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Abstract: Chronic kidney disease (CKD) patients have an accelerated atherosclerosis, increased risk 
of thrombotic-ischemic complications, and excessive mortality rates when compared with the 
general population. There is also evidence of an endothelial damage in which the proinflammatory 
state, the enhanced oxidative stress, or the accumulation of toxins due to their reduced renal 
clearance in uremia play a role. Further, there is evidence that uremic endothelial cells are both 
involved in and victims of the activation of the innate immunity. Uremic endothelial cells produce 
danger associated molecular patterns (DAMPS), which by binding to specific pattern recognition 
receptors expressed in multiple cells, including endothelial cells, induce the expression of adhesion 
molecules, the production of proinflammatory cytokines and an enhanced production of reactive 
oxygen species in endothelial cells, which constitute a link between immunity and inflammation. 
The connection between endothelial damage, inflammation and defective immunity in uremia will 
be reviewed here. 

Keywords: chronic kidney disease (CKD), uremia; inflammation; oxidative stress; innate immunity; 
endothelial cells; endothelial damage 

Key Contribution: Chronic kidney disease (CKD) is associated with accelerated atherothrombosis, 
hemostatic alterations and an impaired immune response. Development of endothelial damage is 
widely recognized in CKD patients and occurs as a result of sustained toxic and inflammatory 
conditions. It also contributes to the immune dysfunction developing in these patients. 

 

1. Introduction 

Chronic kidney disease (CKD) is a major public health issue worldwide because of its increasing 
prevalence, high rates of morbidity and mortality and association with poorer quality of life, reduced 
life expectancy, as well as high associated costs, resulting in a high burden to the healthcare systems 
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[1,2]. CKD is associated with several complications, such as hypertension, increased cardiovascular 
morbidity and mortality, anemia, bone-mineral disorders, malnutrition, inflammation, sarcopenia, 
metabolic acidosis, and an impaired immune response, among others [3]. Cardiovascular disease is 
the leading cause of morbidity and mortality in patients with CKD or end-stage renal disease (ESRD) 
[4]. Although the prevalence of traditional cardiovascular risk factors is high in this subset of patients, 
it does not adequately explain the high cardiovascular burden in this population [5,6]. Thus, the role 
of nontraditional and/or uremia-related risk factors have been proposed to explain this enhanced risk 
[6], and among them the presence of an endothelial damage (ED) [7]. 

Endothelial cells (ECs) play a critical role in the pathophysiology of vascular disorders [8]. 
Endothelial activation is characterized by a dysregulation of the physiological functions of the 
vascular endothelium, resulting in reduced vasodilating capacity, enhanced proinflammatory and 
prothrombotic properties, and abnormal modulation of vascular smooth muscle cell growth and 
migration [7]. 

CKD and ESRD patients are also prone to infectious complications, because of a dysfunctional 
immune system, which is the second mortality cause in this population [9]. In addition, the immune 
system also intervenes actively in the systemic inflammation present in CKD [10,11]. In fact, among 
the Chronic Renal Insufficiency Cohort (CRIC) study participants, there was an inverse association 
between biomarkers of inflammation and measures of kidney function, such as the estimated 
glomerular filtration rate (eGFR) or serum cystatin C, and a positive association with the degree of 
albuminuria [12]. 

Innate immunity acts as the first defense line against infections. It is characterized by responses 
against specific pathogen-associated molecular patterns (PAMPs) or damage-associated molecular 
patterns (DAMPs), like high-mobility group box 1 (HMGB1) protein and adenosine 5’-triphosphate 
(ATP). In ESRD, the innate immune system, that involves monocytes, macrophages, granulocytes, 
and also endothelial cell activation, is activated together with a depletion of natural regulatory T-
cells, resulting in systemic inflammation and an enhanced oxidative stress. These processes are 
connected with an adaptive immune deficiency due to the reduction of naïve and central memory T-
cells and B-cells, dendritic cells, and altered functions of polymorphonuclear leukocytes and 
monocytes [10]. 

2. Endothelial Activation and Damage in Uremia 

There is a large body of evidence of the presence of an endothelial injury in CKD, which is closely 
associated with the increased cardiovascular morbidity and mortality in this setting, and provides 
insights on the mechanisms involved. 

