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Abstract: Diphtheria toxin, an exotoxin secreted by Corynebacterium that causes disease in humans
by inhibiting protein synthesis, enters the cell via receptor-mediated endocytosis. The subsequent
endosomal acidification triggers a series of conformational changes, resulting in the refolding and
membrane insertion of the translocation (T-)domain and ultimately leading to the translocation of the
catalytic domain into the cytoplasm. Here, we use X-ray crystallography along with circular dichroism
and fluorescence spectroscopy to gain insight into the mechanism of the early stages of pH-dependent
conformational transition. For the first time, we present the high-resolution structure of the diphtheria
toxin at a mildly acidic pH (5–6) and compare it to the structure at neutral pH (7). We demonstrate
that neither catalytic nor receptor-binding domains change their structure upon this acidification,
while the T-domain undergoes a conformational change that results in the unfolding of the TH2–3
helices. Surprisingly, the TH1 helix maintains its conformation in the crystal of the full-length toxin
even at pH 5. This contrasts with the evidence from the new and previously published data, obtained
by spectroscopic measurements and molecular dynamics computer simulations, which indicate the
refolding of TH1 upon the acidification of the isolated T-domain. The overall results imply that the
membrane interactions of the T-domain are critical in ensuring the proper conformational changes
required for the preparation of the diphtheria toxin for the cellular entry.

Keywords: diphtheria toxin structure; X-ray crystallography; helix unfolding; acidification;
conformational switching

Key Contribution: The high-resolution structure of diphtheria toxin is reported for the first time at
an acidic pH. X-ray crystallography and fluorescence spectroscopy are used to characterize the initial
stages of protonation-dependent conformational switching, critical for the cellular entry of the toxin.

1. Introduction

Diphtheria toxin (DT) is secreted by Corynebacterium and causes disease in humans by inhibiting
protein synthesis. DT consists of three domains—receptor (R-), translocation (T-), and catalytic
(C-)—and similar to many other A-B toxins it enters the cell via the endosomal pathway [1–5]
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(Figure 1a). After the binding of the R-domain to the EGFR-like receptor on the cell surface, the toxin is
endocytosed into the cell, and acidification inside the endosome promotes the requisite conformational
change and membrane insertion of the T-domain followed by the translocation of the C-domain into the
cytosol. Following translocation, the C-domain is proteolyzed from the R and T domains and proceeds
to inhibit the EF2 translation factor, leading to the termination of protein synthesis and cell death.
The DT T-domain translocates the catalytic domain across the endosomal membrane without the help
of any additional protein components [6] and apparently does so as a monomer [7,8]. The T-domain can
also translocate other proteins in a pH-dependent manner, provided they form a molten globule-like
state [9].

A schematic representation of the pH-dependent membrane insertion pathway of the T-domain
is shown in Figure 1b [10]. The protonation of key histidine residues is involved in the formation
of the membrane-competent W+-state [11–13], which rapidly associates with the bilayer to form an
interfacial intermediate I-state [10]. Subsequent insertion is facilitated by the presence of anionic lipids,
which decrease the thermodynamic barrier for the insertion. The two protonation steps responsible for
the formation of conformations capable of membrane association and insertion have overlapping pH
ranges, suggesting that additional protonation can occur at the same pH value due to the shift in the
pKa values of titratable residues after their partitioning into the interfacial zone of the lipid bilayer.
While numerous studies have shown the co-existence of multiple insertion intermediates [8,10,14–19],
the structure of the functional state of the T-domain responsible for the translocation of its N-terminus
along with the catalytic domain remains unknown. The putative structural model representing the
core in the post-translocated state (Figure 1b, bottom right structure) is based on the Open-Channel
State (OCS) model [20] derived from conductivity measurements in planar bilayers [21–23] and is now
confirmed by a combination of site-specific labeling and depth-dependent fluorescence quenching
experiments [24].
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Figure 1. (A) Schematic representation of the cellular entry of diphtheria toxin (DT). (B) Summary of 
in vitro studies of the pH-triggered membrane insertion pathway of the diphtheria toxin T-domain, 
responsible for bridging the endosomal membrane (red square in A). Modified from [10,25]. The 
initial step of acid-induced conformational switching prior to membrane interactions is the subject of 
this study. 

