of conservation was calculated with Clustal Omega [2]. ^b ASA values of side-chains were calculated form the crystal structure of FraC pore (4TSY) using GETAREA [3] and refer to the ratio between the ASA of the side-chain and the ASA of the residue in random coil conformation. High (ASA \geq 50 %), partial (ASA from 21 49 %), and low ASA (ASA \leq 20 %) correspond to different degrees of side- chain exposure to solvent [4]. ^c The first, second, and third residues in the sequence were assigned a highly accessible value given their disorder disposition in the crystal structure (4TSY). ^d Cells are color-coded according to residue abundance from low (light orange) to high (dark orange).

Table 4. Number of non-interacting residues classified according to conservation and accessible surface area (ASA).^{a, b, c, d, e.}

Fragaceatoxins										
Conservation	High ASA	Partial ASA	Low ASA	Total	%					
Idontical High	19	28	48	95	75					
	2	3	2	7	6					
Low	2	2	0	4	3					
None	12	7	2	21	17					
Total	35	40	52	127	100					
		Actinoporins								
I down to and I II' all	6	13	24	43	34					
Identical High	4	10	16	30	24					
LOW	3	4	7	14	11					
none	22	13	5	40	31					

^a The degree of conservation was calculated with Clustal Omega [2]. ^b ASA values of side-chains were calculated form the crystal structure of FraC pore (4TSY) using GETAREA [3] and refer to the ratio between the ASA of the side-chain and the ASA of the residue in random coil conformation. High (ASA \geq 50 %), partial (ASA from 21 to 49 %), and low ASA (ASA \leq 20 %) correspond to different degrees of side- chain exposure to solvent [4]. ^c The first, second, and third residues in the sequence were assigned a highly accessible value given their disorder disposition in the crystal structure (4TSY). ^d Cells are color-coded according to residue abundance from low (light orange) to high (dark orange).^e Non-interacting residues are shown in Figure 6 and were obtained from [5].

Fragaceatoxins										
Conservation	High ASA	Partial ASA	Low ASA	Tota 1	%					
Identical	7	19	21	47	90					
High	1	0	2	3	6					
Low	0	0	0	0	0					
None	1	1	0	2	4					
Total	9	20	23	52	100					
	A	Actinoporins								
Identical	4	7	11	22	42					
High	1	4	5	10	19					
Low	0	0	2	2	4					
None	4	9	5	18	35					
Total	9	20	23	52	100					

Table 5. Number of interacting residues classified according to conservation and accessible surface area (ASA).^{a, b, c, d, e.}

^a The degree of conservation was calculated with Clustal Omega [2]. ^b ASA values of side-chains were calculated form the crystal structure of FraC pore (4TSY) using GETAREA [3] and refer to the ratio between the ASA of the side-chain and the ASA of the residue in random coil conformation. High (ASA \geq 50 %), partial (ASA from 21 to 49 %), and low ASA (ASA \leq 20 %) correspond to different degrees of side- chain exposure to solvent [4]. ^c The first, second, and third residues in the sequence were assigned a highly accessible value given their disorder disposition in the crystal structure (4TSY). ^d Cells are color-coded according to residue abundance from low (light orange) to high (dark orange).^eInteracting residues are shown in Figure 6 and were obtained from [5]. These residues in positions 56, 79, 166, and 167 have both lipid and protein interacting partners (Figure 6).

Table 6. Number of protein-binding residues classified according to conservation and accessible surface area (ASA).^{a, b, c, d, e.}

Fragaceatoxins										
Conservation	High ASA	Partial ASA	Low ASA	Total	%					
Idontical High	1	10	11	22	92					
	0	0	1	1	4					
Low	0	0	0	0	0					
None	0	1	0	1	4					
Total	1	11	12	24	100					
	Actinoporins									
	0	2	4	6	25					

Identical High	0	2	4	6	25
Low	0	0	2	2	8
None	1	7	2	10	42
Total	1	11	12	24	100

^a The degree of conservation was calculated with Clustal Omega [2]. ^b ASA values of side-chains were calculated form the crystal structure of FraC pore (4TSY) using GETAREA [3] and refer to the ratio between the ASA of the side-chain and the ASA of the residue in random coil conformation. High (ASA \geq 50 %), partial (ASA from 21 to 49 %), and low ASA (ASA \leq 20 %) correspond to different degrees of side- chain exposure to solvent[4]. ^c The first, second, and third residues in the sequence were assigned a highly accessible value given their disorder disposition in the crystal structure (4TSY). ^d Cells are color-coded according to residue abundance from low (light orange) to high (dark orange). ^e Protein-binding residues are shown in Figure 6 and were obtained from [5].

Table 7. Number of lipid-binding residues classified according to conservation and accessible surface area (ASA).^{a, b, c, d, e.}

Fragaceatoxins									
Conservation	High ASA	Partial ASA	Low ASA	Total	%				
Identical	7	10	12	29	91				
High	1	0	1	2	6				
Low	0	0	0	0	0				
None	1	0	0	1	3				
Total	9	10	13	32	100				
Actinoporins									
Identical	4	6	8	18	56				
High	1	2	1	4	13				
Low	0	0	1	1	3				
None	4	2	3	9	28				
Total	9	10	13	32	100				

^a The degree of conservation was calculated with Clustal Omega [2].^b ASA values of side-chains were calculated form the crystal structure of FraC pore (4TSY) using GETAREA [3] and refer to the ratio between the ASA of the side-chain and the ASA of the residue in random coil conformation. High (ASA \geq 50 %), partial (ASA from 21 to 49 %), and low ASA (ASA \leq 20 %) correspond to different degrees of side- chain exposure to solvent [4].^c The first, second, and third residues in the sequence were assigned a highly accessible value given their disorder disposition in the crystal structure (4TSY). ^d Cells are color-coded according to residue abundance from low (light orange) to high (dark orange).^e Lipid-binding residues are shown in Figure 6 and were obtained from [5].

References

- 1. Uversky, V.N.; Dunker, A.K. Understanding protein non-folding. *Biochim. Biophys. Acta* 2010, 1804, 1231–1264, doi:10.1016/j.bbapap.2010.01.017.
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.Z.; Lopez, R.; McWilliam, H.; Remmert, M.; Soding, J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.* 2011, *7*, doi:10.1038/msb.2011.75.
- Fraczkiewicz, R.; Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. *J. Comput. Chem.* 1998, 19, 319–333, doi:10.1002/(Sici)1096-987x(199802)19:3<319::Aid-Jcc6>3.3.Co;2-3.
- 4. Jouiaei, M.; Sunagar, K.; Gross, A.F.; Scheib, H.; Alewood, P.F.; Moran, Y.; Fry, B.G. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. *Mol. Biol. Evol.* **2015**, *32*, 1598–1610, doi:10.1093/molbev/msv050.
- 5. Tanaka, K.; Caaveiro, J.M.M.; Morante, K.; Gonzalez-Manas, J.M.; Tsumoto, K. Structural basis for self-assembly

of a cytolytic pore lined by protein and lipid. Nat. Commun. 2015, 6, doi:10.1038/ncomms7337.