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With a mean worldwide prevalence of 13.4% [1], chronic kidney disease (CKD) imposes a massive
health burden on our society. In addition to a reduced kidney function, patients with CKD suffer
increasingly from cardiovascular disease (CVD) [2–4], with CVD accounting for around half of the
deaths of patients in CKD stages 4–5 [3]. In fact, CKD has been identified as an independent risk factor
for CVD [5], but therapeutic options are highly inadequate. In addition to traditional cardiovascular risk
factors, CKD-specific pathological mechanisms are expected to contribute to increased cardiovascular
risk in this patient group, especially with progressing CKD [6–8]. However, detailed insights into the
underlying pathophysiology of CKD-driven CVD largely remain to be unveiled [9,10].

Inflammation and fibrosis are increased in CKD patients [11–13], and the Chronic Renal
Insufficiency Cohort (CRIC) study recently revealed that inflammation biomarkers are independently
associated with atherosclerotic cardiovascular events and death in CKD patients [14]. Moreover,
vascular calcification is highly prevalent in CKD patients, increases with declining kidney function [15]
and is associated with increased risk of cardiovascular events and death in CKD [16–19]. As one
aspect, uremic retention solutes, also referred to as uremic toxins, accumulate in the circulation
of CKD patients due to a failing kidney filtration function [20]. Many of these solutes have been
associated with pathophysiological effects, including inflammation, oxidative stress and calcification.
As a consequence, they are expected to contribute to increased cardiovascular risk in CKD patients [21].

Furthermore, patients with CKD often present with enhanced bone demineralization along
with extraosseous calcification, a condition clinically referred to as CKD-mineral and bone disorder
(CKD–MBD). CKD–MBD highly coincides with increased vascular calcification and correlates with
cardiovascular events, underlining the importance of identifying and characterizing CKD–MBD
biomarkers as well as mediators of this pathological bone–vascular axis [22]. Moreover, patients
with CKD present disturbances of gut microbiota [23], which too are expected to contribute to both
reduced bone and cardiovascular health in CKD patients.

This Special Issue aims to provide insights into comorbidities in CKD patients with a main
focus on increased cardiovascular risk and summarizes the current knowledge of underlying
pathophysiological mechanisms.

1. Increased Cardiovascular Risk in CKD

Patients with CKD have an increased risk of atherosclerosis-related cardiovascular events, such
as myocardial infarction and stroke [3,24]. However, with declining renal function, CKD patients
are also becoming more prone to non-atherosclerotic cardiovascular events. Underlying cardiac
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remodeling involves left-ventricular hypertrophy, fibrosis and capillary rarefaction, and is often
referred to as uremic cardiomyopathy. In this Special Issue, Kaesler et al. [25] provide detailed
insights into cardiac remodeling in CKD and provide an update on the current knowledge of the
cellular and molecular mechanisms of pathophysiological kidney–heart crosstalk in CKD patients.
This includes alterations in relation to phosphate homeostasis, uremic toxins, growth factors, metabolic
and oxidative stress, inflammation as well as fibrosis. Moreover, an overview of current mouse models
to study cardiac remodeling in CKD is provided and potential therapeutic targets are being discussed
in the context of current knowledge. This underlines the urgent need to further invest in closely
studying the pathological crosstalk between kidney and heart in order to guide the development of
effective therapies.

2. Inflammation and Vascular Calcification in CKD Impact on Cardiovascular Health

Chronic low-grade inflammation is a hallmark of CKD and is closely associated with cellular
senescence and accelerated ageing. In this Special Issue, Ebert et al. [26] elaborate on this so-called
“inflammageing” in CKD. They address the phenotype of inflammation and premature ageing in
CKD patients as well as their mutual activation. Underlying cellular and molecular mechanisms are
summarized with a focus on cellular senescence, uremic toxins, the phosphate–FGF23–Klotho axis and
the CKD-mediated downregulation of NRF2 as a key transcription factor protecting from mitochondrial
dysfunction and oxidative stress. Promising therapeutic candidates to reduce inflammageing in CKD
are discussed.

