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Abstract: Ochratoxin A (OTA) usually contaminates agricultural products such as grapes, oatmeal,
coffee and spices. Light was reported as an effective strategy to control spoilage fungi and my-
cotoxins. This research investigated the effects of light with different wavelengths on the growth
and the production of OTA in Aspergillus ochraceus and Aspergillus carbonarius. The results showed
that the growth of both fungi were extremely inhibited by UV-B. Short-wavelength (blue, violet)
significantly inhibited the production of OTA in both fungi, while the inhibitory effect of white was
only demonstrated on A. ochraceus. These results were supported by the expression profiles of OTA
biosynthetic genes of A. ochraceus and A. carbonarius. To clarify, the decrease in OTA production is
induced by inhibition or degradation; therefore, the degradation of OTA under different wavelengths
of light was tested. Under UV-B, the degradation rate of 10 ug/mL OTA standard pure-solution
samples could reach 96.50% in 15 days, and the degradation effect of blue light was relatively weak.
Furthermore, infection experiments of pears showed that the pathogenicity of both fungi was signifi-
cantly decreased under UV-B radiation. Thus, these results suggested that light could be used as a
potential target for strategies in the prevention and control of ochratoxigenic fungi.

Keywords: Aspergillus ochraceus; Aspergillus carbonarius; light; OTA; OTA biosynthesis genes
Key Contribution: This research described the effect of light wavelength exposure on the growth

and OTA biosynthesis by A. ochraceus and A. carbonarius. We propose that lights of short-wavelength
are more effective to inhibit the ochratoxigenic fungi.

1. Introduction

Mycotoxins are small-molecule secondary metabolites produced by microscopic fungi.
Crops are susceptible to mycotoxins producing fungi during growth, harvest, storage
and transportation. Due to the frequent occurrence of mycotoxins in food and their well-
known toxicity, it represents a grave safety hazard. Ochratoxin A (OTA) is a mycotoxin
that uses dihydroisocoumarin as a polyketide moiety and is coupled to the amino acid
phenylalanine via a peptide bond. It is mainly produced by several species belonging
to the genera Aspergillus and Penicillium. The multiple toxic effects of OTA seriously
threaten the health of humans and animals. It was reported that OTA causes human Balcan
Endemic Nephropathy (BEN) and has teratogenicity, immunosuppressive, genotoxicity,
cytotoxicity and carcinogenicity effects. Some studies also expounded that the carcinogenic
effects of OTA were caused by direct and indirect mechanisms, including genotoxicity,
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oxidative stress and epigenetic factors [1-4]. Therefore, OTA was classified as a potentially
carcinogenic substance (group 2b) by the International Agency for Research on Cancer [5].
OTA contaminates a variety of agricultural products such as grapes, cereals, coffee and
spices [6]. When domestic animals are fed with OTA-contaminated feed, it can accumulate
in animal and meat products, and the level of contamination is related to the OTA content
in the feed [7].

In recent years, some studies have analyzed the effects of environmental factors on
the production of mycotoxin; among them, light plays a vital role and it is the key signal
that gives living organisms the ability to adapt to the environment. Many biological
pathways may be tightly linked with light signaling, such as primary metabolic pathways,
the production of secondary metabolites and sporulation [8]. Light has different effects
on mycotoxin biosynthesis, depending on light intensity and wavelength, as well as on
the species of fungi. In P. nordicum and P. verrucosum, blue (455-470 nm) and red (627 nm)
wavelengths decreased the biosynthesis of OTA by regulating the expression level of
ochratoxin polyketide synthase [9]. When P. verrucosum and A. niger grew under white
light, OTA production was suppressed [10]. Compared to incubation under constant
darkness, the biosynthesis of OTA by P. nordicum was reduced by around 20-30% under
constant daylight at a certain intensity [11]. Dunlap and Loros found that circadian
rhythms regulated gene expression related to dark/bright changes [12]. In A. stenyii and
P. verrucosum, the high-intensity (1700 lux) royal blue (455 nm) wavelength completely
inhibited fungal growth and OTA production [7]. When P. verrucosum was exposed to
white, blue (455 and 470 nm), red (627 nm), yellow (590 nm) and green (530 nm) light,
or left in the dark, only white light and blue light had a significant degradation effect on
secondary metabolites. The results showed that blue light was an important part of the
spectrum [13] to influence the growth and metabolism of P. verrucosum. From these results,
we can conclude that light influences fungal growth and metabolite.

Recently, a consensus biosynthetic pathway was identified from A. ochraceus [14].
The biosynthesis of OTA begins with the polyketide synthase (PKS, OtaA), synthesize
7-methylmellein, followed by the formation of OTf3 oxidized by a cytochrome P450 monooxyme
(OtaC). A nonribosomal peptide synthetase (NRPS, OtaB) catalyzed OTf and a pheny-
lalanine to condense OTB. OTB is chlorinated to OTA by a halogenase (OtaD). These four
genes and a transcription factor (OtaR1) are arranged as a cluster in the genome. OTA
biosynthetic genes in A. carbonarius have also been reported, which is consistent with
the gene cluster of A. ochraceus [15-17]. A. ochraceus and A. carbonarius are an important
OTA-producing Aspergillus species. To our knowledge, little is known about the influence
of light on these fungi, especially for OTA biosynthesis. There are no scientific data on the
impact of light at gene expression level in A. ochraceus and A. carbonarius. In this paper, the
effects of different light wavelengths were studied on the growth of two fungal species,
A. ochraceus and A. carbonarius, and OTA production was also characterized. Additionally,
the influence of the light conditions on OTA synthesis was also tested at the molecular
level. Our results contribute to a better understanding of the regulatory mechanism of
light conditions on A. ochraceus and A. carbonarius. We propose that a specific wavelength
of light is a potential target for the development of strategies to prevent ochratoxigenic
fungi infections.

