Next Issue
Volume 13, June
Previous Issue
Volume 13, April

Toxins, Volume 13, Issue 5 (May 2021) – 72 articles

Cover Story (view full-size image): Colibactin, encoded by the pks biosynthetic gene cluster, is a genotoxin primarily produced by B2 phylogroup Escherichia coli strains prevalent in the human intestine. The pks island has attracted significant scientific interest owing to its demonstrable tumorigenic effect in preclinical models coupled with limited structural delineation of colibactin. Recently, colibactin’s structural identification has helped shed light on its oncogenic mode-of-action as a mutagenic alkylating agent, capable of promoting driver mutations observed in colon cancer. Further research has elucidated how colibactin production and functionality are regulated within the host intestinal tract, clarifying colibactin’s mutagenic influence in physiologic conditions. In this review, we summarize these findings and consider the open questions related to colibactin’s potential as a microbially derived carcinogen. [...] Read more.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Review
The Role of Ultrasound for the Personalized Botulinum Toxin Treatment of Cervical Dystonia
Toxins 2021, 13(5), 365; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050365 - 20 May 2021
Viewed by 951
Abstract
The visualization of the human body has frequently been groundbreaking in medicine. In the last few years, the use of ultrasound (US) imaging has become a well-established procedure for botulinum toxin therapy in people with cervical dystonia (CD). It is now undisputed among [...] Read more.
The visualization of the human body has frequently been groundbreaking in medicine. In the last few years, the use of ultrasound (US) imaging has become a well-established procedure for botulinum toxin therapy in people with cervical dystonia (CD). It is now undisputed among experts that some of the most relevant muscles in this indication can be safely injected under visual US guidance. This review will explore the method from basic technical considerations, current evidence to conceptual developments of the phenomenology of cervical dystonia. We will review the implications of introducing US to our understanding of muscle function and anatomy of common cervical dystonic patterns. We suggest a flow chart for the use of US to achieve a personalized treatment of people with CD. Thus, we hope to contribute a resource that is useful in clinical practice and that stimulates the ongoing development of this valuable technique. Full article
Show Figures

Figure 1

Communication
The Rapid Evolution of Resistance to Vip3Aa Insecticidal Protein in Mythimna separata (Walker) Is Not Related to Altered Binding to Midgut Receptors
Toxins 2021, 13(5), 364; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050364 - 20 May 2021
Viewed by 789
Abstract
Laboratory selection for resistance of field populations is a well-known and useful tool to understand the potential of insect populations to evolve resistance to insecticides. It provides us with estimates of the frequency of resistance alleles and allows us to study the mechanisms [...] Read more.
Laboratory selection for resistance of field populations is a well-known and useful tool to understand the potential of insect populations to evolve resistance to insecticides. It provides us with estimates of the frequency of resistance alleles and allows us to study the mechanisms by which insects developed resistance to shed light on the mode of action and optimize resistance management strategies. Here, a field population of Mythimna separata was subjected to laboratory selection with either Vip3Aa, Cry1Ab, or Cry1F insecticidal proteins from Bacillus thuringiensis. The population rapidly evolved resistance to Vip3Aa reaching, after eight generations, a level of >3061-fold resistance, compared with the unselected insects. In contrast, the same population did not respond to selection with Cry1Ab or Cry1F. The Vip3Aa resistant population did not show cross resistance to either Cry1Ab or Cry1F. Radiolabeled Vip3Aa was tested for binding to brush border membrane vesicles from larvae from the susceptible and resistant insects. The results did not show any qualitative or quantitative difference between both insect samples. Our data, along with previous results obtained with other Vip3Aa-resistant populations from other insect species, suggest that altered binding to midgut membrane receptors is not the main mechanism of resistance to Vip3Aa. Full article
(This article belongs to the Special Issue The Pivotal Role of Toxins in Insects-Bacteria Interactions)
Show Figures

Figure 1

Article
Different Biological Activities of Histidine-Rich Peptides Are Favored by Variations in Their Design
Toxins 2021, 13(5), 363; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050363 - 20 May 2021
Viewed by 889
Abstract
The protein transduction and antimicrobial activities of histidine-rich designer peptides were investigated as a function of their sequence and compared to gene transfection, lentivirus transduction and calcein release activities. In membrane environments, the peptides adopt helical conformations where the positioning of the histidine [...] Read more.
The protein transduction and antimicrobial activities of histidine-rich designer peptides were investigated as a function of their sequence and compared to gene transfection, lentivirus transduction and calcein release activities. In membrane environments, the peptides adopt helical conformations where the positioning of the histidine side chains defines a hydrophilic angle when viewed as helical wheel. The transfection of DNA correlates with calcein release in biophysical experiments, being best for small hydrophilic angles supporting a model where lysis of the endosomal membrane is the limiting factor. In contrast, antimicrobial activities show an inverse correlation suggesting that other interactions and mechanisms dominate within the bacterial system. Furthermore, other derivatives control the lentiviral transduction enhancement or the transport of proteins into the cells. Here, we tested the transport into human cell lines of luciferase (63 kDa) and the ribosome-inactivating toxin saporin (30 kDa). Notably, depending on the protein, different peptide sequences are required for the best results, suggesting that the interactions are manifold and complex. As such, designed LAH4 peptides assure a large panel of biological and biophysical activities whereby the optimal result can be tuned by the physico-chemical properties of the sequences. Full article
(This article belongs to the Special Issue Bacterial Toxins: Protein Folding and Membrane Interactions)
Show Figures