Uremia and uremic toxins not only trigger inflammation, but also accelerate vascular calcification
in CKD. This was recently shown for the protein-bound uremic toxins indoxyl sulfate and p-cresyl
sulfate, with underlying cellular and molecular mechanisms discussed in detail in this Special Issue
by Opdebeeck et al. [27]. Along this line, Lai. et al. [28] reveals within this Special Issue that p-cresyl
sulfate is a predictor of arterial stiffness in patients on hemodialysis, with arterial stiffness known to be
associated with increased cardiovascular risk and mortality in CKD patients [29,30].

Although vascular calcification has been associated with increased cardiovascular risk, there are
currently no therapies available that adequately tackle this pathological axis. This is being discussed
by Himmelsbach et al. [31]: a detailed overview of new potential therapeutic strategies to reduce
cardiovascular calcification in CKD is provided, covering findings from in vitro molecular studies and
animal models to observational and interventional studies in CKD patients.

3. CKD–MBD as a Major Complication in CKD Affects Cardiovascular Health

Vascular calcification and bone demineralization often coincide in CKD patients, which is often
referred to as the bone–vascular axis or “calcification paradox”. In this Special Issue, Rroji et al. [32]
discuss the pathophysiology of CKD–MBD and its association with increased cardiovascular
risk. Insights are provided for how vitamin D deficiency, secondary hyperparathyroidism and
hyperphosphatemia, as classical CKD-MBD biomarkers, could impact cardiac remodeling in uremic
cardiomyopathy. Furthermore, accumulating data supporting a role for FGF23, Klotho-deficiency
and sclerostin as new CKD-MBD biomarkers in early cardiovascular risk assessment are discussed in
detail, and a role beyond biomarker function and as mediators of cardiovascular risk in CKD is being
elaborated on.

Muñoz-Castañeda et al. [33] further elaborate on the FGF23–Klotho axis, its regulation by the
Wnt/β-catenin signaling pathway and vice versa. Starting from their deregulation in CKD, the impact
of these axes on pathophysiological processes underlying CKD progression as well as cardiovascular
disease and bone disorders are being discussed in detail.

Duque et al. [34] specifically focused on secondary hyperparathyroidism as a complication of CKD,
with its causes as well as its impact on the bone–vascular axis being discussed. In extension, current
literature in relation to a potential impact of secondary hyperparathyroidism on CKD progression,
cardiac remodeling, muscle weakness as well as glucose metabolism is summarized.
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Furthermore, with CKD patients presenting with gut dysbiosis, Evenepoel et al. [35] provide
detailed insights into the increasing evidence that CKD-associated gut dysbiosis contributes to the
pathophysiology of the bone-vascular axis. This may include pathophysiological processes such as
increased exposure to protein fermentation metabolites, decreased systemic levels of specific short-chain
fatty acids by reduced carbohydrate fermentation, vitamin K deficiency as well as a leaky gut triggering
a pro-inflammatory environment in CKD.

4. Chronodisruption in CKD: Implications for Kidney and Cardiac Health?

Finally, the concept of chronodisruption as a chronic disturbance of circadian rhythms with
a negative impact on health is being discussed in the context of CKD. Carriazo et al. [36] review
current evidence for chronodisruption in CKD as well as its potential impact on kidney and cardiac
pathology. Among others, diet, inflammatory factors and uremic toxins are being discussed as
potential chronodisrupters in CKD, and the main challenges and open questions regarding the
underlying mechanisms, implications for kidney–cardiac health, as well as therapeutic opportunities
are summarized.

5. Conclusions

Altogether, this Special Issue summarizes current knowledge on the pathophysiological
mechanisms underlying the development of comorbidities in CKD, with a main focus on CVD.
This reveals the urgent need to further invest efforts in uncovering CKD-specific cardiovascular
pathological mechanisms and mediators of disease in order to pave the way for new therapeutic
strategies, tailored specifically to the CKD patient.
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