2. Results
2.1. Effect of Light on Fungal Growth and Morphology

In order to explore the effect of different light wavelengths on the growth of A. ochraceus
and A. carbonarius, the strains were inoculated on the YES medium exposed to different
wavelengths of light.

As shown in Figure 1A, the colony diameter of A. ochraceus on day five was measured.
Compared with a dark condition, the growth of A. ochraceus was significantly inhibited by
white, blue and violet light (Figure 1B), and UV-B light completely inhibited the growth.
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A deeper pigmentation could be observed when the colonies were cultured under light
irradiation (Figure 1A).
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Figure 1. The morphology of A. ochraceus and A. carbonarius under dark and light conditions. (A)
A colony view of A. ochraceus and A. carbonarius under different light wavelengths. (B) The colony
diameter of the A. ochraceus under different light wavelengths. (C) The colony diameter of the
A. carbonarius under different light wavelengths. Each treatment indicates the average of three
independent experiments and the bars indicate standard error. Different letters indicate significant
differences (p < 0.05) between different treatment groups.

The colony growth of A. carbonarius was observed and recorded on the sixth day.
The colonies exposed to different wavelengths showed a series of concentric circles with
a darker hyphae, which was not observed under a dark condition. UV-B inhibited the
growth of A. ochraceus. No significant difference in colony diameter was observed between
dark and other light wavelengths.

2.2. Analysis of OTA Production

In order to investigate the effects of different light wavelengths on the biosynthesis of
OTA, the OTA production of A. ochraceus and A. carbonarius under different wavelengths
of light were measured by HPLC. The quantitative results showed that blue light, violet
light and UV-B had significant inhibitory effects on OTA biosynthesis of two kinds of fungi.
A. ochraceus produced about 965.94 ng/cm? OTA on YES medium under a dark condition.
The OTA contents under white, blue and violet light were reduced by 79.65%, 80.46% and
51.61%, respectively, compared to that under a dark condition. There was no significant
difference in OTA production among the conditions of red light, green light and dark for
A. ochraceus (Figure 2A). A.carbonarius produced about 357.05 ng/cm? OTA on YES medium
under a dark condition. OTA production decreased by 66.88%, 78.76% and 85.80% under
blue light, violet light and UV-B. White, red and green lights have no inhibitory effects in
A. carbonarius compared with the dark (Figure 2B). Taken together, these results indicated
that short-wavelength lights had the potential to inhibit OTA production, among which
UV-B had the most obvious inhibitory effect.

2.3. OTA Biosynthetic Genes Expression of A. ochraceus and A. carbonarius Were Requlated by Light

Light is a regulatory factor of OTA biosynthesis. In order to further study the regula-
tion of OTA production by different light wavelengths, we detected the expression level
of OTA biosynthetic genes. Based on the results of OTA inhibition, we focused on the
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expression of five OTA biosynthetic genes (0taA, otaB, otaC, otaD and otaR1) of A. ochraceus
and A. carbonarius under white, blue and violet light on YES medium.
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Figure 2. Ochratoxin A (OTA) production of A. ochraceus and A. carbonarius under different wave-
lengths. (A) OTA production of A. ochraceus. (B) OTA production of A. carbonarius. Each treatment
indicates the average of three independent experiments and bars indicate standard error. Different
letters indicate significant differences (p < 0.05) between different treatment groups.

As shown in Figure 3A, the relative expression of the gene otaA was significantly down-
regulated under three light sources compared with dark, especially under blue light and
violet light, where the ofaA gene was down-regulated more than 100-fold. The expression
of the gene otaB did not change under the three light sources. The relative expression of
otaC was down-regulated more than 84.15% and 96.46% under white and blue light, and
down-regulated about 57.90% under violet light. The relative expression of the gene otaD
was up-regulated under white light, and there was no significant difference between blue
light and violet light, compared with a dark condition. The relative expression of the gene
otaR1 was down-regulated by 92.42% and 98.92% under blue and violet light, respectively.
Combining the above results, OTA biosynthetic genes were down-regulated under OTA
suppressing light conditions. White, blue and violet light may decrease OTA production
by inhibiting the biosynthetic genes in A. ochraceus through direct or indirect pathways.
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Figure 3. The expression ratio (light/dark) of OTA biosynthetic genes under different wavelengths.
(A) OTA biosynthetic genes of A. ochraceus. (B) OTA biosynthetic genes of A. carbonarius.

As shown in Figure 3B, the relative expression of genes ofaA, otaC and otaR1 was sig-
nificantly down-regulated under blue and violet light compared with dark. The expression
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of genes otaB and otaD did not change under the three light sources. The relative expression
of otaA was down-regulated more than 99.20% and 96.70% under blue and violet light. The
relative expression of the gene otaR1 was down-regulated by 91.42% and 98.02% under
blue and violet light. There was no significant difference between white light and a dark
condition, which was consistent with the toxicity results. The results showed that blue
and violet light may decrease OTA production by inhibition of the biosynthetic genes in A.
carbonarius through direct or indirect pathways.