Figure 1

Article
Therapeutic Effects of Urethral Sphincter Botulinum Toxin A Injection on Dysfunctional Voiding with Different Videourodynamic Characteristics in Non-Neurogenic Women
Toxins 2021, 13(5), 362; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050362 - 19 May 2021
Viewed by 793
Abstract
Although female dysfunctional voiding (DV) is common in urological practice, it is difficult to treat. This study evaluated the therapeutic efficacy of urethral botulinum toxin A (BoNT-A) on non-neurogenic female DV. Based on the videourodynamic study (VUDS), the DV was classified into three [...] Read more.
Although female dysfunctional voiding (DV) is common in urological practice, it is difficult to treat. This study evaluated the therapeutic efficacy of urethral botulinum toxin A (BoNT-A) on non-neurogenic female DV. Based on the videourodynamic study (VUDS), the DV was classified into three subgroups according to the obstructive site. A successful treatment outcome was defined as an improvement of voiding efficiency by 10% and reported global response assessment by ≥1. The study compared therapeutic efficacy, baseline urodynamic parameters, and changes in urodynamic parameters between the treatment success and failure groups and among three DV subgroups. Predictive factors for successful treatment were also investigated. A total of 81 women with DV were categorized into three groups: 55 (67.9%) had mid-urethral DV, 19 (23.5%) had distal urethral DV, and 7 (8.6%) had combined BN dysfunction and mid-urethral DV after BN transurethral incision. The treatment outcome was successful for 55 (67.9%) patients and failed for 26 (32.1%). Successfully treated patients had a significant decrease of detrusor pressure, post-void residual volume, and bladder outlet obstruction index, as well as an increase in voiding efficiency at follow-up versus the treatment failure group. The logistic regression of urodynamic parameters and clinical variables revealed that a greater volume of first sensation of filling predicts a successful BoNT-A treatment outcome (p = 0.047). The urethral BoNT-A injection is effective in treating non-neurogenic women with DV, with a success rate of 67.9%. The videourodynamic characteristics of DV may differ among patients but does not affect the treatment outcome. Full article
Show Figures

Figure 1

Review
Dysbiosis-Related Advanced Glycation Endproducts and Trimethylamine N-Oxide in Chronic Kidney Disease
Toxins 2021, 13(5), 361; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050361 - 19 May 2021
Cited by 1 | Viewed by 1014
Abstract
Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually [...] Read more.
Chronic kidney disease (CKD) is a public health concern that affects approximately 10% of the global population. CKD is associated with poor outcomes due to high frequencies of comorbidities such as heart failure and cardiovascular disease. Uremic toxins are compounds that are usually filtered and excreted by the kidneys. With the decline of renal function, uremic toxins are accumulated in the systemic circulation and tissues, which hastens the progression of CKD and concomitant comorbidities. Gut microbial dysbiosis, defined as an imbalance of the gut microbial community, is one of the comorbidities of CKD. Meanwhile, gut dysbiosis plays a pathological role in accelerating CKD progression through the production of further uremic toxins in the gastrointestinal tracts. Therefore, the gut-kidney axis has been attracting attention in recent years as a potential therapeutic target for stopping CKD. Trimethylamine N-oxide (TMAO) generated by gut microbiota is linked to the progression of cardiovascular disease and CKD. Also, advanced glycation endproducts (AGEs) not only promote CKD but also cause gut dysbiosis with disruption of the intestinal barrier. This review summarizes the underlying mechanism for how gut microbial dysbiosis promotes kidney injury and highlights the wide-ranging interventions to counter dysbiosis for CKD patients from the view of uremic toxins such as TMAO and AGEs. Full article
(This article belongs to the Special Issue Gut Microbiota Dynamics and Uremic Toxins)
Show Figures

Figure 1

Communication
Equations to Predict Growth Performance Changes by Dietary Deoxynivalenol in Pigs
Toxins 2021, 13(5), 360; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050360 - 19 May 2021
Viewed by 834
Abstract
The objectives of the present work were to assess the accuracy of previously published equations for predicting effects of deoxynivalenol (DON) on the growth performance changes of pigs and to update equations based on recently published data. A total of 59 data were [...] Read more.
The objectives of the present work were to assess the accuracy of previously published equations for predicting effects of deoxynivalenol (DON) on the growth performance changes of pigs and to update equations based on recently published data. A total of 59 data were employed for the validation of previously published equations. These data were used to update the equations. The REG and CORR procedures of SAS were used. In the present validation test, a linear bias was significant (p < 0.05), indicating that prediction errors were not consistent across the data ranges. The intercept for ΔFI (−7.75 ± 1.19, p < 0.01) representing a mean bias was less than 0, indicating that the predicted mean of ΔFI was greater than the measured mean of ΔFI. Dietary DON concentrations had negative correlations with ΔWG (r = −0.79; p < 0.01) and ΔFI (r = −0.71; p < 0.01). Updated prediction equations were: ΔWG = −5.93 × DON with r2 = 0.77 and ΔFI = −4.42 × DON with r2 = 0.68. In conclusion, the novel equations developed in this study might accurately predict effects of dietary DON on the performance changes of pigs. Full article
(This article belongs to the Special Issue Effects of Feedborne Mycotoxins on Animal Health)
Show Figures

Figure 1

Review
Novel Applications of Non-Invasive Intravesical Botulinum Toxin a Delivery in the Treatment of Functional Bladder Disorders
Toxins 2021, 13(5), 359; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050359 - 18 May 2021
Viewed by 850
Abstract
Although intravesical botulinum toxin type A (BoNT-A) injection for functional bladder disorders is effective, the injection-related problems—such as bladder pain and urinary tract infection—make the procedure invasive and inconvenient. Several vehicles have recently been developed to deliver BoNT-A without injection, thereby making the [...] Read more.
Although intravesical botulinum toxin type A (BoNT-A) injection for functional bladder disorders is effective, the injection-related problems—such as bladder pain and urinary tract infection—make the procedure invasive and inconvenient. Several vehicles have recently been developed to deliver BoNT-A without injection, thereby making the treatment less or non-invasive. Laboratory evidence revealed that liposome can carry BoNT-A across the uroepithelium and act on sub-urothelial nerve endings. A randomized placebo controlled study revealed that intravesical administration of liposome-encapsulated BoNT-A and TC-3 hydrogel embedded BoNT-A can improve urinary frequency, urgency, and reduce incontinence in patients with overactive bladders. A single-arm prospective study also revealed that intravesical administration of TC-3 hydrogel embedded BoNT-A can relieve bladder pain in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). We recently administered suprapubic energy shock wave (ESW) after BoNT-A intravesical administration in six patients with IC/BPS. Although pain reduction and symptom improvement were not significant, immunochemical staining showed cleaved synaptosome-associated protein 25 in the bladder after the procedure. This suggests that ESW can promote passage of BoNT-A across the uroepithelium. In conclusion, using vehicles to intra-vesically deliver BoNT-A for functional bladder disorders is promising. Further studies are necessary to confirm the efficacy and explore novel applications. Full article
Show Figures