In vivo and in vitro studies have clearly shown that there is an endothelial activation in CKD 
and ESRD patients, as shown by an impaired endothelium-dependent vasodilatation or increased 
serum levels of circulating cell adhesion molecules, such as soluble Intercellular Adhesion Molecule 
1 (sICAM-1), Vascular Cell Adhesion Molecule 1, (sVCAM-1), and sE-selectin [13–16]; and other 
endothelium-derived proteins, such as monocyte chemoattractant protein-1 (MCP-1) [17], 
angiopoetin-2 [18], tissue factor (TF) [19–21], and total and active von Willebrand factor (VWF) [22,23] 
in the serum of these patients. It must be emphasized that endothelial activation is considered an 
early trigger for the development and the progression of atherosclerosis. It has been related to the 
accelerated atherosclerosis and the prothrombotic state present in CKD, which may explain the 
increased cardiovascular risk in this population, beyond traditional cardiovascular risk factors [24]. 
Further, markers of ED in CKD have been associated with the arterial stiffness [25], IL-8 driven 
vascular calcification [26] or the reduced microcirculation present in this population [27], which also 
contributes to the cardiovascular burden, as well as with the abnormal left ventricular structure and 
function [28–30] and, what is clinically relevant, to the increased mortality risk in CKD and ESRD 
[31–35]. 

The endothelium in CKD patients suffers from a continuous insult causing its activation and 
injury that may end in a dysfunctional state (Figure 1). The endothelial activation in CKD is attributed 
to the pulsatile blood flow and disturbed shear stress [36], accumulation of uremic toxins, such as 
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dimethyl arginines [37,38], indoxyl sulfate (IS) [39–41], indole-3 acetic acid (IAA) [21,42], kynurenine 
[20,43,44], p-cresol [45,46], trimethylamine-N-oxide (TMAO) [41,47], oxidized low-density 
lipoprotein (LDL) cholesterol particles [48], carbamylated lipoproteins [49,50], reactive oxygen 
species (ROS) [39,51,52], advanced glycation end-products (AGEs) [53,54], hyperhomocysteinemia 
[55,56], hyperphosphatemia [57,58], bacterial lipopolysaccharides or other bacterial products [59–61], 
endogenous damage-associated molecules, and proinflammatory cytokines [62–66], which all 
together constitute the uremic environment. 

Our group has thoroughly studied the endothelial damage induced by the uremic environment 
in an in vitro model. Cultured endothelial cells exposed to growth media containing uremic serum 
from patients on maintenance hemodialysis showed morphological alterations, with irregular shape 
and heterogeneous size, abundant presence of vacuoles, and an increased number of mitotic cells 
[67]. They exhibited increased proliferation, evidenced by morphological analysis, cell cycle 
evaluation by flow cytometry, and activation of the mitogen-activated protein kinase (MAPK) 42/44 
[67]. Cells grown under uremic conditions showed inflammation signs, as demonstrated by enhanced 
expression of VCAM-1, ICAM-1, and endothelial-leukocyte adhesion molecule (ELAM-1) on the cell 
surface, as well as a higher presence of these molecules in their soluble form and activation of the 
protein p38MAPK [68]. No evidence of enhanced apoptosis was detected despite the accelerated 
proliferation observed in ECs cultures in response to the uremic media [67]. Moreover, these cells 
produced an extracellular matrix (ECM) characterized by a less intricate network of fibrils [19] and 
an increased thrombogenicity, with an enhanced expression of tissue factor (TF) [19], VWF [68], and 
thrombomodulin [68]; while maintaining normal activity of metalloprotease ADAMTS13 [69]. 

The chronic inflammatory state described concurs with an enhanced oxidative stress in CKD 
patients. Oxidative stress occurs as a result of the imbalance between an increased production of ROS 
and the limited defense capability of the natural antioxidants, both occurring in CKD. The enhanced 
oxidative stress in CKD could be, at least in part, responsible for the cytotoxic injury to which the 
endothelium of these patients is exposed. Therefore, antioxidant therapy, such as the use of 
compounds that potentiate antioxidant enzymes, has been proposed as an effective strategy to 
prevent the development of endothelial damage and hence may have the potential to reduce the 
cardiovascular risk in these patients [52,70]. 

Differential proteomic analysis of endothelial cells grown under uremic conditions [71] revealed 
increases in the expression of proinflammatory proteins, such as two components of the proteasome, 
the protein HMGB1, and the enzyme aldose reductase. In addition to these proteins, a higher 
expression of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase, and 
peroxiredoxin, was also detected, suggesting an adaptive response to the oxidative stress induced by 
uremic media. Interestingly, some of these proteins are directly or indirectly related to nuclear factor 
kappa B (NFκB), which was also overexpressed in uremic endothelial cells [69]. This transcription 
factor plays a crucial role in the development of inflammatory and immunological responses and 
oxidative stress. Furthermore, there is evidence of an activation of the innate immunity in uremic 
endothelial cells, as demonstrated by an enhanced expression of Toll-like receptor 4 (TLR4) on their 
surface and the activation of the inflammasome nucleotide-binding oligomerization domain (NOD)-
like receptor prying domain-containing-3 (NLRP3, also known as NALP3) [65]. 