2.4. Degradation of OTA by Light

To clarify whether light is capable of degrading OTA in the course of decreasing OTA
biosynthesis, OTA were treated with different wavelengths of light. The OTA standard pure
solution samples of 1 ug/mL and 10 ug/mL concentrations were packed in transparent
liquid phase vials and placed in dark, white, red, green, blue, violet light and UV-B, and
irradiated continuously at 28 °C for 15 days. As shown in Figure 4, the degradation of OTA
standard pure solution samples was not detected under a dark condition. For 1 pg/mL
standard pure solution samples, UV-B was able to degrade OTA with a degrading rate of
21.50%, 56.62% and 75.89% at 1, 5 and 15 days, respectively (Figure 4A). Blue light could
also degrade OTA statistically, with a degrading rate of 1.33% and 3.52% at 5 and 15 days,
respectively. For 10 pg/mL standard pure solution samples, UV-B degraded OTA with the
degrading rate of 28.71%, 77.27% and 96.50% at 1, 5 and 15 days, respectively (Figure 4B).
Blue light degraded OTA with the degrading rate of 9.32% and 16.46% at 5 and 15 days,
respectively. Overall, UV-B and blue light could degrade OTA. It could be confirmed that
in a certain range, the higher the concentration of OTA standard pure solution samples, the
higher the degrading rate of light under the same conditions and time.
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Figure 4. The effect of different light wavelengths on the degradation of OTA. (A) The degradation
of OTA of 1 ug/mL by light. (B) The degradation of OTA of 10 pg/mL by light. Each treatment
indicates the average of three independent experiments and bars indicate standard error. Significant
differences between different treatment groups are indicated by an asterisk (p < 0.05).
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2.5. UV-B Inhibited the Pathogenicity of A. ochraceus and A. carbonarius

To further identify whether light has the potential of preventing fungal infection,
we explored the effect of different UV-B irradiation time on the infection of pears (Pyrus
bretschneideri Rehd) by A. ochraceus and A. carbonarius. The results showed in Figure 5, when
UV-B irradiation was used for 5, 15 or 24 hours per day, the scab diameters infected by A.
ochraceus were about 35.71%, 39.80% and 20.41% less than the infection diameter under a
dark condition (Figure 5A). A. carbonarius also decreased by 25.90%, 30.74% and 35.18%
(Figure 5B). Additionally, a large number of mycelia and spores appeared in the lesion of
pears under a dark condition. UV-B radiation significantly inhibited the mycelial growth
and spore formation of A. ochraceus and A. carbonarius. It was interesting that there was no
significant difference in the scab diameters on pears with different irradiating times.

A

15 h

24 h

A. ochraceus

A. carbonarius

@
» 3
B § 4 c 5 3 a
Fla 2l
g s b B b
3
. be b = = > 2 T — b
E,E _"_ C < = -
os2 i 5§
o s
z |
5 £
) S
a R
2 a
3 . . - : 3 : : T T
® CK 5h 15h 24h ﬁ CK 5h 15h 24h

Figure 5. Pathogenicity for A. ochraceus and A. carbonarius under UV-B irradiation. (A) Scab view of
A. ochraceus and A. carbonarius under a dark condition and UV-B irradiation. (B) The scab diameter
of pears infected by A. ochraceus under dark and UV-B irradiation. (C) The scab diameter of pears
infected by A. carbonarius under dark and UV-B irradiation. Each treatment indicates the average
of three independent experiments and bars indicate standard error. The different letters indicate
significant differences (p < 0.05) between different treatment groups.

3. Discussion

OTA is a toxic secondary metabolite produced by the Aspergillus and Penicillium
species. A. ochraceus and A. carbonarius are major producers of OTA, which contaminates a
wide range of hosts. Light controls important physiological and morphological responses
in fungi, including development, and primary and secondary metabolism [12,18-21].
These indicated lights could be developed as a useful strategy to control OTA, and many
researchers have made efforts in this area. However, the role of different light wavelengths
in regulating ochratoxigenic fungi, especially for A. ochraceus and A. carbonarius, was
not clear until now, and little is known about the genetic regulation of light towards
OTA biosynthesis.

In this study, the influence of light wavelengths on growth and the OTA biosynthesis
of A. ochraceus and A. carbonarius was analyzed in detail. The light behavior towards both
of the strains was consistent; that is, UV-B possessed the strongest inhibitory effect, while
other light wavelengths demonstrated a relatively weak inhibition. These results have also
been proven in other fungi [22-24]. We found that OTA production of the both fungi was
significantly reduced under conditions of continuous exposure to blue, violet light and
UV-B, compared to dark conditions. White light inhibited the production of OTA in A.
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ochraceus but not in A. carbonarius. Another study showed that white light could inhibit
the production of OTA in A. carbonarius [8]. This indicates that different light wavelengths
might result in great differences in the production of mycotoxins, even in the same fungal
species, and that the difference in the results of these experiments is not only due to the
light conditions, but also due to other internal or external factors that affect the production
of toxins or their interactions.