Figure 1

Article
Rapid Differential Detection of Abrin Isoforms by an Acetonitrile- and Ultrasound-Assisted On-Bead Trypsin Digestion Coupled with LC-MS/MS Analysis
Toxins 2021, 13(5), 358; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050358 - 18 May 2021
Viewed by 830
Abstract
The high toxic abrin from the plant Abrus precatorius is a type II ribosome-inactivating protein toxin with a human lethal dose of 0.1–1.0 µg/kg body weight. Due to its high toxicity and the potential misuse as a biothreat agent, it is of great [...] Read more.
The high toxic abrin from the plant Abrus precatorius is a type II ribosome-inactivating protein toxin with a human lethal dose of 0.1–1.0 µg/kg body weight. Due to its high toxicity and the potential misuse as a biothreat agent, it is of great importance to developing fast and reliable methods for the identification and quantification of abrin in complex matrices. Here, we report rapid and efficient acetonitrile (ACN)- and ultrasound-assisted on-bead trypsin digestion method combined with HPLC-MS/MS for the quantification of abrin isoforms in complex matrices. Specific peptides of abrin isoforms were generated by direct ACN-assisted trypsin digestion and analyzed by HPLC-HRMS. Combined with in silico digestion and BLASTp database search, fifteen marker peptides were selected for differential detection of abrin isoforms. The abrin in milk and plasma was enriched by immunomagnetic beads prepared by biotinylated anti-abrin polyclonal antibodies conjugated to streptavidin magnetic beads. The ultrasound-assisted on-bead trypsin digestion method was carried out under the condition of 10% ACN as denaturant solvent, the entire digestion time was further shortened from 90 min to 30 min. The four peptides of T3Aa,b,c,d, T12Aa, T15Ab, and T9Ac,d were chosen as quantification for total abrin, abrin-a, abrin-b, and abrin-c/d, respectively. The absolute quantification of abrin and its isoforms was accomplished by isotope dilution with labeled AQUA peptides and analyzed by HPLC-MS/MS (MRM). The developed method was fully validated in milk and plasma matrices with quantification limits in the range of 1.0-9.4 ng/mL for the isoforms of abrin. Furthermore, the developed approach was applied for the characterization of abrin isoforms from various fractions from gel filtration separation of the seeds, and measurement of abrin in the samples of biotoxin exercises organized by the Organization for the Prohibition of Chemical Weapons (OPCW). This study provided a recommended method for the differential identification of abrin isoforms, which are easily applied in international laboratories to improve the capabilities for the analysis of biotoxin samples. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Figure 1

Article
N58A Exerts Analgesic Effect on Trigeminal Neuralgia by Regulating the MAPK Pathway and Tetrodotoxin-Resistant Sodium Channel
Toxins 2021, 13(5), 357; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050357 - 17 May 2021
Viewed by 924
Abstract
The primary studies have shown that scorpion analgesic peptide N58A has a significant effect on voltage-gated sodium channels (VGSCs) and plays an important role in neuropathic pain. The purpose of this study was to investigate the analgesic effect of N58A on trigeminal neuralgia [...] Read more.
The primary studies have shown that scorpion analgesic peptide N58A has a significant effect on voltage-gated sodium channels (VGSCs) and plays an important role in neuropathic pain. The purpose of this study was to investigate the analgesic effect of N58A on trigeminal neuralgia (TN) and its possible mechanism. The results showed that N58A could significantly increase the threshold of mechanical pain and thermal pain and inhibit the spontaneous asymmetric scratching behavior of rats. Western blotting results showed that N58A could significantly reduce the protein phosphorylation level of ERK1/2, P38, JNK, and ERK5/CREB pathways and the expression of Nav1.8 and Nav1.9 proteins in a dose-dependent manner. The changes in current and kinetic characteristics of Nav1.8 and Nav1.9 channels in TG neurons were detected by the whole-cell patch clamp technique. The results showed that N58A significantly decreased the current density of Nav1.8 and Nav1.9 in model rats, and shifted the activation curve to hyperpolarization and the inactivation curve to depolarization. In conclusion, the analgesic effect of N58A on the chronic constriction injury of the infraorbital (IoN-CCI) model rats may be closely related to the regulation of the MAPK pathway and Nav1.8 and Nav1.9 sodium channels. Full article
(This article belongs to the Special Issue Venom and Pain)
Show Figures

Figure 1

Review
Contribution of Single-Fiber Evaluation on Monitoring Outcomes Following Injection of Botulinum Toxin-A: A Narrative Review of the Literature
Toxins 2021, 13(5), 356; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050356 - 17 May 2021
Viewed by 958
Abstract
Botulinum toxin-A (BoNT-A) blocks acetylcholine release at the neuromuscular junction (NMJ) and is widely used for neuromuscular disorders (involuntary spasms, dystonic disorders and spasticity). However, its therapeutic effects are usually measured by clinical scales of questionable validity. Single-fiber electromyography (SFEMG) is a sensitive, [...] Read more.
Botulinum toxin-A (BoNT-A) blocks acetylcholine release at the neuromuscular junction (NMJ) and is widely used for neuromuscular disorders (involuntary spasms, dystonic disorders and spasticity). However, its therapeutic effects are usually measured by clinical scales of questionable validity. Single-fiber electromyography (SFEMG) is a sensitive, validated diagnostic technique for NMJ impairment such as myasthenia. The jitter parameter (µs) represents the variability of interpotential intervals of two muscle fibers from the same motor unit. This narrative review reports SFEMG use in BoNT-A treatment. Twenty-four articles were selected from 175 eligible articles searched in Medline/Pubmed and Cochrane Library from their creation until May 2020. The results showed that jitter is sensitive to early NMJ modifications following BoNT-A injection, with an increase in the early days’ post-injection and a peak between Day 15 and 30, when symptoms diminish or disappear. The reappearance of symptoms accompanies a tendency for a decrease in jitter, but always precedes its normalization, either delayed or nonexistent. Increased jitter is observed in distant muscles from the injection site. No dose effect relationship was demonstrated. SFEMG could help physicians in their therapeutic evaluation according to the pathology considered. More data are needed to consider jitter as a predictor of BoNT-A clinical efficacy. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