To date, the only high-resolution structures of the diphtheria toxin are those obtained at neutral 
pH [26,27]. Here, we use the method of X-ray crystallography to gain insight into the early stages of 
acid-induced conformational changes in DT. For the first time, we report the structures obtained in a 
range of pH values from 7.0 to 5.0 (an example of the crystal at an acidic pH is presented in Figure 
S1). The observed structural changes are localized to the T-domain and are further characterized by 
comparison to new and previously published results for the isolated T-domain [11], obtained by 
molecular dynamics (MD) simulations, fluorescence and circular dichroism spectroscopy. 
  

Figure 1. (A) Schematic representation of the cellular entry of diphtheria toxin (DT). (B) Summary of
in vitro studies of the pH-triggered membrane insertion pathway of the diphtheria toxin T-domain,
responsible for bridging the endosomal membrane (red square in A). Modified from [10,25]. The initial
step of acid-induced conformational switching prior to membrane interactions is the subject of this study.

To date, the only high-resolution structures of the diphtheria toxin are those obtained at neutral
pH [26,27]. Here, we use the method of X-ray crystallography to gain insight into the early stages
of acid-induced conformational changes in DT. For the first time, we report the structures obtained
in a range of pH values from 7.0 to 5.0 (an example of the crystal at an acidic pH is presented in
Figure S1). The observed structural changes are localized to the T-domain and are further characterized
by comparison to new and previously published results for the isolated T-domain [11], obtained by
molecular dynamics (MD) simulations, fluorescence and circular dichroism spectroscopy.
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2. Results

2.1. Analysis of DT Structures Obtained at Varying pH

DT was crystallized under varying buffer conditions in an effort to determine if conformational
changes, particularly in the T-domain, are observed with a decreasing pH. Since the crystallization
conditions were identical except for the buffer, the crystals of DT-5.0, DT-5.5, DT-6.0, and DT-7.0
have similar unit cell dimensions and diffraction resolutions (Table 1). This represents a new crystal
form of DT. However, the α-angle for DT-5.0 is approximately 4◦ larger than that of other crystals.
The overall structure of this crystal form is similar to previously determined structures [26,27] and forms
a domain-swapped dimer (Figure 2a). The structures of DT at various pH values were superimposed
onto DT-5.0 using GESAMT in order to compare their similarities/differences. Overall, all of the
structures are very similar (Figure 2b), with RMSD deviations between the Cα atoms of 0.34 Å (997
residues, DT-5.5), 0.38 Å (999 residues, DT-6.0), and 0.41 Å (1000 residues, DT-7.0).

Table 1. Crystallographic data for diphtheria toxin structures (continues next page).

DT-5.0 DT-5.5 DT-6.0 DT-7.0

Data Collection

Unit-cell parameters
(Å, ◦)

a = 69.04 b = 69.16 c
= 73.38 α = 122.1 β

= 93.7 γ = 97.9

a = 69.55 b = 69.67 c
= 73.40 α = 117.6 β

= 93.5 γ = 98.1

a = 69.44 b = 69.61 c
= 73.12 α = 117.9 β

= 93.9 γ = 97.9

a = 69.38 b = 69.64 c
= 73.15 α = 117.5 β

= 93.3 γ = 98.3
Space group P1 P1 P1 P1

Resolution (Å) 1 49.59-2.05 46.77-2.05 46.57-2.10 46.74-2.30
Wavelength (Å) 1.0000 1.0000 1.0000 1.0000
Temperature (K) 100 100 100 100

Observed reflections 239,575 253,521 236,012 183,332
Unique reflections 68,617 72,784 67,346 51,695

<I/ (I)> 1 10.0 (1.7) 9.8 (1.7) 10.7 (1.8) 9.7 (1.8)
Completeness (%) 1 97.3 (96.6) 96.9 (96.8) 97.4 (96.9) 97.7 (97.3)