The expression levels of OTA biosynthetic genes under the different light conditions
were also detected to explore the regulatory mechanism of light on OTA production. Under
the conditions of blue and violet light, the expression of otaA, otaC and otaR1 was positively
correlated with OTA production. This indicated that these genes were regulated by light
through a direct or indirect pathway. Linking gene expression to light control enables
coupling of the entire morphogenetic pathway to light [25]. Fungal photoreceptors and
connected signal cascades were described in recent years, and an unexpected complexity
has emerged. For example, blue light receptors mainly include LOV-domain-containing
proteins, the blue light sensor proteins and the cryptochrome and photolyse protein family.
These receptors use down-stream modules such as HOG signaling pathway for signal
transduction, and the major response of light is the regulation of gene expression. The
relationship between OTA biosynthesis genes and different light wavelengths is close and
complex, and further exploration is still needed [26-28].

Blue light and UV-B not only inhibited fungal growth and OTA production, but
also degraded OTA directly, which demonstrated an excellent potential to control OTA.
Therefore, we explored the effect of different UV-B irradiation time on the A. ochraceus
and A. carbonarius infection of pears. The results showed that UV-B radiation had an
inhibitory effect on A. ochraceus and A. carbonarius infection of pears. However, there was
no significant difference in the scab diameter of the colonies irradiated at 5, 15 or 24 h per
day, which showed that the UV-B radiation of 5 hours per day is sufficient.

We have examined the inhibitory effects of light on both of the fungi, including growth,
toxicity, pathogenicity and direct degradation of OTA. In recent years, more than 21 species
of fungi were reported to produce OTA, of which more than 16 species could cause different
degrees of contamination of agricultural products [29], but A. ochraceus and A. carbonarius
are among the most important fungi. In this research, the concentration of OTA in media, as
well as the concentration of OTA directly degraded by light, was higher than that detected
in agricultural products contaminated naturally [30-33]. Therefore, the application of light
in prevention and control of OTA needs further research, although we provide the evidence
of the fact that light could be a potential target for strategies in the prevention and control
of ochratoxigenic fungi.

4. Materials and Methods
4.1. Solvents and Reagents

Solvents and reagents were obtained from commercial suppliers such as Sigma
(Deisenhofen, Germany), Thermo Fisher (Waltham, MA, USA), Oxoid (Basingstoke, UK),
Solarbio (Beijing, China) and Tiangen (Beijing, China), and were of the highest purity
commercially available.

4.2. Strains and Growth Conditions

Two OTA-producing fungi, A. ochraceus fc-1 and A. carbonarius 5010 were preserved
in our laboratory [34,35]. They were inoculated onto YES medium (Yeast Extract 20 g/L;
Sucrose 150 g/L; Agar 20 g/L, adjusted to pH = 6.0 with NaOH) for 7 days at 28 °C, after
that, spore suspension of each fungal strain was prepared in 0.1% Tween 80. The concen-
tration of spores in the suspension was adjusted to 10” spores/mL, the spore suspension
was fully stirred, and 2 pL suspension point was taken and inoculated in the center of
the YES medium. The fungal cultures were incubated in the dark and in different light
wavelengths. A. ochraceus cultures were incubated for at least 10 days, A. carbonarius for at
least 15 days. At least five inoculated plate cultures were placed in each light condition as
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technical replicates, and each experiment was repeated three times in the form of biological
replicates. The growth rate and OTA production of fungal colonies were detected.

4.3. The Light Incubation Conditions

Seven light incubators of different wavelengths were constructed for the incubation of
fungi, and darkness as a positive control. Each light incubator was equipped with 5 x 5 W
led (Jiangxi Wanjiatong Lighting Technology Co., Ltd, Yichun, China), with the following
specifications: A size of 0.5 x 0.6 m. Light conditions were set: incubator 1, darkness;
Incubator 2, white light (1867 lux); Incubator 3, red (625 nm, 1895 lux); Incubator 4, green
light (470 nm, 1835 lux); Incubator 5, blue light (470 nm, 1815 lux); Incubator 6, violet light
(520 nm, 1785 lux); Incubator 7, UV-B (295 nm). These incubators were placed in the same
ventilated room with the humidity of 85%. The temperature was measured by placing a
thermometer 20 cm perpendicular to the light source to ensure that the fungal colony was
incubated at 28 °C. The temperature control of the incubator proved that the heating effect
of leds could not be detected within this distance.

4.4. Quantification of OTA by HPLC-FLD

To detect the OTA production of Aspergillus fungi, A. ochraceus was incubated for 9 days
and A. carbonarius for 8 days at the respective experimental conditions. Six agar plugs about
1 cm diameter from equivalent zones of fungal surface of YES were collected, and extracted
with 6 mL methanol (chromatographic level) [36]. After 5 min of vortex, 30 min of ultrasonic
vibration, 2 mL of the supernatant solution was filtered into liquid vials with 0.22 pm filter
membrane. Next, OTA was detected by HPLC-FLD. In this experiment, the Agilent HPLC
system was used to quantitatively detect the OTA content. HPLC-FLD operating conditions
as follows: The column was Agilent ZorbaxSB-C18 (4.6 mm x 250 mm, 5 um); mobile
phase was acetonitrile/water/acetic acid (99/99/2, v/v/v); flow rate was 1.0 mL/min;
injection volume was 20 pL; the excitation and emission wavelengths were 333 nm and
440 nm; operating temperature was 35 °C; each sample was run for 20 min [34].