Review
Dissecting the Environmental Consequences of Bacillus thuringiensis Application for Natural Ecosystems
Toxins 2021, 13(5), 355; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050355 - 16 May 2021
Cited by 1 | Viewed by 1138
Abstract
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the [...] Read more.
Bacillus thuringiensis (Bt), a natural pathogen of different invertebrates, primarily insects, is widely used as a biological control agent. While Bt-based preparations are claimed to be safe for non-target organisms due to the immense host specificity of the bacterium, the growing evidence witnesses the distant consequences of their application for natural communities. For instance, upon introduction to soil habitats, Bt strains can affect indigenous microorganisms, such as bacteria and fungi, and further establish complex relationships with local plants, ranging from a mostly beneficial demeanor, to pathogenesis-like plant colonization. By exerting a direct effect on target insects, Bt can indirectly affect other organisms in the food chain. Furthermore, they can also exert an off-target activity on various soil and terrestrial invertebrates, and the frequent acquisition of virulence factors unrelated to major insecticidal toxins can extend the Bt host range to vertebrates, including humans. Even in the absence of direct detrimental effects, the exposure to Bt treatment may affect non-target organisms by reducing prey base and its nutritional value, resulting in delayed alleviation of their viability. The immense phenotypic plasticity of Bt strains, coupled with the complexity of ecological relationships they can engage in, indicates that further assessment of future Bt-based pesticides’ safety should consider multiple levels of ecosystem organization and extend to a wide variety of their inhabitants. Full article
(This article belongs to the Special Issue The Pivotal Role of Toxins in Insects-Bacteria Interactions)
Show Figures

Figure 1

Article
Profiling of Brevetoxin Metabolites Produced by Karenia brevis 165 Based on Liquid Chromatography-Mass Spectrometry
Toxins 2021, 13(5), 354; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050354 - 14 May 2021
Viewed by 814
Abstract
In this study, Karenia brevis 165 (K. brevis 165), a Chinese strain, was used to research brevetoxin (BTX) metabolites. The sample pretreatment method for the enrichment of BTX metabolites in an algal culture medium was improved here. The method for screening and [...] Read more.
In this study, Karenia brevis 165 (K. brevis 165), a Chinese strain, was used to research brevetoxin (BTX) metabolites. The sample pretreatment method for the enrichment of BTX metabolites in an algal culture medium was improved here. The method for screening and identifying intracellular and extracellular BTX metabolites was established based on liquid chromatography-time-of-flight mass spectrometry (LC-ToF-MS) and liquid chromatography triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS). The results show that the recovery rates for BTX toxins enriched by a hydrophilic–lipophilic balance (HLB) extraction column were higher than those with a C18 extraction column. This method was used to analyze the profiles of extracellular and intracellular BTX metabolites at different growth stages of K. brevis 165. This is the first time a Chinese strain of K. brevis has been reported that can produce toxic BTX metabolites. Five and eight kinds of BTX toxin metabolites were detected in the cell and culture media of K. brevis 165, respectively. Brevenal, a toxic BTX metabolite antagonist, was found for the first time in the culture media. The toxic BTX metabolites and brevenal in the K. brevis 165 cell and culture media were found to be fully proven in terms of the necessity of establishing a method for screening and identifying toxic BTX metabolites. The results found by qualitatively and quantitatively analyzing BTX metabolites produced by K. brevis 165 at different growth stages show that the total toxic BTX metabolite contents in single cells ranged between 6.78 and 21.53 pg/cell, and the total toxin concentration in culture media ranged between 10.27 and 449.11 μg/L. There were significant differences in the types and contents of toxic BTX metabolites with varying growth stages. Therefore, when harmful algal blooms occur, the accurate determination of BTX metabolite types and concentrations will be helpful to assess the ecological disaster risk in order to avoid hazards and provide appropriate disaster warnings. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

Article
Two Different Inoculation Methods Unveiled the Relative Independence of DON Accumulation in Wheat Kernels from Disease Severity on Spike after Infection by Fusarium Head Blight
Toxins 2021, 13(5), 353; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050353 - 14 May 2021
Viewed by 735
Abstract
Fusarium head blight (FHB) causes wheat yield loss and mycotoxin (deoxynivalenol, DON) accumulation in wheat kernel. Developing wheat cultivars with overall resistance to both FHB spread within a spike and DON accumulation in kernels is crucial for ensuring food security and food safety. [...] Read more.
Fusarium head blight (FHB) causes wheat yield loss and mycotoxin (deoxynivalenol, DON) accumulation in wheat kernel. Developing wheat cultivars with overall resistance to both FHB spread within a spike and DON accumulation in kernels is crucial for ensuring food security and food safety. Here, two relatively novel inoculation methods, bilateral floret inoculation (BFI) and basal rachis internode injection (BRII), were simultaneously employed to evaluate disease severity and DON content in kernels in a segregating population of recombinant inbred lines (RILs) developed from Ning 7840 (carrying Fhb1) and Clark (without Fhb1). Under both inoculation methods, four contrasting combinations of disease severity and DON content were identified: high severity/high DON (HSHD), high severity/low DON (HSLD), low severity/high DON (LSHD) and low severity/low DON (LSLD). Unexpectedly, the BRII method clearly indicated that disease severity was not necessarily relevant to DON concentration. The effects of Fhb1 on disease severity, and on DON concentrations, agreed very well across the two methods. Several lines carrying Fhb1 showed extremely higher severity and (or) DON content under both inoculation methods. The “Mahalanobis distance” (MD) method was used to rate overall resistance of a line by inclusion of both disease severity and DON content over both methods to select LSLD lines. Full article
(This article belongs to the Special Issue Fusarium Toxins: Occurrence and Risk Assessment)
Show Figures