Multiplicity 1 3.5 (3.5) 3.5 (3.5) 3.5 (3.5) 3.5 (3.6)
Rmerge (%) 1,2 6.2 (79.2) 6.6 (79.8) 5.7 (69.6) 7.3 (75.4)
Rmeas (%) 1,4 7.4 (93.6) 8.2 (93.9) 7.3 (83.1) 8.6 (88.5)
Rpim (%) 1,4 3.9 (49.3) 4.2 (49.8) 3.6 (43.9) 4.5 (46.0)

CC1/2
1 0.998 (0.681) 0.998 (0.656) 0.998 (0.753) 0.997 (0.698)

Refinement

Resolution (Å) 1 36.61-2.05 35.03-2.05 36.43-2.10 32.72-2.30
Reflections

(working/test) 1 65,164/3424 69,202/3554 64,135/3175 49,240/2428

Rfactor / Rfree (%) 1,3 19.7/25.0 18.3/24.3 21.0/25.8 18.5/24.1
No. of atoms

(Protein/Water) 7444/321 7401/353 7491/227 7591/201

Model Quality

R.M.S deviations

Bond lengths (Å) 0.009 0.009 0.010 0.009
Bond angles (◦) 0.915 0.905 0.941 0.959

Mean B-factor (Å2)

All Atoms 50.3 46.6 56.0 56.3
Protein 50.5 46.7 56.3 56.5
Water 46.0 44.4 48.4 48.9

Coordinate error
(maximum likelihood)

(Å)
0.28 0.25 0.28 0.32
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Table 1. Cont.

DT-5.0 DT-5.5 DT-6.0 DT-7.0

Ramachandran Plot

Most favored (%) 96.1 97.1 95.6 96.2
Additionally allowed

(%) 3.5 2.4 3.6 2.9

Values in parenthesis are for the highest resolution shell. 1 Rmerge = ΣhklΣi |Ii(hkl) − < I(hkl) > |/ΣhklΣi Ii(hkl), where
Ii(hkl) is the intensity measured for the ith reflection and < I(hkl) > is the average intensity of all reflections with
indices hkl. 2 Rfactor = Σhkl||Fobs(hkl)| − |Fcalc(hkl)||/Σhkl|Fobs(hkl)|; Rfree is calculated in an identical manner using
5% of randomly selected reflections that were not included in the refinement. 3 Rmeas = redundancy independent
(multiplicity-weighted) Rmerge [28,29]. Rpim = precision indicating (multiplicity-weighted) Rmerge [30,31]. 4 CC1/2 is
the correlation coefficient of the mean intensities between two random half-sets of data [32,33].
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Interestingly, the residues between H223 to P234, which span TH2, appear to become more flexible 
at a lower pH.  

Analysis of the B-factors for each structure (Figure 4) shows ordered TH2 residues in DT-7.0 and 
slightly higher B-factors in this region for DT-6.0 in each subunit (TH2-A and TH2-B). This region in 
the DT-5.5 structure becomes more disordered and some of the residues could not be modeled due 
to weak or nonexistent electron density. In the DT-5.0 structure, the TH2 helix could be modelled in 
subunit A but not subunit B. It should be noted that this region does not form any crystal contacts 
that would cause conformational artifacts. When comparing the B-factors for multiple structures, one 
certainly needs to be cautious as each data set is unique. However, in this case we are analyzing 
crystals that are similar in their crystal forms and diffraction resolutions. As such, these structures 
suggest that the structural stability of TH2 is pH-dependent. 

Figure 2. Structures of DT obtained at varying pH. (A) Structure of a DT-7.0 domain swapped dimer.
Subunits A and B are colored green and magenta, respectively. (B) Superposition of DT-5.0 (green),
DT-5.5 (coral), DT-6.0 (cyan), and DT-7.0 (magenta).

The mean main chain B-factors were plotted for all residues of each structure in an effort to analyze
the flexibility across the polypeptide (Figure 3). One region that stands out is the TH2-TH3 region of
the T-domain, which consistently displays large B-factors in each subunit of all structures. Interestingly,
the residues between H223 to P234, which span TH2, appear to become more flexible at a lower pH.