Other experimental studies have shown enhanced apoptosis [72,73], increased expression of 
proinflammatory proteins [16], augmented production of intracellular ROS [39], enhanced cell 
senescence [74], and a higher exposure of phosphatidylserine, which may contribute to the 
prothrombotic state in CKD [75]. In a recent study, uremic sera increased the levels of miR-92a in 
cultured endothelial cells and suppressed the expression of miR-92a targets, such as sirtuin 1 (SIRT1), 
Krüppel-like factor 2 (KLF2), and KLF4, three endothelial-protective molecules, as well as the 
expression of endothelial nitric oxide synthase (eNOS). In addition, there was an increase in caspase 
1, a hallmark of inflammasome activation [70]. Uremic medium also impairs the endothelial barrier 
function and repairs capacity by disrupting cell–cell contacts, associated with a decreased expression 
of vascular endothelial (VE)-cadherin and zonula occludens 1 (ZO1) [76,77]. 
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The transcription factor aryl hydrocarbon receptor (AHR) also plays a crucial role in the 
development of endothelial damage in CKD. The accumulation of toxins derived from tryptophan 
metabolism, such as IS, IAA, and kynurenine, in CKD cause the activation of AHR in different cells 
and especially in endothelial cells [20]. In CKD, endothelial AHR activation has a prothrombotic 
action by promoting the production of TF by non-genomic pathways [21]. IAA, acting through AHR, 
has been reported to activate p38MAPK, with the induction of NFκB activation, which is the element 
that binds to the promoter (F3) of TF [78]. Interestingly, AHR can be also activated by laminar shear 
stress [79], exhibiting an atheroprotective action. In this regard, Lano et al. [80] provided evidence 
indicating that the antithrombotic properties of shear stress on the endothelium could be impaired 
by toxins, such as IS, that act as agonists for AHR and, therefore, contribute to the cardiovascular risk 
in CKD. 

Circulating endothelial cells (CECs) are mature endothelial cells present in blood and are 
considered a marker of an ongoing endothelial injury. Increased CEC values have been described in 
CKD patients [69]. In addition, higher CEC counts in patients in hemodialysis were directly 
associated with a higher incidence of cardiovascular events [81,82]. Endothelial progenitor cells 
(EPCs), which are originated in the bone marrow and circulate in blood, are thought to be involved 
in the damaged endothelium repair. Circulating EPC numbers and functionality are decreased in 
patients with CKD or dialysis [8,83–85], reflecting a reduced ability to restore the damaged 
endothelium, and have been shown to be predictors of future adverse outcomes in this population 
[86–88]. In addition, microvesicles (MV) are extracellular vesicles released from the plasma 
membrane of activated or apoptotic cells. There is increasing evidence of a role for MV in intercellular 
communication in different processes, especially in vascular biology and also in hemostasis [89]. 
Endothelial MV (EMV) intervene in pathophysiological processes by interacting and fusing to target 
cells, such as leukocytes, releasing their contents directly into their cytoplasm and modifying their 
biological behavior. EMV have been found to be increased in CKD or dialysis patients [53,75,90,91] 
and have been associated with vascular damage [53] and cardiovascular mortality [90–92]. 
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Figure 1. Endothelial cells exposed to the uremic environment. Different factors alter the phenotype 
of endothelial cells (EC), showing signs of inflammation, oxidative stress and a prothrombotic 
behavior of the produced extracellular matrix (ECM): increased expression of adhesion molecules, 
such as Intercellular Adhersion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), 
and P- and E- selectins, both membrane-bound and soluble; thrombogenic proteins, such as von 
Willebrand Factor (VWF), tissue factor (TF) and thrombomodulin (TM) secreted to the ECM; 
production of reactive oxygen species (ROS) intracellularly. Activation of innate immunity 
mechanisms occurs in response to the presence of intracellular and soluble damage-associated 
molecular patterns (DAMPS). Signal 1: Toll-like receptor 4 (TLR4) is overexpressed in ECs exposed to 
the uremic milieu, being able to detect DAMPS leading to the production of the inactive forms of 
interleukins 1β and 18 (IL-1β and IL-18); Signal 2: DAMPS also promote the engagement of the 
inflammasome NOD-like receptor prying domain-containing-3 (NALP3), with the activation of IL-1β 
and IL-18. Activated nuclear factor kappa B (NFκB), linked to the inflammatory and oxidative stress 
responses of ECs to uremic media is related to increases in the degree of phosphorylation of ERK 
42/44, SAPK/JNK, and AKT. These phenotypic alterations of ECs result in the recruitment of 
circulating leucocytes to the endothelial surface and, along with disrupted cell–cell contacts, their 
extravasation to the subendothelium to maintain the inflammatory response. Endothelial cells have a 
tendency to detach from their vascular bed passing to the circulation as circulating endothelial cells 
(CECs), and exposing an ECM highly reactive to circulating platelets. 

3. The Endothelium, Inflammation and Immunity 

The inflammation associated with CKD is in part due to the activation of the elements that 
participate in the innate immune system, including monocytes, macrophages, granulocytes, and 
other cellular types of the body. The immune deficiency present in CKD is mainly caused by a 
reduction of antigen-presenting dendritic cells, T- and B-cells and alterations in the phagocytic 
capabilities of monocytes and polymorphonuclear leukocytes (PMNs) [10]. In advanced CKD, there 
is evidence of a senescence-associated secretory phenotype, characterized by a defective regulation 
of inflammatory processes with release of cytokines from uremic senescent cells [93]. 

The endothelium also participates actively in innate and adaptive immune responses, aside from 
the basal functions in hemostasis [94]. Endothelial cells take part in blood supply, nutrient delivery, 
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metabolism, and immune cell trafficking, among other functions. Moreover, due to their strategic 
location, endothelial cells are the first to detect pathogens and endogenous DAMPS in the circulation. 
Due to their plasticity, endothelial cells are dynamic enough to not only adapt but also respond to 
extracellular environmental changes that exhibit a role in the immune system. Therefore, endothelial 
cells play an active role not only in coagulation and inflammation, but also in innate and adaptive 
immunity (Figure 2). 

Production of proinflammatory cytokines and chemokines by endothelial cells causes the 
amplification of the immune response by attracting and mediating the extravasation of immune cells. 
Also, endothelial cells stimulate cytokine production in this cell type. Moreover, endothelial cells can 
act as antigen presenting cells under certain conditions. In this regard, major histocompatibility 
complex (I and II) molecules expressed at the endothelial cells surface facilitates their recognition by 
T-cells and their tissue infiltration [95]. They express an array of accessory molecules, such as CD80, 
CD86, CD40, and CD134L, among others [95]. In addition, endothelial cells have a role in adaptive 
immunity by interacting with leukocytes [96] and also with platelets, a process in which endothelial 
P-selectin plays a major role [97]. Platelet adherence onto activated endothelial cells triggers 
inflammation [98]. 

The inflammation on endothelial cells in CKD is often induced by DAMPs, released by damaged 
cells, and toxins. Different cell types express Toll-like receptors (TLRs) and components of the 
inflammasome. These are elements of the innate immune response that cause microinflammation and 
vascular damage [99]. 
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Figure 2. The mechanisms summarized inside the cycle do not correspond exclusively to the 
interaction between two processes, but may be implied to different extent in development of other 
alterations. Exposure of the endothelium to the uremic milieu leads to a cross-talk between 
inflammation, immunity and endothelial activation through several mediators. The uremic media 
consists of soluble factors secreted by cells and tissues to the circulation, such as cytokines, adhesion 
receptors, coagulation proteins, and selectins; products are derived from the uremic state or induced 
by renal replacement therapy (RRT), such as endotoxins and toxins, and from an increased oxidative 
stress, such as reactive oxygen species (ROS). Cellular response involves macrophages and 
leukocytes, and to a lesser extent platelets and circulating microvesicles secreted from injured cells. 
In this orchestrated response, signaling mediators play a role, with activation of transcription factors, 
engagement of inflammasome NALP3, and Toll-like receptor 4 (TLR4) overexpression, promoting 
further activation of proinflammatory mediators. 

4. Inflammasomes, TLRs, Endothelium and Chronic Kidney Disease 

Inflammasomes act as a connection between immunity and inflammation. Inflammasomes are 
multiprotein complexes that become activated in response to microbial and non-microbial 
proinflammatory triggers, and are assembled by pattern recognition receptors (PRRs). PRRs and 
inflammasomes are key components of the innate immune system for host defense. PRRs recognize 
PAMPs, such as nucleic acids or components of the cell wall from pathogens, and also host-derived 
DAMPs, released as a result of damaged cells and tissues, such as ATP and double-stranded DNA, 
among others. Both PAMPs and DAMPs induce proinflammatory cytokines production through the 
regulation of the enzymatic activity of caspases. Fatty acids, products downstream of elevated 
glucose levels, crystal formation, such as those induced by calcium oxalate, cholesterol emboli, and 
uric acid, among others, constitute DAMPs that can lead to the activation of inflammasomes. 

The best characterized inflammasome is NALP3, also known as NLRP3 and cryopyrin. It 
consists of a sensor molecule (the intracellular receptor protein NALP3), connected to an adapter 
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protein called apoptosis-associated speck-like protein containing a caspase activation and 
recruitment domain (ASC), and the inflammatory enzyme caspase-1 [100]. The assembly of the 
inflammasome elements induces the activation of inflammation signaling networks [101,102], 
including those dependent on NFκB and protein p38MAPK [103]. Oxidative stress also promotes the 
activation of the inflammasome through the protein thioredoxin-interacting protein (TXNIP) [102]. 
As a result of the inflammasome engagement, there is cleavage of precursor forms of the cytokines 
IL-1β and IL-18, and also of gasdermin D (GSDMD) leading to pyroptosis [104]. There are many 
PAMPs and DAMPs that activate the inflammasome and, therefore, these stimuli probably converge 
on common mechanisms of NALP3 activation. Cytosolic K+ efflux [105–107], mitochondrial ROS 
[108,109], oxidized mitochondrial DNA leakage [110], and ion fluxes because of lysosomal disruption 
[105,111] are some of these mechanisms. 

The NALP3 inflammasome constitutes an alarm for the immune system to combat insults. 
However, if constantly activated, it may contribute to pathological injury itself [112]. NALP3 
components are expressed in ECs [113], vascular smooth muscle cells (VSMCs) [114], and immune 
cells, especially phagocytic antigen presenting cells, such as macrophages and dendritic cells, and 
changes in their expression are associated with vascular inflammation [115]. NALP3 is highly 
expressed in the aorta of patients with coronary atherosclerosis and levels correlate with the stenosis 
severity [116]. NALP3 inflammasome contributes to atherogenesis at different stages, with IL-1β 
being a key product. Its production induces the expression of other proinflammatory cytokines (IL-6 
and tumor necrosis factor alpha; TNF-α) [117,118]; IL-8, attracting neutrophils; monocyte chemo-
attractant protein-1 (MCP-1), promoting the adhesion of circulating monocytes [119]; and VCAM-1 
on endothelial cells [120], which mediates adhesion and infiltration of monocytes. Proliferation and 
migration of VSMCs [121–123] also occurs, with an increased migration ability and susceptibility of 
macrophages to lipid deposition accelerating foam cell formation [124], and also the expression of 
matrix metalloproteinases (MMPs) [125,126] promoting collagen degradation. All these events lead 
to plaque instability [127]. 

Inflammasome assembly has been involved in a number of kidney diseases, including acute 
kidney injury, CKD, and diabetic kidney disease, via canonical and non-canonical mechanisms that 
participate in the regulation of processes such as inflammation, pyroptosis, apoptosis, and fibrosis 
[128]. Among them, there is evidence of NALP3 as a key pathogenic mechanism of CKD [129–131]. 
NALP3 is expressed in tubular epithelial cells, glomeruli, podocytes, mesangial, and intercalated cells 
[128,132,133]. There are a number of primary and systemic diseases involving the kidney, most of 
them acute inflammatory diseases, associated with the activation of the NALP3 inflammasome [64]. 
Mitochondrial ROS-mediated NALP3 inflammasome activation contributes to the renal tubular cells 
injury caused by aldosterone [134]. IL-1β and IL-18 promote kidney injury through inflammatory cell 
recruitment. These proinflammatory cytokines also play a role in adaptive immunity, since they 
influence Th17 and Th1 responses, including CD4+ T-cells differentiation, key mediators in the 
pathogenesis of a number of autoimmune diseases, also in the kidney [128]. In addition, there are 
increased levels of caspase 1 and NALP3 inflammasome in lupus nephritis, which are associated with 
neutrophil extracellular traps (NET)-mediated activation in macrophages [135]. NETosis is also an 
activator of inflammasome engagement.  

NALP3 inflammasome is also activated in immunocompetent peripheral cell lines isolated from 
uremic patients undergoing dialysis treatment. These cells show higher mRNA levels of NALP3, 
Caspase-1 (CASP-1), ASC, IL-1β, IL-18, and P2X7 receptors compared to cells from healthy subjects 
[136]. Moreover, it is activated in endothelial cells in culture exposed to serum samples from patients 
with CKD under conservative treatment (CKD stages 4–5) and under maintenance hemodialysis or 
peritoneal dialysis. Interestingly, NALP3 inflammasome engagement was more notable in 
association with the serum samples from patients under RRT, especially peritoneal dialysis [65]. Of 
note, patients included in this study were carefully selected excluding other cardiovascular risk 
factors in order to evaluate the effect of uremia per se. Diabetes is also a condition in which 
inflammasomes seem to be activated, although it is unclear whether hyperglycemia has a direct effect. 
In patients with diabetic kidney disease, IL-1β and IL-18 levels are elevated [128,133]. 
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Therefore, there is increasing evidence of the role of NALP3 inflammasome in the development 
of a number of renal diseases and related complications. Although, the exact mechanisms remained 
to be deciphered, it may constitute a therapeutic target once better known. 

One of the key functions of innate immunity is the recognition of PAMPs and DAMPs through 
PRRs, which are receptors for cell stress and damage signals. Most TLRs are a type of transmembrane 
PRRs. They recognize various common pathogenic components, such as viral RNA, bacterial 
oligodeoxynucleotides, lipopolysaccharides (LPSs), and peptidoglycans, among others. TLRs trigger 
signals that result in the expression of proinflammatory genes, leukocyte chemotaxis, cytotoxicity, 
phagocytosis, and induction of the adaptive immune responses [137,138]. They have an initial 
protective role, but when they receive stimuli intense enough and persistent over time their activation 
may lead to a pathological inflammatory response. 

TLRs are also related to inflammasomes, since their engagement occurs after an initial step in 
which TLRs activation triggers NFκB dependent gene transcription of pro-IL-1β and pro-IL-18. These 
proteins are released to the cytoplasm but require cleavage by caspases, produced by the assembly 
of NALP3 in a second step, to become activated and secreted [128] (Figure 1). 

TLRs stimulation leads to the release of inflammation mediators, such as IL-6, IL-8, and TNF-α, 
among others. In relation to this, the uremic environment causes changes in the activation of TLRs, 
although the tendency of these changes seems to be controversial or at least dependent on the cell 
type. As reviewed by Kato et al. [11], uremia diminishes the capabilities of dendritic cells and 
macrophages for antigen presentation with alterations in costimulatory molecules (CD80, CD86) 
[139], and the expression of these molecules is regulated by TLRs. In some studies, TLR4 expression 
has been shown to be constitutively decreased in monocytes in both predialysis ESRD [140] and 
hemodialysis (HD) patients, in which endotoxins contained in the dialysate or derived from the gut 
microbiota may also contribute [141]. On the other hand, other studies provide evidence 
demonstrating that the uremic environment induces enhanced expression of TLR4, together with 
cytokine production, thus promoting inflammation [142]. In this regard, TLR activation has been 
related to the inflammatory and profibrotic effects of prolonged exposure to peritoneal dialysis 
solutions, either conventional or more biocompatible. Anti-TLR strategies, such as sTLR2, were 
proposed to inhibit peritoneal infection-induced fibrosis without compromising bacterial clearance 
and also as an antifibrotic strategy [143]. Moreover, TLR4 upregulation with activation of 
inflammatory signals, some dependent on TNF-α and NFκB, has been also described to be involved 
in the muscle inflammation associated with CKD [144]. Therefore, it seems that there is a 
dysregulation of the expression of TLRs in uremia. 

Different TLRs, including TLR4, are constitutively expressed in endothelial cells [65,94]. TLR4 
increases its expression on the endothelial cell surface under inflammatory conditions. A wide range 
of DAMPs released after cellular stress, such as HMGB-1, which is upregulated in endothelial cells 
exposed to uremic media [71], can activate TLRs, especially TLR2 and TLR4, causing the induction 
and amplification of the inflammatory response [137] through the transcription factor NFκB 
activation. Stimulation of TLR4 by HMBG1 in response to the uremic toxin TMAO results in an 
increased permeability of vascular endothelium due to the disruption of cell to cell junctions 
[145,146]. Intravenous injection of high-density lipoprotein (HDL) cholesterol from patients with 
CKD into mice increased blood pressure, an effect mediated by TLR2 expressed on the endothelial 
cells surface [147]. In vitro exposure of endothelial cells to the uremic milieu causes upregulation of 
TLR4 with its increased expression on the cell membrane, together with an augmented generation of 
intracellular ROS [65]. These changes are associated with an elevation of adhesion receptors at the 
cell surface, with activation of the intracellular cell-stress related signaling protein AKT and the 
transcription factor NFκB. Interestingly, blockade of TLR4 partially prevented these effects as well as 
the activation of the protein TXNIP, an element of the NALP3 inflammasome [65]. 

There is evidence of soluble extracellular TLR4 (sTLR4), which has shown the capability of 
diminishing TLR4 signaling. sTLR4 levels are increased in HD patients with subclinical 
inflammation, but not in non-inflamed HD patients, vs. healthy control subjects. Therefore, sTLR4 
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release could be a key counter-regulatory mechanism to modulate inflammation in this setting 
[148,149]. 

5. Gut Dysbiosis in CKD and Uremic Toxins: Role in Inflammation, Oxidative Stress and 
Endothelial Activation 

The healthy gut microbiome has a symbiotic relationship with the host, helping in the digestion 
of dietary fiber, the generation of beneficial short-chain fatty acids (SCFA), the synthesis of vitamins 
and amino acids, maintaining the intestinal barrier function, and modulating the immune system and 
metabolism [150]. Gut dysbiosis has been linked to several diseases, such as inflammatory bowel 
disease, obesity, type 2 diabetes mellitus, cancer, cardiovascular disease, or CKD [150]. Changes in 
the gastrointestinal tract (GI) and intestinal barrier function and in the composition of the gut 
microbiota have been related to many complications of CKD and ESRD [151,152]. 

There is an impaired function of the intestinal barrier in uremia [152], with an increased 
intestinal permeability to different size macromolecules, as observed in animal models and CKD 
patients [153]. The impaired renal function elicits an increase of urea and uric acid levels in the GI 
tract in CKD and ESRD. Urea is metabolized by urease-containing bacteria to ammonia, which is 
associated with an increase in the GI pH and a decrease in the tight junctions in the GI tract epithelial 
cells [154,155], thus increasing GI permeability, allowing the translocation of bacteria or bacterial 
products to the systemic circulation [152]. There is evidence of elevated levels of endotoxins in 
patients with advanced CKD [156–159], which are associated with increased inflammation and 
activation of the immune system [151,152,155,159]. A very recent study [160] questioned the 
enhanced gut derived bacterial products translocation in a selected group of CKD and dialysis 
patients without metabolic or inflammatory disease. 

CKD is related to gut dysbiosis, due to the uremic condition, dietary restrictions, administered 
drugs (antibiotics, phosphate binders, oral iron supplementation), and hypervolemia, with associated 
intestinal wall congestion and edema [151,155]. Altogether these conditions induce a significant loss 
of the gut microbiota diversity, with a reduction in commensal SCFA-producing bacteria and an 
expansion of bacteria that contain urease, uricase, and indole and p-cresol-forming enzymes. This 
change, from a sacharolytic to a proteolytic fermentation microbiota, in CKD leads to a reduced 
formation of SCFA and an increased production of uremic toxins, such as IS, p-Cresyl sulfate (PCS), 
IAA, ammonia, phenylacetylglutamine, or TMAO, among others [161–164]. As glomerular filtration 
is reduced, uremic toxins progressively accumulate. Further, IS and PCS are highly bound to proteins, 
limiting the efficacy of dialysis for their elimination. Accumulation of uremic toxins is involved in 
oxidative stress, systemic inflammation, CKD progression, and a higher cardiovascular risk and 
mortality, as well as other CKD-related complications, [151,155,164]. 

The gut-derived toxins previously mentioned have a deleterious impact on the endothelium. IS 
has been associated with increased CV morbidity and mortality in CKD patients [165]. IS increases 
the formation of endothelial microvesicles (EMV), decreases nitric oxide (NO) bioavailability, 
promotes production of ROS, induces the expression of adhesion molecules via the NFκB pathway, 
increases endothelial permeability by decreasing VE-cadherin expression, reduces EPCs mobilization 
and angiogenesis, and accelerates EPCs senescence. It also increases the expression and procoagulant 
activity of endothelial cell TF, and has been associated with immune-mediated endothelial damage 
[166]. PCS also exhibits a role in endothelial activation, through increased expression of ICAM-1, 
MCP-1 and TF, which promotes adhesion of leukocytes to the endothelium. It inhibits proliferation, 
viability, and repair capabilities impairing nitric oxide (NO) signaling or increasing its permeability 
[167]. TMAO, a gut metabolite derived from the fermentation of dietary choline/phosphatidylcholine, 
L-carnitine or betaine, also induces endothelial damage, with activation of NALP3 inflammasome 
[168], cellular inflammation, ROS production, and has been associated with atherothrombosis [169]. 
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6. Uremia, Platelet Dysfunction and Alterations in Immunity 

Alterations of platelet functions have been widely recognized in patients with CKD. 
Paradoxically, a bleeding tendency coexists with accelerated atherosclerosis and an enhanced risk of 
thrombosis in these patients (see [170] for extended review). The inflammatory state in CKD patients 
has been associated with a pre-existent platelet dysfunction [171]. In addition, platelet microparticles 
(PMPs) are increased in CKD and dialysis patients [91] and have been reported to express 50- to 100-
fold more procoagulant capacity than activated intact platelets, with the ability to activate the 
classical complement pathway. The microRNAs carried by vesicles from platelets, endothelial cells, 
and monocytes have potential inflammatory effects [172]. Further, the gut dysbiosis in CKD may play 
a role in the thromboembolic complication in CKD. IS promotes platelet hyperactivity [173] and the 
binding of bacterial derived lipopolysaccharides to endothelial cells and platelets through TLRs, 
while TMAO also causes platelet hyperactivity that may promote thrombus formation [174]. 

Platelets have functions beyond hemostasis, and exhibit endocytic and phagocytic capabilities 
potentially related to innate immune mechanisms participating in the rapid removal of pathogens 
and detecting DAMPs through TLRs [175–177]. Alterations of platelet functions have been widely 
recognized in patients with CKD [170]. A deficient assembly of cytoskeletal proteins was observed in 
resting and activated platelets from uremic patients [178,179]. These observations, among others, are 
compatible with biochemical alterations of the platelet contractile system, which may contribute to 
the impairment of platelet phagocytic and secretory capacities in uremic patients. 

Interestingly, platelets are also prime drivers of the inflammatory response occurring at the 
endothelium. Many interaction pathways convey on the endothelial cell surface linking these two 
cellular components in the initiation and regulation of hemostasis and inflammation. Inflammation 
causes the stimulation of both platelets and endothelial cells, affecting not only their role in 
hemostasis, but also in the immune response [180]. The feedback between endothelial and platelet 
dysfunctions play a definite role in the alteration of the immune system in patients with uremia. 

7. Conclusions 

CKD is associated with accelerated atherothrombosis, alterations in hemostasis, enhanced 
inflammatory activity, and an impaired immune response. Development of endothelial damage is 
widely recognized in CKD patients. The endothelial damage is the result of sustained toxic and 
inflammatory conditions and contributes to the immune dysfunction developing in these patients. 

Alterations in mechanisms of the innate immune system have been reported in patients with 
end-stage renal disease. Activation of monocytes, macrophages, granulocytes and endothelial cells 
coexist with a depletion of natural regulatory T-cells and impaired phagocytic functions of 
polymorphonuclear leukocytes and monocytes. These alterations seem to be aggravated by dialysis 
procedures. 

Endothelial activation is at the cross-road of alterations in inflammatory and immune 
mechanisms developing in patients with CKD. The feedback between inflammation and immune 
pathways further potentiates pathologic responses at the endothelial level. A more precise 
knowledge of the basic molecular mechanisms involved in the development of endothelial damage 
may facilitate the development of more specific therapeutic strategies that could alleviate the 
profound alterations in the inflammatory and immunocompetence mechanisms in CKD. Such 
therapies may in turn reduce the unacceptable death risk from cardiovascular complications in this 
patient population. 
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MAPK Mitogen-activated protein kinase 
ELAM-1 Endothelial-leukocyte adhesion molecule 
NFκB  Nuclear factor kappa B 
TLR4 Toll-like receptor 4 

NLRP3, NALP3 NOD-like receptor prying domain-containing-3  
SIRT1 Sirtuin 1 
KLF2 Krüppel-like factor 2 
KLF4 Krüppel-like factor 4 
eNOS Endothelial nitric oxide synthase 

VE-cadherin Vascular endothelial cadherin 
ZO1 Zonula occludens 
EPCs Endothelial progenitor cells 
MV Microvesicles 

EMV Endothelial microvesicles 
ECM Extracellular matrix 

TF Tissue factor 
IL Interleukin 
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TXNIP Thioredoxin-interacting protein 
GSDMD Gasdermin D 
VSMCs Vascular smooth muscle cells 
MMPs Matrix metalloproteinases 
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