Figure 1

Article
Sodium Butyrate More Effectively Mitigates the Negative Effects of High-Concentrate Diet in Dairy Cows than Sodium β-Hydroxybutyrate via Reducing Free Bacterial Cell Wall Components in Rumen Fluid and Plasma
Toxins 2021, 13(5), 352; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050352 - 14 May 2021
Viewed by 791
Abstract
The present study was aimed at investigating the effects of sodium butyrate and sodium β-hydroxybutyrate on lactation and health of dairy cows fed a high-concentrate (HC) diet. Eighty mid-lactation dairy cows with an average milk yield of 33.75 ± 5.22 kg/d were [...] Read more.
The present study was aimed at investigating the effects of sodium butyrate and sodium β-hydroxybutyrate on lactation and health of dairy cows fed a high-concentrate (HC) diet. Eighty mid-lactation dairy cows with an average milk yield of 33.75 ± 5.22 kg/d were randomly allocated to four groups (n = 20 per group) and were fed either a low-concentrate (LC) diet, a HC diet, the HC diet with 1% sodium butyrate (HCSB), or the HC diet with 1% sodium β-hydroxybutyrate (HCHB). The feeding trial lasted for 7 weeks, with a 2-week adaptation period and a 5-week measurement period, and the trial started from 96 ± 13 d in milk. Sodium butyrate supplementation delayed the decline in milk production and improved milk synthesis efficiency and milk fat content. Additionally, it decreased the proinflammatory cytokines and acute phase proteins (APPs) in plasma, the leucocytes in blood, the somatic cell count (SCC) in milk, and the gene expression of pattern recognition receptors (PRRs) and proinflammatory cytokines in the mammary gland, due to decreasing the contents of bacterial cell wall components (lipopolysaccharide, LPS; peptidoglycan, PGN; and lipoteichoic acid, LTA) in the rumen and plasma, compared with the HC diet. Sodium β-hydroxybutyrate supplementation also improved milk yield, milk synthesis efficiency and milk fat content and partially reduced the adverse effects caused by the HC diet, but it had no effect on decreasing bacterial cell wall components in the rumen and plasma, compared with the HC diet. Collectively, both sodium butyrate and sodium β-hydroxybutyrate mitigated the negative effects of HC diet on lactation and health of dairy cows, with sodium butyrate being more effective than sodium β-hydroxybutyrate. Full article
(This article belongs to the Special Issue Histological Effects of Endotoxins)
Show Figures

Figure 1

Article
Is the Cyanobacterial Bloom Composition Shifting Due to Climate Forcing or Nutrient Changes? Example of a Shallow Eutrophic Reservoir
Toxins 2021, 13(5), 351; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050351 - 13 May 2021
Viewed by 1110
Abstract
Cyanobacterial blooms in eutrophic freshwater is a global threat to the functioning of ecosystems, human health and the economy. Parties responsible for the ecosystems and human health increasingly demand reliable predictions of cyanobacterial development to support necessary decisions. Long-term data series help with [...] Read more.
Cyanobacterial blooms in eutrophic freshwater is a global threat to the functioning of ecosystems, human health and the economy. Parties responsible for the ecosystems and human health increasingly demand reliable predictions of cyanobacterial development to support necessary decisions. Long-term data series help with identifying environmental drivers of cyanobacterial developments in the context of climatic and anthropogenic pressure. Here, we analyzed 13 years of eutrophication and climatic data of a shallow temperate reservoir showing a high interannual variability of cyanobacterial development and composition, which is a less occurring and/or less described phenomenon compared to recurrant monospecific blooms. While between 2007–2012 Planktothrix agardhii dominated the cyanobacterial community, it shifted towards Microcystis sp. and then Dolichospermum sp. afterwards (2013–2019). The shift to Microcystis sp. dominance was mainly influenced by generally calmer and warmer conditions. The later shift to Dolichospermum sp. was driven by droughts influencing, amongst others, the N-load, as P remained unchanged over the time period. Both, climatic pressure and N-limitation contributed to the high variability of cyanobacterial blooms and may lead to a new equilibrium. The further reduction of P-load in parallel to the decreasing N-load is important to suppress cyanobacterial blooms and ameliorate ecosystem health. Full article
Show Figures

Figure 1

Article
Changes in the Risk of Stroke in Dialysis Patients: A Retrospective Analysis over the Last 40 Years
Toxins 2021, 13(5), 350; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050350 - 13 May 2021
Viewed by 838
Abstract
The stroke incidence in hemodialysis (HD) patients is high, but the associated factors remain largely unknown. This study aimed to analyze stroke incidence in HD patients and changes in risk factors. Data of 291 patients were retrospectively analyzed. The cumulative stroke incidences were [...] Read more.
The stroke incidence in hemodialysis (HD) patients is high, but the associated factors remain largely unknown. This study aimed to analyze stroke incidence in HD patients and changes in risk factors. Data of 291 patients were retrospectively analyzed. The cumulative stroke incidences were 21.6% at 10 years and 31.5% at 20. Diabetic nephropathy (DN) significantly increased overall stroke (hazard ratio (HR), 2.24; 95% confidence interval (CI), 1.21–4.12; p = 0.001) and ischemic stroke (HR, 2.16; 95% CI, 1.00–4.64; p = 0.049). Patients treated with online HDF were less likely to have overall stroke (HR, 0.13; 95% CI, 0.03–0.56; p = 0.006) and ischemic stroke (HR, 0.08; 95% CI, 0.01–0.60; p = 0.014). DN (HR, 1.56; 95% CI, 1.08–2.27; p = 0.019) and age >80 years at HD initiation (20–49 years old; HR 0.13, 95% CI, 0.05-0.35, p < 0.001 and age 50–79 years; HR 0.42, 95% CI, 0.26–0.66, p < 0.001 (reference: age >80 years)) were significantly associated with stroke and/or death events. Over time, stroke risk increased in HD patients, due to the increasing number of DN. Although dialysis technology has advanced over time, these advances could not overcome other risk factors for stroke. Further increase in stroke and mortality due to aging remains a concern. Full article
(This article belongs to the Section Uremic Toxins)
Show Figures