4.5. Isolation of RNA

RNA was extracted using EASYspin Plus Plant RNA Kit of Beijing Lanyi Technology
Co., Ltd (Beijing, China) for gene expression experiments, taking the 5 days of A. ochraceus
and 8 days of A. carbonarius, to harvest their mycelium. Mycelium was placed in a mortar
and thoroughly ground in the presence of liquid nitrogen. About 100 mg mycelium
powder was placed in a 1.5 mL centrifuge tube for RNA extraction. All procedures are
essentially the same as those recommended by the kit manufacturer. The integrity of RNA
was assessed by gel electrophoresis, and the RNA content was evaluated by the ratio of
A260 nm/A280 nm and A260 nm/A230 nm using NanoDrop (Quawell Q5000).

4.6. Quantitative Real-Time RT-PCR Reaction and Relative Gene Expression Determination

First-strand cDNA was synthesized using the FastKing RT Kit (Tiangen, China). The
relative expression of OTA biosynthesis related genes was monitored by qRT-PCR and
carried out using the Sybr Green qPCR Mix (Lanyi, China) with the respective primers.
Primers were listed in the Table 1 [14,17,37], and qRT-PCR was performed using the
7500 Real-Time PCR System (Thermo Fisher, USA) with the following cycling program:
hold at 94 °C for 3 min, followed by a three-step PCR (40 cycles of denaturation at 94 °C
for 15 s, annealing at 55 °C for 20 s, and extension at 72 °C for 31 s). The gene gadph of A.
ochraceus and B-tubulin of A. carbonarius served as internal standards, and gene expressions
were normalized to gene gadph and B-tubulin. Relative quantification of mRNA expression
was established using the 2724CT method.
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Table 1. Primers used for the expression of OTA biosynthetic genes.

Primers (A. ochraceus)

Sequence (5’ to 3')

GADPH-RT-F CGGCAAGAAGGTTCAGTT
GADPH-RT-R CTCGTTGGTGGTGAAGAC
AFotaA-RT-F GGATCTTTATGACCGAATCAG
AFotaA-RT-R CCTTGACCTGAAGAATGCT
AFotaB-RT-F ATACCACCAGAGCTCCAAA
AFotaB-RT-R GAGATGTTCGGTCTGTTCA
AFotaC-RT-F CTTAATACGGTGGTCTACGA
AFotaC-RT-R GAATGATAGGTCCGTATTTCT
AFotaD-RT-F TATTCCCTAGATACCATATCGG
AFotaD-RT-R GCTTCCTTCTGGTTGTTCA
AFotaR1-RT-F GCTTTCAAATCGAATGATTCC
AFotaR1-RT-R GATCGGTTGGAAGTGTAGAA

Primers (A. carbonarius)

tubB-RT-F CGCATGAACGTCTACTTCAACGAG
tubB-RT-R AGTTGTTACCAGCACCGGACT
ACotaA-RT-F GTCAAGGTCGGGTGCTACAA
ACotaA-RT-R TCGGAATGATACGCGACTTT
ACotaB-RT-F CTCCACCCATCCTCCCGTTC
ACotaB-RT-R AATCCATGTCCTCACCATCGC
ACotaC-RT-F GTGGTTATCCCGCCCAATAC
ACotaC-RT-R TGCCAGATTCATCCCGATAC
ACotaD-RT-F GAACGCCAGTAGAGGGACAG
ACotaD-RT-R ATGGAGGTGGTGTTGTTGTG
ACotaR1-RT-F AATGGAACCAGCATTGATCTC
ACotaR1-RT-R GACCCAAGCATTCGCTCTA

Sequence (5’ to 3')

4.7. Degradation of OTA Standard Pure Solution Samples under Different Light Wavelengths

For the analysis of different light wavelength degradation of OTA standard pure solu-
tion samples, we chose two OTA concentration standard pure solution samples (1 pug/mL
and 10 pug/mL) into 2.0 mL transparent liquid vial. The mycotoxins were purchased from
Sigma (Deisenhofen, Germany). OTA standard pure solution samples were placed in the
dark, white light, red light, green light, blue light, violet light and UV-B, respectively. Incu-
bation conditions were the same as the above two kinds of Aspergillus, 28 °C for 15 days.
Each light condition was set at three parallels, and each experiment was repeated three
times as biological replicates, HPLC-FLD to detect, respectively, 1, 5 and 15 days OTA
degradation situation of standard pure solution samples.

4.8. The Effect of UV-B on Pathogenicity

The harvested pears were used as a natural medium, A. ochraceus and A. carbonarius
as the infecting fungi. The pears inoculated with the both fungi were irradiated with UV-B
for different lengths of time to explore the effect of UV-B on the speed of A. ochraceus
and A. carbonarius infecting pears. The upper surfaces of pears were disinfected three
times with 75% alcohol for 10 s; disinfect each time for 10 seconds, and wipe clean with
sterile paper. Each pear was punctured by a sterile toothpick into a wound with a depth of
1-2 mm in diameter, and the wound was injected with 1 uL of both fungi spore suspension
(107 spores/mL) for inoculation [36]. There are three groups in the experimental group,
and UV-B irradiation duration: 5, 15 and 24 h per day. The rest of the day was incubated in
the dark under the same conditions as the control group. The above incubation conditions
were 28 °C and the relative humidity was 85%. The diameter of the scab was measured
after 8 days. Each condition was set three parallels, and each experiment was repeated
three times as biological replicates.
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4.9. Statistical Analysis

Each independent experiment was repeated three times, and each internal experiment
selected three parallel samples for data analysis. All statistical analyses were performed by
using IBM SPSS statistics version 20 and presented with the means and standard deviation.
The statistical significances among three experiments were calculated with ANOVA. The
mean values were compared by least significant difference (LSD) and Duncan’s test. p < 0.05
was considered statistically significant.

Author Contributions: Conceptualization, Y.L., EX., H.Z. and G.W.; methodology, G.W., Q.Y. and
H.Z.; software, G.W., H.Z,; validation, Y.L., EX. and Q.Y.; formal analysis, H.Z., G.W.; investigation,
Y.L., GW., H.Z; resources, Y.L., FX.; data curation, G.W., H.Z., X.Y.; writing—original draft prepara-
tion, H.Z., G.W,; writing—review and editing, H.Z., G.W., X.Y,; visualization, G.W., Y.Z.; supervision,
Y.L, EX, QY. and G.W,; project administration, Y.L., EX., Y.Z.; funding acquisition, Y.L., EX., Y.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Beijing Natural Science Foundation (6191001), the National
Key Research and Development Program of China (2019YFC1604502) and National Agricultural
Science and Technology Innovation Program (SN2020-05 and CAAS-ASTIP-2020-IFST-03).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable. Data is provided in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krogh, P; Hald, B.; Gjertsen, P.; Myken, F. Fate of ochratoxin A and citrinin during malting and brewing experiments.
Appl. Microbiol. 1974, 28, 31-34. [CrossRef]

2. Scott, PM. Effects of processing and detoxification treatments on ochratoxin A: Introduction. Food Addit. Contam. 1996, 13, 19-21.

3. Malir, E; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [CrossRef]
[PubMed]

4. Costa, J.G.; Saraiva, N.; Guerreiro, P.S.; Louro, H.; Silva, M.].; Miranda, J.P.; Castro, M.; Batinic-Haberle, I.; Fernandes, A.S.;
Oliveira, N.G. Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative
approach of complementary endpoints. Food Chem. Toxicol. 2016, 87, 65-76. [CrossRef] [PubMed]

5. IARC (International Agency for Research on Cancer). Some Naturally Occurring Substances: Food Items and Constituents,
Heterocyclic Aromatic Amines and Mycotoxins. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC:
Lyon, France, 1993; Volume 56, pp. 489-521.6.

6. Cheong, K.K.; Strub, C.; Montet, D.; Durand, N.; Alter, P.; Meile, ].-C.; Galindo, S.S.; Fontana, A. Effect of different light wave
lengths on the growth and ochratoxin A production in Aspergillus carbonarius and Aspergillus westerdijkiae. Fungal Biol. 2016,
120, 745-751. [CrossRef] [PubMed]

7. Persi, N,; Pleadin, ].; Kovacevi¢, D.; Scortichini, G.; Milone, S. Ochratoxin A in raw materials and cooked meat products made
from OTA-treated pigs. Meat Sci. 2014, 96, 203-210. [CrossRef] [PubMed]

8. Yu, Z; Fischer, R. Light sensing and responses in fungi. Nat. Rev. Genet. 2019, 17, 25-36. [CrossRef]

9.  Fanellj, F; Geisen, R.; Schmidt-Heydt, M.; Logrieco, A.; Mule, G. Light regulation of mycotoxin biosynthesis: New perspectives
for food safety. World Mycotoxin J. 2016, 9, 129-146. [CrossRef]

10.  Schmidt-Heydt, M.; Riifer, C.; Raupp, F.; Bruchmann, A.; Perrone, G.; Geisen, R. Influence of light on food relevant fungi with
emphasis on ochratoxin producing species. Int. J. Food Microbiol. 2011, 145, 229-237. [CrossRef]

11. Schmidt-Heydt, M.; Bode, H.; Raupp, F.; Geisen, R. Influence of light on ochratoxin biosynthesis by Penicillium. Mycotoxin Res.
2009, 26, 1-8. [CrossRef]

12.  Dunlap, J.C.; Loros, J.J. How fungi keep time: Circadian system in Neurospora and other fungi. Curr. Opin. Microbiol. 2006,
9, 579-587. [CrossRef]

13.  Schmidt-Heydt, M.; Cramer, B.; Graf, I; Lerch, S.; Humpf, H.-U.; Geisen, R. Wavelength-Dependent Degradation of Ochra-toxin
and Citrinin by Light in Vitro and in Vivo and Its Implications on Penicillium. Toxins 2012, 4, 1535-1551. [CrossRef]

14. Wang, Y.,; Wang, L.; Wu, F; Liu, F; Wang, Q.; Zhang, X.; Selvaraj, ].N.; Zhao, Y.; Xing, F; Yin, W.-B.; et al. A Consensus Ochratoxin

A Biosynthetic Pathway: Insights from the Genome Sequence of Aspergillus ochraceus and a Comparative Genomic Analysis.
Appl. Environ. Microbiol. 2018, 84, e01009-18. [CrossRef]


http://doi.org/10.1128/AM.28.1.31-34.1974
http://doi.org/10.3390/toxins8070191
http://www.ncbi.nlm.nih.gov/pubmed/27384585
http://doi.org/10.1016/j.fct.2015.11.018
http://www.ncbi.nlm.nih.gov/pubmed/26627377
http://doi.org/10.1016/j.funbio.2016.02.005
http://www.ncbi.nlm.nih.gov/pubmed/27109370
http://doi.org/10.1016/j.meatsci.2013.07.005
http://www.ncbi.nlm.nih.gov/pubmed/23906754
http://doi.org/10.1038/s41579-018-0109-x
http://doi.org/10.3920/WMJ2014.1860
http://doi.org/10.1016/j.ijfoodmicro.2010.12.022
http://doi.org/10.1007/s12550-009-0034-y
http://doi.org/10.1016/j.mib.2006.10.008
http://doi.org/10.3390/toxins4121535
http://doi.org/10.1128/AEM.01009-18

Toxins 2021, 13, 251 11 of 11

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Gallo, A.; Bruno, K.S,; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S.E. New insight into the ochratoxin A biosyn-thetic
pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius. Appl. Environ. Microbiol. 2012,
78, 8208-8218. [CrossRef]

Gallo, A.; Knox, B.P; Bruno, K.S.; Solfrizzo, M.; Baker, S.E.; Perrone, G. Identification and characterization of the polyketide
synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int. . Food Microbiol. 2014, 179, 10-17. [CrossRef]
[PubMed]

Massimo, F.; Giancarlo, P.; Lucia, G.; Filomena, E.; Michele, S.; Antonia, G. Identification of a Halogenase Involved in the
Biosynthesis of Ochratoxin A in Aspergillus carbonarius. Appl. Environ. Microbiol. 2016, 82, 5631-5641.

Lee, K.; Singh, P.; Chung, W.-C.; Ash, J.; Kim, T.S.; Hang, L.; Park, S. Light regulation of asexual development in the rice blast
fungus, Magnaporthe oryzae. Fungal Genet. Biol. 2006, 43, 694-706. [CrossRef] [PubMed]

Purschwitz, J.; Miiller, S.; Kastner, C.; Fischer, R. Seeing the rainbow: Light sensing in fungi. Curr. Opin. Microbiol. 2006, 9, 566-571.
[CrossRef] [PubMed]

Purschwitz, J.; Miiller, S.; Kastner, C.; Schoser, M.; Haas, H.; Espeso, E.A.; Atoui, A.; Calvo, A.M.; Fischer, R. Functional and
Physical Interaction of Blue- and Red-Light Sensors in Aspergillus nidulans. Curr. Biol. 2008, 18, 255-259. [CrossRef] [PubMed]
Froehlich, A.C.; Liu, Y.; Loros, J.J.; Dunlap, ].C. White Collar-1, a Circadian Blue Light Photoreceptor, Binding to the frequency
Promoter. Science 2002, 297, 815-819. [CrossRef]

Fuller, KK.; Ringelberg, C.S.; Loros, J.J.; Dunlap, J.C. The Fungal Pathogen Aspergillus fumigatus Regulates Growth, Metabolism,
and Stress Resistance in Response to Light. mBio 2013, 4, 4. [CrossRef] [PubMed]

Rohrig, J.; Kastner, C.; Fischer, R. Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr. Genet.
2013, 59, 55-62. [CrossRef] [PubMed]

Garcia-Cela, E.; Marin, S.; Sanchis, V.; Crespo-Sempere, A.; Ramos, A.]. Effect of ultraviolet radiation A and B on growth and
mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media. Fungal Biol. 2015,
119, 67-78. [CrossRef] [PubMed]

Ruger-Herreros, C.; Rodriguez-Romero, J.; Fernandez-Barranco, R.; Olmedo, M.; Fischer, R.; Corrochano, L.M.; Canovas, D.
Regulation of Conidiation by Light inAspergillus nidulans. Genetics 2011, 188, 809-822. [CrossRef]

Chen, C.-H.; Ringelberg, C.S.; Gross, R.H.; Dunlap, J.C.; Loros, ].J. Genome-wide analysis of light-inducible responses reveals
hierarchical light signalling in Neurospora. EMBO J. 2009, 28, 1029-1042. [CrossRef]

Hu, Y;; He, J.; Wang, Y.; Zhu, P.; Zhang, C.; Lu, R.; Xu, L. Disruption of a phytochrome-like histidine kinase gene by homol-ogous
recombination leads to a significant reduction in vegetative growth, sclerotia production, and the pathogenicity of Bo-trytis
cinerea. Physiol Mol. Plant. Pathol. 2014, 85, 25-33. [CrossRef]

Ulises, E.-N.E.; Monica, G.-E.; Elizabeth, M.-C.; Alejandro, C.-P.V,; Luis, P-A.].; Fidel, L.-J.; Antonio, C.-C.J.; Alfredo, H.-E. A
Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals. Mol. Microbiol. 2016, 100, 860-876.
Wang, Y.; Wang, L.; Liu, F; Wang, Q.; Selvaraj, ].N.; Xing, F; Zhao, Y.; Liu, Y. Ochratoxin A Producing Fungi, Biosynthetic
Pathway and Regulatory Mechanisms. Toxins 2016, 8, 83. [CrossRef]

Marin, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment.
Food Chem. Toxicol. 2013, 60, 218-237. [CrossRef]

Kouadio, LA ; Koffi, L.B.; Nemlin, J.G.; Dosso, M.B. Effect of Robusta (Coffea canephora P.) coffee cherries quantity put out for
sun drying on contamination by fungi and Ochratoxin A (OTA) under tropical humid zone (Cote d'Ivoire). Food Chem. Toxicol.
2012, 50, 1969-1979. [CrossRef]

Toshikazu, I; Yasuo, T.; Takao, A.; Kiyoshi, O.; Naoko, I.; Kazuo, E.; Masaharu, Y.; Kazutoshi, N. Ochratoxin A Contamination of
Red Chili Peppers from Chile, Bolivia and Peru, Countries with a High Incidence of Gallbladder Cancer. Asian Pac. ]. Cancer Prev.
2015, 16, 5987-5991.

Canadian Food Inspection Agency. Ochratoxin A in Wheat Products, Oat Products, Rice Products and Other Grain Products April
1, 2018 to March 31, 2019. Available online: https://inspection.canada.ca/food-safety-for-industry/food-chemistry-and-
microbiology/food-safety-testing-bulletin-and-reports /ochratoxin-a-in-wheat-products-oat-products-rice-p /eng /15935343
14634 /1593534315071 (accessed on 31 March 2021).

Wang, Y,; Liu, F; Wang, L.; Wang, Q.; Selvaraj, ].N.; Zhao, Y.; Wang, Y.; Xing, F,; Liu, Y. pH-Signaling Transcription Factor AopacC
Regulates Ochratoxin A Biosynthesis in Aspergillus ochraceus. J. Agric. Food Chem. 2018, 66, 4394-4401. [CrossRef] [PubMed]
Li, L.; Yang, B.; Muhammad, H.; Geng, H.; Wang, G.; Zhang, C.; Gao, S.; Xing, F; Liu, Y. A novel strain Lactobacillus brevis 8-2B
inhibiting Aspergillus carbonarius growth and ochratoxin A production. LWT 2021, 136, 110308. [CrossRef]

Wang, G.; Zhang, H.; Wang, Y.; Liu, F; Li, E.; Ma, ].; Yang, B.; Zhang, C.; Li, L.; Liu, Y. Requirement of LaeA, VeA, and VelB on
Asexual Development, Ochratoxin A Biosynthesis, and Fungal Virulence in Aspergillus ochraceus. Front. Microbiol. 2019, 10, 2759.
[CrossRef] [PubMed]

Lappa, 1.K.; Kizis, D.; Panagou, E.Z. Monitoring the Temporal Expression of Genes Involved in Ochratoxin A Production of
Aspergillus carbonarius under the Influence of Temperature and Water Activity. Toxins 2017, 9, 296. [CrossRef] [PubMed]


http://doi.org/10.1128/AEM.02508-12
http://doi.org/10.1016/j.ijfoodmicro.2014.03.013
http://www.ncbi.nlm.nih.gov/pubmed/24699234
http://doi.org/10.1016/j.fgb.2006.04.005
http://www.ncbi.nlm.nih.gov/pubmed/16765070
http://doi.org/10.1016/j.mib.2006.10.011
http://www.ncbi.nlm.nih.gov/pubmed/17067849
http://doi.org/10.1016/j.cub.2008.01.061
http://www.ncbi.nlm.nih.gov/pubmed/18291652
http://doi.org/10.1126/science.1073681
http://doi.org/10.1128/mBio.00142-13
http://www.ncbi.nlm.nih.gov/pubmed/23532976
http://doi.org/10.1007/s00294-013-0387-9
http://www.ncbi.nlm.nih.gov/pubmed/23385948
http://doi.org/10.1016/j.funbio.2014.11.004
http://www.ncbi.nlm.nih.gov/pubmed/25601150
http://doi.org/10.1534/genetics.111.130096
http://doi.org/10.1038/emboj.2009.54
http://doi.org/10.1016/j.pmpp.2013.12.002
http://doi.org/10.3390/toxins8030083
http://doi.org/10.1016/j.fct.2013.07.047
http://doi.org/10.1016/j.fct.2012.03.042
https://inspection.canada.ca/food-safety-for-industry/food-chemistry-and-microbiology/food-safety-testing-bulletin-and-reports/ochratoxin-a-in-wheat-products-oat-products-rice-p/eng/1593534314634/1593534315071
https://inspection.canada.ca/food-safety-for-industry/food-chemistry-and-microbiology/food-safety-testing-bulletin-and-reports/ochratoxin-a-in-wheat-products-oat-products-rice-p/eng/1593534314634/1593534315071
https://inspection.canada.ca/food-safety-for-industry/food-chemistry-and-microbiology/food-safety-testing-bulletin-and-reports/ochratoxin-a-in-wheat-products-oat-products-rice-p/eng/1593534314634/1593534315071
http://doi.org/10.1021/acs.jafc.8b00790
http://www.ncbi.nlm.nih.gov/pubmed/29651846
http://doi.org/10.1016/j.lwt.2020.110308
http://doi.org/10.3389/fmicb.2019.02759
http://www.ncbi.nlm.nih.gov/pubmed/31849898
http://doi.org/10.3390/toxins9100296
http://www.ncbi.nlm.nih.gov/pubmed/28937586

	Introduction 
	Results 
	Effect of Light on Fungal Growth and Morphology 
	Analysis of OTA Production 
	OTA Biosynthetic Genes Expression of A. ochraceus and A. carbonarius Were Regulated by Light 
	Degradation of OTA by Light 
	UV-B Inhibited the Pathogenicity of A. ochraceus and A. carbonarius 

	Discussion 
	Materials and Methods 
	Solvents and Reagents 
	Strains and Growth Conditions 
	The Light Incubation Conditions 
	Quantification of OTA by HPLC-FLD 
	Isolation of RNA 
	Quantitative Real-Time RT-PCR Reaction and Relative Gene Expression Determination 
	Degradation of OTA Standard Pure Solution Samples under Different Light Wavelengths 
	The Effect of UV-B on Pathogenicity 
	Statistical Analysis 

	References