Analysis of the B-factors for each structure (Figure 4) shows ordered TH2 residues in DT-7.0 and
slightly higher B-factors in this region for DT-6.0 in each subunit (TH2-A and TH2-B). This region in the
DT-5.5 structure becomes more disordered and some of the residues could not be modeled due to weak
or nonexistent electron density. In the DT-5.0 structure, the TH2 helix could be modelled in subunit A
but not subunit B. It should be noted that this region does not form any crystal contacts that would
cause conformational artifacts. When comparing the B-factors for multiple structures, one certainly
needs to be cautious as each data set is unique. However, in this case we are analyzing crystals that are
similar in their crystal forms and diffraction resolutions. As such, these structures suggest that the
structural stability of TH2 is pH-dependent.
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The B-factor scale ranges are 0 Å2 (blue), 50 Å2 (white), and 100 Å2 (red). Residues with B-factors
greater than 100 Å2 are colored yellow. The TH2 and TH3 helices are indicated in panel A for subunits
A and B.
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2.2. Comparison to pH-Dependent Refolding of Isolated T-Domain

Our earlier MD study of the isolated T-domain revealed that histidine protonation, while not
accompanied by the loss of structural compactness of the protein, nevertheless drives substantial
molecular rearrangements characterized by the partial loss of secondary structures due to the unfolding
of helices TH1 and TH2 and the loss of close contact between the C- and N-terminal segments [11].
While the high-resolution structures at a low pH presented here confirm the unfolding of TH2
(Figures 3 and 4), no changes in the structure of TH1 nor in its proximity to TH1 at pH 7.0–5.0 have been
observed (Figure 5a and Figure S2). This warrants a closer look at the computational and experimental
characterization of the structure of the isolated T-domain presented below.
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ellipticity signal from the helical structure, as measured by circular dichroism spectroscopy [11]. The 
thermodynamic stability of the T-domain is also substantially reduced already at pH 6, before any of 
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observations that the conformational reorganization of the T-domain upon histidine’s protonation 
results in an increase in the distance between Q369 in the C-terminus of TH9 and W206 in the N-
terminus of TH1 (Figure 5b). We applied the fluorescence quenching technique, which is sensitive to 
changes in this distance scale, by replacing Q369 with a cysteine and labeling it with bimane dye. The 
fluorescence of bimane is known to be strongly quenched by aromatic residues (e.g., W206) in a short-
distance range (less than 10 Å) [34,35]. Figure 6b–c, show the steady-state fluorescence spectra and 
lifetime decay measurements of bimane-labeled T-domain at pH 8, exhibiting low intensity and 

Figure 5. Comparison of packing of the first and last helices of the T-domain at different protonation
states in the context of the crystallographic structure of the full-length DT and previously published MD
simulations of the T-domain [11]. (A) Crystallographic structure of TH1 (with residue W206 highlighted),
TH9 (with residue Q369 highlighted), and W206 (N-terminal helix TH1) exhibits no variation at pH
7.0 (blue), 5.5 (red), or 5.0 (green). (B) MD simulations for unprotonated T-domain demonstrate the
close packing of N-terminal TH1 and C-terminal TH9 of the T-domain (grey). Protonation of the six
histidine residues results in the collapse of the TH1 (magenta) [11]. The resulting separation of the N-
and C-terminal segments of the T-domain changes the proximity of residues Q369 and W206, which can
be studied by means of fluorescence spectroscopy (see Figure 6).
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Figure 6. Fluorescence-based proximity measurements between bimane probe attached to a single
cysteine mutant at position 369 (Q369C mutant) and residue W206. The short-range aromatic quenching
of bimane steady-state (A) and time-resolved fluorescence (B) indicates close proximity in the folded
structure at neutral pH. The Instrument Response Function (IRF) is shown as a dotted line. The reduction
in quenching observed at an acidic pH indicates the loss of close packing between the N- and C-termini
of the T-domain, also observed in the MD simulation (see Figure 5b and [11]).
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The MD simulations of the isolated T-domain revealed that, in the neutral pH simulation,
the protein retained its globular structure in a natively folded state. This was evident from the absence
of significant structural changes and the low values (about 1.9 Å) of the average root-mean square
deviation of the Cα atoms in TH1–TH9 from their crystallographic positions [11]. In stark contrast to
the neutral pH simulation, large structural changes were observed in the protein at low pHs. Figure 5b
shows the comparison of the folding of the TH1 segment of the protein estimated by MD simulations
with unprotonated and protonated histidines.