Figure 1

Article
Recombinant Expression of Trametes versicolor Aflatoxin B1-Degrading Enzyme (TV-AFB1D) in Engineering Pichia pastoris GS115 and Application in AFB1 Degradation in AFB1-Contaminated Peanuts
Toxins 2021, 13(5), 349; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050349 - 13 May 2021
Cited by 1 | Viewed by 751
Abstract
Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene [...] Read more.
Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene (TV-AFB1D) was integrated into the genome of Pichia pastoris GS115 by homologous recombination approach. The recombinant TV-AFB1D was expressed in engineering P. pastoris with a size of approximately 77 kDa under the induction of methanol. The maximum activity of TV-AFB1D reached 17.5 U/mL after the induction of 0.8% ethanol (v/v) for 84 h at 28 °C. The AFB1 proportion of 75.9% was degraded using AFB1 standard sample after catalysis for 12 h. In addition, the AFB1 proportion was 48.5% using AFB1-contaminated peanuts after the catalysis for 18 h at 34 °C. The recombinant TV-AFB1D would have good practical application value in AFB1 degradation in food crops. This study provides an alternative degrading enzyme for the degradation of AFB1 in aflatoxin-contaminated grain and feed via enzymatic degradation approach. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Article
Antifungal Activity of Quinofumelin against Fusarium graminearum and Its Inhibitory Effect on DON Biosynthesis
Toxins 2021, 13(5), 348; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050348 - 12 May 2021
Viewed by 839
Abstract
Fusarium graminearum, causal agent of Fusarium head blight (FHB), causes a huge economic loss. No information is available on the activity of quinofumelin, a novel quinoline fungicide, against F. graminearum or other phytopathogens. In this study, we used mycelial growth and spore germination [...] Read more.
Fusarium graminearum, causal agent of Fusarium head blight (FHB), causes a huge economic loss. No information is available on the activity of quinofumelin, a novel quinoline fungicide, against F. graminearum or other phytopathogens. In this study, we used mycelial growth and spore germination inhibition methods to determine the inhibitory effect of quinofumelin against F. graminearum in vitro. The results indicated that quinofumelin excellently inhibited mycelial growth and spore germination of F. graminearum, with the average EC50 values of 0.019 ± 0.007 μg/mL and 0.087 ± 0.024 μg/mL, respectively. In addition, we found that quinofumelin could significantly decrease deoxynivalenol (DON) production and inhibit the expression of DON-related gene TRI5 in F. graminearum. Furthermore, we found that quinofumelin could disrupt the formation of Fusarium toxisome, a structure for producing DON. Western blot analysis demonstrated that the translation level of TRI1, a marker gene for Fusarium toxisome, was suppressed by quinofumelin. The protective and curative assays indicated that quinofumelin had an excellent control efficiency against F. graminearum on wheat coleoptiles. Taken together, quinofumelin exhibits not only an excellent antifungal activity on mycelial growth and spore germination, but also could inhibit DON biosynthesis in F. graminearum. The findings provide a novel candidate for controlling FHB caused by F. graminearum. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

Review
Macrolides: From Toxins to Therapeutics
Toxins 2021, 13(5), 347; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050347 - 12 May 2021
Viewed by 908
Abstract
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act [...] Read more.
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions. Here, we review each functional class of macrolides for their common structures, mechanisms of action, pharmacology, and human cellular targets. Full article
Review
Shining a Light on Colibactin Biology
Toxins 2021, 13(5), 346; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050346 - 12 May 2021
Cited by 2 | Viewed by 1574
Abstract
Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this [...] Read more.
Colibactin is a secondary metabolite encoded by the pks gene island identified in several Enterobacteriaceae, including some pathogenic Escherichia coli (E. coli) commonly enriched in mucosal tissue collected from patients with inflammatory bowel disease and colorectal cancer. E. coli harboring this biosynthetic gene cluster cause DNA damage and tumorigenesis in cell lines and pre-clinical models, yet fundamental knowledge regarding colibactin function is lacking. To accurately assess the role of pks+ E. coli in cancer etiology, the biological mechanisms governing production and delivery of colibactin by these bacteria must be elucidated. In this review, we will focus on recent advances in our understanding of colibactin’s structural mode-of-action and mutagenic potential with consideration for how this activity may be regulated by physiologic conditions within the intestine. Full article
(This article belongs to the Special Issue Escherichia coli Toxins and Intestinal Diseases)
Show Figures

Figure 1

Article
Volumetric Absorptive Microsampling as an Alternative Tool for Biomonitoring of Multi-Mycotoxin Exposure in Resource-Limited Areas
Toxins 2021, 13(5), 345; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050345 - 11 May 2021
Viewed by 881
Abstract
Biomonitoring of biological samples arises as an effective tool to evaluate the exposure to mycotoxins in the population. Owing to the wide range of advantages, there is a growing interest in the use of non- and minimally invasive alternative sampling strategies, such as [...] Read more.
Biomonitoring of biological samples arises as an effective tool to evaluate the exposure to mycotoxins in the population. Owing to the wide range of advantages, there is a growing interest in the use of non- and minimally invasive alternative sampling strategies, such as dried blood spot sampling or volumetric absorptive microsampling (VAMS). A VAMS-based multi-mycotoxin method was developed and validated for 24 different mycotoxins. Method validation was based on the Bioanalytical Method Validation Guideline of the Food and Drug Administration from the United States and for most of the studied mycotoxins, the results of the performance characteristics were in agreement with the criteria of the European Commission Decision 2002/657/EC. The recovery for the different mycotoxins was not haematocrit dependent and remained acceptable after storing the VAMS for 7 and 21 days at refrigeration temperature (4 °C) and room temperature, demonstrating that VAMS could be applied to assess mycotoxin exposure in blood in resource-limited areas, where there may be a delay between sampling and analysis. Finally, a comparison between VAMS and a procedure for liquid whole blood analysis, performed on 20 different blood samples, did not result in missed exposed cases for VAMS. Moreover, both methods detected similar levels of ochratoxin A, ochratoxin alpha, zearalenone and aflatoxin B1. Given all the benefits associated with VAMS and the developed method, VAMS sampling may serve as an alternative to conventional venous sampling to evaluate multiple mycotoxin exposure. Full article
(This article belongs to the Special Issue Mycotoxin Biomarkers: Innovation and Utility)
Show Figures

Figure 1

Review
Quo vadis Cardiac Glycoside Research?
Toxins 2021, 13(5), 344; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050344 - 11 May 2021
Cited by 2 | Viewed by 948
Abstract
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s [...] Read more.
Cardiac glycosides (CGs), toxins well-known for numerous human and cattle poisoning, are natural compounds, the biosynthesis of which occurs in various plants and animals as a self-protective mechanism to prevent grazing and predation. Interestingly, some insect species can take advantage of the CG’s toxicity and by absorbing them, they are also protected from predation. The mechanism of action of CG’s toxicity is inhibition of Na+/K+-ATPase (the sodium-potassium pump, NKA), which disrupts the ionic homeostasis leading to elevated Ca2+ concentration resulting in cell death. Thus, NKA serves as a molecular target for CGs (although it is not the only one) and even though CGs are toxic for humans and some animals, they can also be used as remedies for various diseases, such as cardiovascular ones, and possibly cancer. Although the anticancer mechanism of CGs has not been fully elucidated, yet, it is thought to be connected with the second role of NKA being a receptor that can induce several cell signaling cascades and even serve as a growth factor and, thus, inhibit cancer cell proliferation at low nontoxic concentrations. These growth inhibitory effects are often observed only in cancer cells, thereby, offering a possibility for CGs to be repositioned for cancer treatment serving not only as chemotherapeutic agents but also as immunogenic cell death triggers. Therefore, here, we report on CG’s chemical structures, production optimization, and biological activity with possible use in cancer therapy, as well as, discuss their antiviral potential which was discovered quite recently. Special attention has been devoted to digitoxin, digoxin, and ouabain. Full article
(This article belongs to the Special Issue Basic Research for the Potential Use of Plant Toxins)
Show Figures

