Supplementary Materials: Semiquantitation of Paralytic Shellfish Toxins by Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry Using Relative Molar Response Factors

Jiangbing Qiu, Elliott J. Wright, Krista Thomas, Aifeng Li, Pearse McCarron and Daniel G. Beach

Figure S1. A flow diagram of M-toxins semipurification.

Figure S2. LC-MS/MS (ESI⁺) Peak areas of M-toxins and other PST analogues in mixed solutions of semi-purified fractions.

Figure S3. Product ion spectra of M-toxins collected from HILIC-CAD-MS/MS runs of semi-purified fractions. M1 at m/z 396 (**A**), M2 at m/z 316 (**B**), M3 at m/z 412 (**C**), M4 at m/z 332 (**D**), M5 at m/z 396 (**E**), M6 at m/z 316 (**F**), dcM6 at m/z 273 (**G**) and M9 at m/z 428 (**H**).

Solution Charge State	DOT		Linear regression	
	PS1	range (ng on column)	Equation	R ²
neutralª	C1	14–216	y = 0.53x + 2.40	0.9971
	C2	9.1-73	y = 0.51x + 0.37	0.9993
+1ª	GTX1	26-183	y = 0.68x + 1.92	0.9991
	GTX4	9.4–66	y = 0.59x - 0.03	0.9984
	GTX2	13–151	y = 0.65x - 0.28	0.9992
	GTX3	5.5-66	y = 0.60x + 0.26	0.9983
	GTX5	12–95	y = 0.64x + 3.33	0.9957
	GTX6	17–55	y = 0.62x + 0.88	0.9962
	dcGTX2	20-199	y = 0.65x + 2.46	0.9982
	dcGTX3	6.8–68	y = 0.72x - 0.17	0.9994
+2 ^b	STX	6.5–78	y = 0.73x + 0.56	0.9993
	NEO	13-106	y = 0.74x + 3.04	0.9991
	dcNEO	11–55	y = 0.71x + 2.85	0.9973
	dcSTX	11–91	v = 0.75x + 2.61	0.9997

Table S1. Calibration data for PST CRM calibration solutions by HILIC-CAD.

^a analyzed using gradient 1. ^b analyzed using gradient 2.

Table S2. Concentration of PST analogues in mixed standards solutions of combined fractions (μ M) as determined by HILIC-CAD. Uncertainties indicate standard deviation of triplicate injections.

Toxin	Solution 1	Solution 2	Solution 3	Solution 4	Solution 5	Solution 6
M1	6.0±0.3		1.9±0.2			
M5	1.41 ± 0.05		99±9		0.21±0.02	
M3	19±2	5.1±0.1	3.12±0.05			
M9	14±2	30±3				
M2				20.8±0.9		
M4				40±1	5±1	
M6					119±3	
dcM6					2.2±0.1	40±1
M7	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td></lod<>			
GTX1	1.51 ± 0.04					
GTX4	0.60 ± 0.04					
GTX2	0.75 ± 0.05				2.98±0.06	
GTX3	0.43 ± 0.04				1.15 ± 0.01	
dcGTX2	0.027±0.003				1.66 ± 0.05	0.65 ± 0.01
dcGTX3	0.057 ± 0.008				0.63±0.01	0.152 ± 0.005
GTX6	0.44 ± 0.01					
STX					0.49±0.02	

Table S3. Gradient elution methods and corresponding reverse gradients in LC-CAD-MS.

Gra	dient Method	Time (min)	A (%)	B (%)
		0	10	90
		15	45	55
	Analytical gradient	50	45	55
		50	10	90
		75	10	90
1		0	90	10
		4.5	90	10
	Reverse gradient for	19.5	55	45
	compensation	54.5	55	45
		55	90	10
		75	90	10

2 -	Analytical gradient	0	10	90
		25	45	55
		27	70	30
		40	70	30
		40	10	90
		60	10	90
		0	90	10
		5.8	90	10
	Devenue and ignt for	30.8	55	45
	Reverse gradient for	32.8	30	70
	compensation	45.8	30	10
		45.8	90	10
		60	90	10