At a mildly acidic pH, the T-domain undergoes partial unfolding and the resulting loss of
ellipticity signal from the helical structure, as measured by circular dichroism spectroscopy [11].
The thermodynamic stability of the T-domain is also substantially reduced already at pH 6, before
any of the complicating effects of acid-caused precipitation can be noticed [19]. We validated the MD
observations that the conformational reorganization of the T-domain upon histidine’s protonation
results in an increase in the distance between Q369 in the C-terminus of TH9 and W206 in the
N-terminus of TH1 (Figure 5b). We applied the fluorescence quenching technique, which is sensitive
to changes in this distance scale, by replacing Q369 with a cysteine and labeling it with bimane dye.
The fluorescence of bimane is known to be strongly quenched by aromatic residues (e.g., W206) in a
short-distance range (less than 10 Å) [34,35]. Figure 6b,c, show the steady-state fluorescence spectra and
lifetime decay measurements of bimane-labeled T-domain at pH 8, exhibiting low intensity and highly
quenched kinetics with a pronounced short-lived component (Figure 6b,c, black curves), indicating a
close proximity of W206 and a bimane probe. The quenching is decreased at pH 4.5 (Figure 6a,b, orange
curves), consistent with the loss of contact between TH1 and TH9 observed in the MD simulation
(Figure 5b, magenta). At intermediate pHs of 6.0–5.5, the lifetime kinetics can be represented by the
mixture of quenched and unquenched fluorescence species, which implies the coexistence of folded
and unfolded states in solution (our interpretation of the bimane fluorescence results is supported by
the substantially reduced quenching (and hence reduced pH-dependent recovery) observed when the
probe is attached one helical turn further along TH9 in the N366C mutant (Figure S3)).

3. Discussion

Since the first structures of the diphtheria toxin were published in the early 1990s [26,27],
our understanding of the many aspects of the cellular entry of the toxin, illustrated in Figure 1a,
has dramatically progressed. Nevertheless, full understanding of atomistic details of the membrane
translocation process remains elusive (Figure 1b). In the past few decades, many research groups had
contributed to deciphering of the action of the T-domain of the toxin [8,10,14–19] and the involvement
of the protonation of various titratable residues in its conformational switching [10–13,18,19,36–39].
The emerging picture is that of a complex multistep process, characterized by overlapping
pH-dependent transitions occurring both in solution and on the membrane interface [10,25]. Here,
we have used X-ray crystallography along with fluorescence spectroscopy to characterize early
conformational changes occurring in solution at a mildly acidic pH.

The overall structure of the DT at pH 7, featuring a domain-swapped dimer (Figure 2a), corresponds
well to that previously published [26]. The set of the structures generated for mildly acidic pH values
of 6, 5.5, and 5 retain essentially the same conformations (Figure 2b), with the hotspots of partial
unfolding highlighted by the elevated B-factors (Figures 3 and 4). The observed loss of the helical
structure in helices TH2 and TH3 of the T-domain are of a special interest to us, since these regions
are expected to unfold upon acidification based on the previous results of MD simulations [11] and
Hydrogen-Deuterium Exchange Mass-Spectrometry for the isolated T-domain [36]. In contrast, the long
TH1, which is also expected to refold based on the latter studies, remains unchanged in the crystal
structure even at pH 5 (Figure 5). In general, such a result can be explained in two ways—either by
limitations imposed by the crystal or by the different folding behavior of the isolated T-domain as
compared to that in the full-length protein. We suspect that, to some degree, both factors may be
involved here. The only crystal contact that TH1 makes is an H-bond between E218 and S535 from the
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neighboring molecules related by translational symmetry (not shown). While this is unlikely to be
sufficient for helix stabilization, the overall proximity of the neighboring DT molecule might impose
some limitations on what conformations TH1 can adopt, reducing the entropic component driving the
refolding at an acidic pH.

The more likely explanation of the variation in the pH-dependent behavior of the TH1 helix
(compare Figure 5a,b) involves the somewhat different refolding pattern of the isolated T-domain.
MD simulations mimicking mildly acidic conditions by protonating the six histidine residues in the
T-domain indicate that both the TH1 and TH2 segments lose their secondary structure and that the
close packing of the C- and N-terminal segments of the T-domain is lost. Both of these conclusions
are supported by both new and previously published spectroscopic experiments with the isolated
T-domain shown in Figure 6. The pronounced decrease in negative ellipticity observed in the published
circular dichroism pH titration is consistent with the substantial loss of the helical content [11].
The bimane experiment shows that acidification also causes a progressive increase in fluorescence
intensity (Figure 6a) and an increase in the fluorescence lifetime of the probe attached at residue
369 in a Q369C mutant (Figure 6b). These changes are caused by the relief of the quenching of the
bimane fluorescence with the aromatic side-chain of W206, thus indicating the displacement of the
terminal segments containing the probe and the quencher from each other at an acidic pH. While
such a displacement can be expected in the context of the isolated T-domain, it would be less likely in
the context of full-length DT, where the T-domain is flanked on both sides by the C- and R-domains.
This question will be further addressed in future computational and experimental studies involving
the entire protein.

4. Conclusions

For the first time, we present the high-resolution structure of the diphtheria toxin at a mildly acidic
pH (5–6) and compare it to the structure at neutral pH (7). We demonstrate that neither catalytic nor
receptor-binding domains change their structure upon this acidification, while the T-domain undergoes
a conformational change that results in the unfolding of TH2–3 helices. Surprisingly, the TH1 helix
maintains its conformation in the crystal of the full-length toxin even at pH 5. This contrasts with the
evidence from the new and previously published data, obtained by spectroscopic measurements and
molecular dynamics computer simulations, that indicate the refolding of TH1 upon the acidification of
the isolated T-domain. The overall results imply that the membrane interactions of the T-domain are
critical in ensuring the proper conformational changes required for the preparation of the diphtheria
toxin for cellular entry.

5. Materials and Methods

5.1. Materials

Bovine thrombin was from Fisher Scientific (Pittsburgh, PA, USA).

5.2. Preparation of the T-Domain and Full-Length DT

Both the full-length DT and the T-domain were prepared as described in [10]. Briefly, the protein
expression was examined in BL21 DE3pLys E. coli cells, recombinant protein synthesis was induced
by the addition of 0.8 mM of IPTG at OD600 = 0.5, after which cells were grown at 25 ◦C overnight.
Purification included affine chromatography on Ni-NTA resin from Qiagen (Valencia, CA, USA) and
gel-filtration on a Sepharose 12 1 × 30 cm column from GE Healthcare (Chicago, IL, USA) in PBS
buffer containing 0.1 mM of EDTA. The purity of the preparations obtained was analyzed by SDS
PAGE. For the determination of the protein concentration, we used a molar extinction coefficient of
17,000 M−1cm−1 at 278 nm for the T-domain and 49,600 M−1cm−1 for full-length diphtheria toxin (DT).
As a template for the expression of full-length DT, we used E148S/C201S mutant, which is known to
have reduced cytotoxicity [40].
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Labeling with bimane was performed using a standard procedure for thiol-reactive derivatives [41].
We used a monobromobimane derivative (Invitrogen, Eugene, OR, USA). Typically, 1 mg of the dye was
dissolved in 50 µL of DMFA and added drop-wise to the protein solution in PBS (pH 7.4) containing
0.1 mM of EDTA. The reaction mixture was incubated for two hours at room temperature or overnight
at 4 ◦C. Unreacted dye was removed by gel filtration chromatography on a HiPrep 26/10 desalting
column ran on an FPLC AKTA Purifier system (GE Healthcare, Chicago, IL, USA), followed by at
least five consecutive centrifugations using a Microcon YM-10 concentrator, until the solution coming
through the concentrator did not contain any dye, as assayed by absorbance spectroscopy.

5.3. Crystallization and Data Collection

Purified diphtheria toxin (DT) was concentrated to 9.2 mg/mL (WT) in 50 mM of disodium
phosphate at pH 8.0 for crystallization screening. All the crystallization experiments were set up
using an NT8 drop setting robot (Formulatrix Inc., Bedford, MA, USA) and UVXPO MRC (Molecular
Dimensions, Maumee, OH, USA) sitting drop vapor diffusion plates at 18 ◦C. A total of 100 nL of
protein and 100 nL of crystallization solution were dispensed and equilibrated against 50 uL of the latter.
Plate-shaped crystals of native DT were obtained from 10% (w/v) PEG 10K, 100 mM of magnesium
acetate containing the following buffers and pH values: 100 mM of MES at pH 5.0, (DT-5.0), 100 mM
of MES at pH 5.5 (DT-5.5), 100 mM of MES at pH 6.0 (DT-6.0), and 100 mM of HEPES at pH 7.0
(DT-7.0). Crystals were transferred to cryoprotectant solution composed of 80% crystallization solution
and 20% (v/v) PEG 200, harvested with a cryoloop and stored in liquid nitrogen. X-ray diffraction
data were collected at the Advanced Photon Source beamline 17-ID using a Dectris Pilatus 6M pixel
array detector.

5.4. Structure Solution and Refinement

Intensities were integrated using XDS [42,43] via AutoPROC [44], and the Laue class analysis and
data scaling were performed with Aimless [28] which indicated that the crystals belonged the triclinic
space group P1. The Matthews coefficient [45] for all the data indicated that a non-crystallographic
dimer was present in the asymmetric unit. Structure solution for DT-WT-pH5 was examined by
molecular replacement with Phaser [46] using a previously determined DT structure as the search
model (PDB 1DDT). The final model of DT-pH5 was used as the search model for molecular replacement
against the other datasets. Model refinement and manual model building were conducted with Phenix
and Coot [47] respectively. Disordered side chains were truncated to the point for which electron
density could be observed. Structure validation was conducted with MolProbity [48] and figures were
prepared using the CCP4MG package [49]. Structure superposition was carried out with GESAMT [50].
Crystallographic data are provided in Table 1.

5.5. Fluorescence Measurements

Fluorescence was measured using an SPEX Flurolog FL 3–22 steady-state fluorescence spectrometer
(Jobin Yvon, Edison, NJ, USA) equipped with double grating excitation and emission monochromators.
The measurements were made at 25 ◦C in 2 × 10 mm cuvettes oriented perpendicular to the excitation
beam. For the bimane fluorescence measurement, the excitation emission wavelength was 380 nm and
the emission spectra were recorded between 395 and 700 nm using excitation and emission spectral
slits of 2 and 4 nm, respectively. Solution acidification was achieved by the addition of small amounts
of 2.5 M acetic buffer. All the spectra were recorded after 30 min of incubation to ensure the equilibrium
of the sample.

The fluorescence lifetime kinetics of bimane-labeled T-domain were measured with a time-resolved
fluorescence spectrometer FluoTime 200 (PicoQuant, Berlin, Germany) using a standard time-correlated
single-photon counting scheme. Samples were excited at 373 nm by a sub-nanosecond pulsed
diode laser LDH 375 (PicoQuant, Berlin, Germany) with a repetition rate of 10 MHz. Fluorescence
emission was detected at 480 nm, selected by a Sciencetech Model 9030 monochromator, using a
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PMA-182 photomultiplier. The fluorescence intensity decay was analyzed using the FluoFit version 2.3
iterative-fitting software based on the Marquardt algorithm (PicoQuant, Berlin, Germany).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/11/704/s1:
Figure S1: Crystals of diphtheria toxin; Figure S2: Structure of diphtheria toxin dimer at pH 7 with T-domain
helices highlighted in blue (TH1), green (TH2–3) and red (TH9); Figure S3: Comparison of the steady-state (A,C)
and time-resolved (B,D) fluorescence quenching of bimane probe attached to attached to single cysteine mutants
Q369C (A,B) and N366C (C,D) mutant.
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