Graphical abstract

Article
An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria
Toxins 2021, 13(5), 343; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050343 - 11 May 2021
Cited by 1 | Viewed by 812
Abstract
Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed [...] Read more.
Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed and analyzed a series of 14-residue fragments of Smp43, a 43-residue long-chain noncysteine-containing AMP identified from the venom of Scorpio maurus palmatus. We found that Smp43(1-14) shows high antimicrobial activity against both Gram-positive and Gram-negative bacteria and is nontoxic to mammalian cells at the antimicrobial dosage. Sequence alignments showed that the designed Smp43(1-14) displays a unique primary structure that is different from other natural short-chain noncysteine-containing AMPs from scorpions, such as Uy17, Uy192 and IsCT. Moreover, the peptide Smp43(1-14) caused concentration-dependent fluorescence increases in the bacteria for all of the tested dyes, propidium iodide, SYTOXTM Green and DiSC3-5, suggesting that the peptide may kill the bacteria through the formation of pore structures in the plasma membrane. Taken together, our work sheds light on a new avenue for the design of novel short-chain noncysteine-containing AMPs and provides a good peptide template with a unique sequence for the development of novel drugs for use against bacterial infectious diseases. Full article
(This article belongs to the Special Issue Advances in Structure-Based Drug Design of Venom Peptides)
Show Figures

Figure 1

Article
Cleaving Ergot Alkaloids by Hydrazinolysis—A Promising Approach for a Sum Parameter Screening Method
Toxins 2021, 13(5), 342; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050342 - 11 May 2021
Viewed by 762
Abstract
Ergot alkaloids are mycotoxins formed by fungi of the Claviceps genus, which are some of the most common contaminants of food and feed worldwide. These toxins are a structurally heterogeneous group of compounds, sharing an ergoline backbone. Six structures and their corresponding stereoisomers [...] Read more.
Ergot alkaloids are mycotoxins formed by fungi of the Claviceps genus, which are some of the most common contaminants of food and feed worldwide. These toxins are a structurally heterogeneous group of compounds, sharing an ergoline backbone. Six structures and their corresponding stereoisomers are typically quantified by either HPLC-FLD or HPLC-MS/MS and the values subsequently summed up to determine the total ergot alkaloid content. For the development of a screening method targeting all ergot alkaloids simultaneously, the alkaloids need to be transferred to one homogeneous structure: a lysergic acid derivative. In this study, two promising cleaving methods—acidic esterification and hydrazinolysis—are compared, using dihydroergocristine as a model compound. While the acidic esterification proved to be unsuitable, due to long reaction times and oxidation sensitivity, hydrazinolysis reached a quantitative yield in 40‒60 min. Parallel workup of several samples is possible. An increasing effect on the reaction rate by the addition of ammonium iodide was demonstrated. Application of hydrazinolysis to a major ergot alkaloid mix solution showed that all ergopeptines were cleaved, but ergometrine/-inine was barely affected. Still, hydrazinolysis is a suitable tool for the development of a sum parameter screening method for ergot alkaloids in food and feed. Full article
(This article belongs to the Special Issue Application of Novel Methods for Mycotoxins Analysis)
Show Figures

Figure 1

Review
Folding Control in the Path of Type 5 Secretion
Toxins 2021, 13(5), 341; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050341 - 11 May 2021
Viewed by 915
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of [...] Read more.
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis. Full article
(This article belongs to the Special Issue Bacterial Toxins: Protein Folding and Membrane Interactions)
Show Figures

Figure 1

Article
Aspergillus flavus Growth Inhibition and Aflatoxin B1 Decontamination by Streptomyces Isolates and Their Metabolites
Toxins 2021, 13(5), 340; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050340 - 08 May 2021
Viewed by 1255
Abstract
Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces [...] Read more.
Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces spp. represent an alternative as they are a promising source of detoxifying enzymes. Fifty-nine Streptomyces isolates and a Streptomyces griseoviridis strain from the commercial product Mycostop®, evaluated against Penicillium verrucosum and ochratoxin A during previous work, were screened for their ability to inhibit Aspergillus flavus growth and decrease the aflatoxin amount. The activities of bacterial cells and cell-free extracts (CFEs) from liquid cultures were also evaluated. Fifty-eight isolates were able to inhibit fungal growth during dual culture assays, with a maximal reduction going down to 13% of the control. Aflatoxin-specific production was decreased by all isolates to at least 54% of the control. CFEs were less effective in decreasing fungal growth (down to 40% and 55% for unheated and heated CFEs, respectively) and aflatoxin-specific production, with a few CFEs causing an overproduction of mycotoxins. Nearly all Streptomyces isolates were able to degrade AFB1 when growing in solid and liquid media. A total degradation of AFB1 was achieved by Mycostop® on solid medium, as well as an almost complete degradation by IX20 in liquid medium (6% of the control). CFE maximal degradation went down to 37% of the control for isolate IX09. The search for degradation by-products indicated the presence of a few unknown molecules. The evaluation of residual toxicity of the tested isolates by the SOS chromotest indicated a detoxification of at least 68% of AFB1’s genotoxicity. Full article
(This article belongs to the Special Issue Removal and Control of Mycotoxins Contamination)
Show Figures

Graphical abstract

Article
Transcriptional Response in the Digestive Gland of the King Scallop (Pecten maximus) After the Injection of Domoic Acid
Toxins 2021, 13(5), 339; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050339 - 07 May 2021
Viewed by 847
Abstract
Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was [...] Read more.
Some diatom species of the genus Pseudo-nitzschia produce the toxin domoic acid. The depuration rate of domoic acid in Pecten maximus is very low; for this reason, king scallops generally contain high levels of domoic acid in their tissues. A transcriptomic approach was used to identify the genes differentially expressed in the P. maximus digestive gland after the injection of domoic acid. The differential expression analysis found 535 differentially expressed genes (226 up-regulated and 309 down-regulated). Protein–protein interaction networks obtained with the up-regulated genes were enriched in gene ontology terms, such as vesicle-mediated transport, response to stress, signal transduction, immune system process, RNA metabolic process, and autophagy, while networks obtained with the down-regulated genes were enriched in gene ontology terms, such as response to stress, immune system process, ribosome biogenesis, signal transduction, and mRNA processing. Genes that code for cytochrome P450 enzymes, glutathione S-transferase theta-1, glutamine synthase, pyrroline-5-carboxylate reductase 2, and sodium- and chloride-dependent glycine transporter 1 were among the up-regulated genes. Therefore, a stress response at the level of gene expression, that could be caused by the domoic acid injection, was evidenced by the alteration of several biological, cellular, and molecular processes. Full article
(This article belongs to the Special Issue Omic Technologies Applied to the Study of Marine Shellfish Toxins)
Show Figures

Graphical abstract

Article
Influential Factors of Local Tissue Necrosis after Taiwan Cobra Bites: A Secondary Analysis of the Clinical Significance of Venom Detection in Patients of Cobra Snakebites
Toxins 2021, 13(5), 338; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050338 - 07 May 2021
Viewed by 840
Abstract
Local tissue swelling, inflammation, and wound necrosis are observed in Taiwan cobra bites. Knowledge of the factors influencing local tissue necrosis after cobra bites might improve the cobra bite treatment strategy. Therefore, we aimed to explore the factors influencing local tissue necrosis after [...] Read more.
Local tissue swelling, inflammation, and wound necrosis are observed in Taiwan cobra bites. Knowledge of the factors influencing local tissue necrosis after cobra bites might improve the cobra bite treatment strategy. Therefore, we aimed to explore the factors influencing local tissue necrosis after cobra bites. This was a retrospective observational cohort study. All patients clinical presentations including serum venom levels for determining the influential factors in this study were obtained from Hung et al.’s previous study. Clinical features, such as bite information, initial swelling, patient presentation time, serum venom levels, and antivenom, use were extracted. The measurement outcome was the development of wound necrosis. The factors influencing wound necrosis were investigated using univariate and logistic regression analyses. The influential factors of local tissue necrosis and their areas under the curve were: initial limb swelling, 0.88; presentation time × serum level, 0.80; initial necrosis, 0.75; patient presentation time, 0.70. Serum venom level alone cannot be used as a predictive factor. The development of tissue necrosis might be associated with the venom factor, time factor, and their interaction. These influential factors can be used in future studies to evaluate antivenom efficacy. Full article
(This article belongs to the Special Issue Venom-Induced Tissue Damage)
Show Figures

Figure 1

Review
Bee Venom Components as Therapeutic Tools against Prostate Cancer
Toxins 2021, 13(5), 337; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050337 - 07 May 2021
Cited by 2 | Viewed by 1139
Abstract
Prostate cancer is one of the most common cancers in men. Despite the development of a variety of therapeutic agents to treat either metastatic hormone-sensitive prostate cancer, advanced prostate cancer, or nonmetastatic/metastatic castration-resistant prostate cancer, the progression or spread of the disease often [...] Read more.
Prostate cancer is one of the most common cancers in men. Despite the development of a variety of therapeutic agents to treat either metastatic hormone-sensitive prostate cancer, advanced prostate cancer, or nonmetastatic/metastatic castration-resistant prostate cancer, the progression or spread of the disease often cannot be avoided. Additionally, the development of resistance of prostate cancer cells to available therapeutic agents is a well-known problem. Despite extensive and cost-intensive research over decades, curative therapy for metastatic prostate cancer is still not available. Therefore, additional therapeutic agents are still needed. The animal kingdom offers a valuable source of natural substances used for the treatment of a variety of diseases. Bee venom of the honeybee is a mixture of many components. It contains proteins acting as enzymes such as phospholipase A2, smaller proteins and peptides such as melittin and apamin, phospholipids, and physiologically active amines such as histamine, dopamine, and noradrenaline. Melittin has been shown to induce apoptosis in different cancer cell lines, including prostate cancer cell lines. It also influences cell proliferation, angiogenesis, and necrosis as well as motility, migration, metastasis, and invasion of tumour cells. Hence, it represents an interesting anticancer agent. In this review article, studies about the effect of bee venom components on prostate cancer cells are discussed. An electronic literature research was performed utilising PubMed in February 2021. All scientific publications, which examine this interesting subject, are discussed. Furthermore, the different types of application of these promising substances are outlined. The studies clearly indicate that bee venom or melittin exhibited anticancer effects in various prostate cancer cell lines and in xenografts. In most of the studies, a combination of bee venom or the modified melittin with another molecule was utilised in order to avoid side effects and, additionally, to target selectively the prostate cancer cells or the surrounding tissue. The studies showed that systemic side effects and unwanted damage to healthy tissue and organs could be minimised when the anticancer drug was not activated until binding to the cancer cells or the surrounding tissue. Different targets were used, such as the matrix metalloproteinase 2, hormone receptors expressed by prostate cancer cells, the extracellular domain of PSMA, and the fibroblast activation protein occurring in the stroma of prostate cancer cells. Another approach used loaded phosphate micelles, which were cleaved by the enzyme secretory phospholipase A2 produced by prostate cancer cells. In a totally different approach, targeted nanoparticles containing the melittin gene were used for prostate cancer gene therapy. By the targeted nonviral gene delivery, the gene encoding melittin was delivered to the prostate cancer cells without systemic side effects. This review of the scientific literature reveals totally different approaches using bee venom, melittin, modified melittin, or protoxin as anticancer agents. The toxic agents acted through several different mechanisms to produce their anti-prostate cancer effects. These mechanisms are not fully understood yet and more experimental studies are necessary to reveal the complete mode of action. Nevertheless, the researchers have conducted pioneering work. Based on these results, further experimental and clinical studies about melittin and modifications of this interesting agent deriving from nature are necessary and could possibly lead to a complementary treatment option for prostate cancer. Full article
(This article belongs to the Special Issue Drug Development Using Natural Toxins)
Article
Duvernoy’s Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla nigriceps (Squamata, Colubridae): Unearthing the Venom of Small Rear-Fanged Snakes
Toxins 2021, 13(5), 336; https://0-doi-org.brum.beds.ac.uk/10.3390/toxins13050336 - 06 May 2021
Viewed by 1379
Abstract
The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of [...] Read more.
The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy’s gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families—three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)—dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual’s toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7–11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the first Duvernoy’s gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop