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Abstract: A host’s immune system can be invaded by mycotoxin deoxynivalenol (DON) poisoning
and porcine circovirus type 2 (PCV2) infections, which affect the host’s natural immune function.
Pro-inflammatory cytokines, IL-1β and IL-6, are important regulators in the process of natural
immune response, which participate in inflammatory response and enhance immune-mediated tissue
damage. Preliminary studies have shown that DON promotes PCV2 infection by activating the MAPK
signaling pathway. Here, we explored whether the mRNA expression of IL-1β and IL-6, induced
by the combination of DON and PCV2, would depend on the MAPK signaling pathway. Specific
pharmacological antagonists U0126, SP600125 and SB203580, were used to inhibit the activities of
ERK, JNK and p38 in the MAPK signaling pathway, respectively. Then, the mRNA expression of
IL-1β and IL-6 in PK-15 cells was detected to explore the effect of the MAPK signaling pathway
on IL-1β and IL-6 mRNA induced by DON and PCV2. The results showed that PK-15 cells treated
with DON or PCV2 induced the mRNA expression of IL-1β and IL-6 in a time- and dose-dependent
manner. The combination of DON and PCV2 has an additive effect on inducing the mRNA expression
of IL-1β and IL-6. Additionally, both DON and PCV2 could induce the mRNA expression of IL-1β
and IL-6 via the ERK and the p38 MAPK signal pathways, while PCV2 could induce it via the JNK
signal pathway. Taken together, our results suggest that MAPKs play a contributory role in IL-1β
and IL-6 mRNA expression when induced by both DON and PCV2.

Keywords: deoxynivalenol; PCV2; IL-1β; IL-6; MAPK

Key Contribution: This study demonstrates that the MAPK pathway can up-regulate mRNA levels of
IL-1β and IL-6 in PK-15 cells after DON and/or PCV2 treatment, leading to changes in inflammation
and immune function. These data provide a new perspective to advance the understanding of the
mechanisms of DON poisoning and PCV2 infection, as well as providing new ideas for the prevention
and control of both DON and PCV2.

1. Introduction

Trichothecene mycotoxins, the secondary metabolites produced by fungi such as
Fusarium and Trichothecium, are widely distributed across the world [1]. Since these toxins
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have been linked to human and animal toxicoses, their presence in global food commodities
and feedstuffs is a matter of considerable public health concern [2]. Deoxynivalenol (DON,
Vomitoxin), the most abundant trichothecene mycotoxin associated with Fusarium head
blight (FHB), can survive processing and persist into the food chain. In humans and animals,
DON has been associated with a series of adverse effects including anorexia, vomiting,
growth retardation, diarrhea, neuroendocrine changes, gastrointestinal inflammation,
and immunosuppression [3]. The immuno-toxic effects induced by DON is of particular
concern from the perspective of human and animal health. According to the timing and
dose of exposure, DON has the potential to elicit either an immunosuppressive response
or immune stress [4]. Our previous studies indicate that exposure to DON induces the
overexpression of proinflammatory cytokines, such as IL-1β and IL-6, in the plasma and
organs of mouse [5,6].

Cytokines are a class of small molecular proteins with a size of 5-20kDa. They play
a role in a wide range of biological activities and in a variety of life activities inside the
body [7]. The expression of proinflammatory cytokines is aberrantly upregulated for
the activation of the innate immune system, leading to immune stress, which can cause
physiological and immune function impairment [8]. A large number of studies have shown
that proinflammatory cytokines including IL-1β and IL-6 can cause anorexia, daily weight
decrease, a decrease in immunity causing inflammation, and an increased likelihood of
other diseases occurring [9,10]. This is similar to DON causing animal refusal, malnutrition,
and secondary infection with other pathogens [11]. In addition to the capacity of DON to
upregulate proinflammatory cytokines in vivo, some studies have found that DON also
increased the mRNA and protein expression of IL-1β and IL-6 in human peripheral blood
mononuclear cells, human monocyte cell lines and mouse macrophage cell lines [12–14].
DON may target phagocytes to produce immunotoxicity.

Porcine circovirus (PCV), first discovered in 1974 as a contaminant of a continuous
porcine kidney cell line (PK-15), is classified in the genus Circovirus of the family Circoviri-
dae [15]. Two genotypes of PCV have been identified. PCV type 1 (PCV1) is known to be
nonpathogenic to pigs. PCV type 2 (PCV2) is a DNA virus that can severely damage the
respiratory, digestive and nervous systems of pigs of all ages, among which piglets are the
most sensitive [16,17]. Pigs infected with PCV2 have multi-system inflammation, indicating
disordered expression of proinflammatory cytokines. Some studies have reported that
PCV2 infects porcine alveolar macrophages (PAM) to activate NF-κB and induce IL-1β
overexpression [18,19]. Another study showed that the expression of IL-1β and IL-6 mRNA
in piglets suffering from postweaning multisystemic wasting syndrome (PMWS), caused
by PCV2, was significantly up-regulated [20]. However, the reasons why PCV2 infection
causes the production and/or secretion of cytokines and the imbalance of cytokines are not
completely clear, and the regulatory mechanism involved is still unclear.

As an important signal pathway that transfers signals from the cell surface to the
nucleus, the mitogen-activated protein kinase (MAPK) pathway includes extracellular
signal regulated protein kinase 1 and 2 (ERK 1/2), p54 and p46 c-Jun N-terminal kinase 1
and 2 (JNK 1/2), and p38 [21]. After being subjected to extracellular stimuli such as toxins
and pathogens, MAPK can be sequentially activated and contribute to various pathological
and physiological processes such as inflammatory response, stress adaptation, cell growth
and differentiation [22]. The MAPK pathway is also closely related to DON poisoning and
PCV2 infection [23,24]. However, the role of MAPK signaling pathway in the induction
of proinflammatory cytokines such as IL-1β and IL-6 by DON and PCV2 in PK-15 cell
remains unclear and requires further study.

In this study, we evaluated the effect of MAPK on the expression of IL-1β and IL-6
cytokines that mRNA induced by DON and PCV2. We found that the MAPK pathway
can up-regulate mRNA levels of relative cytokine in PK-15 cells after DON and/or PCV2
treatment, leading to changes in inflammation and immune function. Our findings will
provide a new perspective to advance the understanding of the mechanisms of DON
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poisoning and PCV2 infection, as well as providing new ideas for the prevention and
control of both DON and PCV2.

2. Results
2.1. DON Exposure Induces Elevations in IL-1β and IL-6 mRNA

DON-induced PK-15 cells IL-1β mRNA were elevated at 2 h, reached peak concentra-
tions at 12 h and returned to basal level at 24 h post-exposure (Figure 1A). IL-6 mRNA was
upregulated and reached peak concentrations at 6 h, and were still markedly raised at 24 h,
but returned to basal level at 48 h post-exposure (Figure 1B).
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Figure 1. DON-induced cytokine IL-1β and IL-6 mRNA upregulation in PK-15 cells. qRT-PCR were
performed to analyze the mRNA expression of IL-1β (A) and IL-6 (B). Data are mean ± SEM (n = 3).
Symbol ** p < 0.01.
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DON in 0.5, 1, 1.5 and 2 µg/mL upregulation PK-15 cells IL-1β mRNA by 3-, 5-, 10-
and 13-fold at 12 h, respectively (Figure 2A). IL-6 mRNA expression was elevated by 6-,
17-, 22- and 28-fold (Figure 2B).
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Figure 2. Different concentrations of DON-induced cytokine IL-1β and IL-6 mRNA upregulation in
PK-15 cells. qRT-PCR were performed to analyze the mRNA expression of IL-1β (A) and IL-6 (B).
Data are mean ± SEM (n = 3). Symbol ** p < 0.01.
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2.2. PCV2 Infection Induces Elevations in IL-1β and IL-6 mRNA

PCV2-induced PK-15 cells IL-1β mRNA were elevated at 6 h, reached peak concentra-
tions at 12 h, and were still markedly raised at 48 h post-exposure (Figure 3A). IL-6 mRNA
was upregulated at 12 h, reached peak concentrations at 24 h, and was still markedly raised
at 48 h post-exposure (Figure 3B).
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Figure 3. PCV2-induced cytokine IL-1β and IL-6 mRNA upregulation in PK-15 Cells. qRT-PCR were
performed to analyze the mRNA expression of IL-1β (A) and IL-6 (B). Data are mean ± SEM (n = 3).
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PCV2 in 0.1, 0.5 and 1 MOI upregulation PK-15 cells IL-1β mRNA by 6-, 14-, and 19-
fold at 12h, respectively, while 0.05 MOI had no effect (Figure 4A). IL-6 mRNA expression
was elevated by 3-, 6-, 9- and 14-fold, respectively (Figure 4B).
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Figure 4. Different MOI of PCV2 induced cytokine IL-1β and IL-6 mRNA upregulation in PK-15
Cells. qRT-PCR were performed to analyze the mRNA expression of IL-1β (A) and IL-6 (B). Data are
mean ± SEM (n = 3). Symbol ** p < 0.01.

2.3. Combined Effect of DON and PCV2 Induces the Expression of IL-1β and IL-6 mRNA

IL-1β mRNA expression was elevated by DON (10-fold), PCV2 (20-fold) and the
combined effect of DON and PCV2 (45-fold) (Figure 5A). As for IL-6, the mRNA expression
was markedly increased by DON (28-fold), PCV2 (10-fold) and the combined effect of DON
and PCV2 (56-fold) (Figure 5B).
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2.4. DON and PCV2 Induce the Expression of IL-1β and IL-6 mRNA via ERK Signaling Pathway

To explore whether the ERK signaling pathway participated in the DON and PCV2-
induced IL-1β and IL-6 mRNA expression, the inhibitor of p-ERK, U0126, was supplied.
The data showed that U0126 decreased IL-1β mRNA expression in the DON group from 12-
fold to 5-fold, in the PCV2 group from 20-fold to 10-fold, and in the DON+PCV2 group from
41-fold to 22-fold (Figure 6A). U0126 decreased IL-6 mRNA expression in the DON group
from 25-fold to 10-fold, in the PCV2 group from 13-fold to 8-fold, and in the DON+PCV2
group from 52-fold to 22-fold (Figure 6B).
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2.5. PCV2 Induces the Expression of IL-1β and IL-6 mRNA via JNK Signaling Pathway

To explore whether JNK signaling pathway participated in the DON and PCV2-
induced IL-1β and IL-6 mRNA expression, the inhibitor of p-JNK, SP600125, was supplied.
The data showed that SP600125 decreased IL-1β mRNA expression in the PCV2 group
from 20-fold to 11-fold and in the DON+PCV2 group from 41-fold to 28-fold, while the
DON group had no effect (Figure 7A). SP600125 decreased IL-6 mRNA expression in the
PCV2 group from 12-fold to 7-fold and in the DON+PCV2 group from 52-fold to 30-fold,
while the DON group had no effect (Figure 7B).
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2.6. DON and PCV2 Induce the Expression of IL-1β and IL-6 mRNA via p38 Signaling Pathway

To explore whether ERK signaling pathway participated in the DON and PCV2-
induced IL-1β and IL-6 mRNA expression, the inhibitor of p-p38, SB203580, was supplied.
The data showed that SB203580 decreased IL-1β mRNA expression in the DON group
from 13-fold to 5-fold, in the PCV2 group from 19-fold to 9-fold, and in the DON+PCV2
group from 41-fold to 18-fold (Figure 8A). SB203580 decreased IL-6 mRNA expression in
the DON group from 24-fold to 11-fold, in the PCV2 group from 12-fold to 5-fold, and in
the DON+PCV2 group from 52-fold to 20-fold (Figure 8B).
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3. Discussion

Mycotoxins are widespread in the environment and coexist alongside other pathogens
such as virus and bacteria. To a certain extent, mycotoxins enhance the pathogenicity
of other pathogens [25–28]. DON has the potential to evoke a wide spectrum of patho-
physiological effects that are partly attributable to a ribo-toxic stress-mediated cytokine
storm [29]. With respect to PCV2 infection, the immune injury is always accompanied by
a change in proinflammatory cytokine expression, including IL-1β and IL-6 [30]. In this
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study, we focused on the role of the MAPK signaling pathway in the mRNA expression
of IL-1β and IL-6, induced by DON and PCV2. Several key findings were evident and
demonstrate that (1) DON and PCV2 induced the mRNA expression of IL-1β and IL-6 in a
time- and dose-dependent manner, respectively. (2) The combination of DON and PCV2
has an additive effect on the induction of the mRNA expression of IL-1β and IL-6 in the
PK-15 cell. (3) DON induced the mRNA expression of IL-1β and IL-6 via the ERK and p38
MAPK signaling pathways and (4) PCV2 induced the mRNA expression of IL-1β and IL-6
via the ERK, JNK and p38 MAPK signaling pathways.

The dose response of DON-induced IL-1β and IL-6 mRNA expression suggested that
the mRNA expression of these two cytokines increased after PK-15 cells were challenged
with different concentrations of DON at 0.5, 1, 1.5, and 2 µg/mL. Furthermore, the kinetics
of IL-1β and IL-6 mRNA responses to DON indicated that upregulation of these genes was
maximal at 12 h and 6 h, respectively. These findings are consistent with several in vitro
studies by Pestka and co-workers [31,32]. For instance, from 100 to 1000 ng/mL of DON
significantly increased production of IL-6 from 3 h to 24 h in U-937 cells [31]. Robustly
elevated IL-1β and IL-6 intracellular protein and mRNA expression was also observed in
peripheral blood mono-nuclear cells treated with DON at 500 ng/mL [32]. DON’s in vitro
effects on IL-1β and IL-6 can be reproduced in a mouse, a commonly used model of the
human immune system. DON has the capacity to induce IL-1β and IL-6 mRNAs not only
in the plasma, but also in organs such as the spleen, liver, lung, kidney, small intestine
and brain [33,34]. Eventually, both cytokines were returned to basal levels in this study. A
possible reason for the decreased cytokines response might be mRNA degradation caused
by reduced MAPK activation [35,36].

Similarly, PCV2 was shown to induce the expression of IL-1β and IL-6 at the tran-
scriptional level in PK-15 cells through time- and dose-dependent manners. Consistent
with this finding, PCV2 was reported to increase IL-1β production in porcine alveolar
macrophages, and the changes in cytokine expression are related to the TLR-MyD88-NF-κB
signaling pathway [19]. In PK-15 cells, PCV2 was reported to elevate IL-6 production via
suppressor of cytokine signaling 3 [37]. In addition to in vitro studies, the levels of IL-1β
and IL-6 in both serum and spleen were significantly upregulated after PCV2 infection in
the mouse [30]. Proinflammatory cytokines are important factors for the elimination of
invading pathogens [38]. Excessive release of proinflammatory cytokines can lead to unde-
sired tissue lesions and decrease the body’s immunity to other pathogen infections [39].
Therefore, controlling the inflammatory response is crucial. However, environmental
factors, such as toxins, can interfere with this control.

This is the first report to demonstrate that co-treatment with DON and PCV2 in PK-
15 cells can enhance the up-regulation effect of IL-1β and IL-6 mRNA with an additive
effect. The possible reason may be related to the ability of the mycotoxin to promote
virus replication, leading to an increase in cytokines expression. Qian et al indicated
that mycotoxin ochratoxin A had the capacity to induce PCV2 replication promotion in
PK-15 cells [40]. The molecular mechanisms of this effect are associated with ochratoxin A-
induced autophagy involving in AKT/mTOR and ERK1/2 MAPK signaling pathway [41].
DON significantly promoted the replication of porcine epidemic diarrhea virus in IPEC-J2
cells, along with the induction of a complete autophagy triggered by p38 MAPK signaling
pathway [42]. Our preliminary data also indicate that DON promotes PCV2 infection by
activating the MAPK signaling pathway. However, the underlying mechanism of this effect
still requires further research to substantiate such findings.

The results presented here demonstrate that ERK and p38 MAPK participate in DON-
induced IL-1β and IL-6 mRNA up-regulation in PK-15 cells. PCV2, however, induced
IL-1β and IL-6 mRNA up-regulation via the ERK, JNK and p38 MAPK signaling pathways.
Some studies have found that the expression of cytokine genes is caused by DON-mediated
rRNA perforation and the induction of damage-related molecular patterns (DAMPs) by
ribosomal-related stress kinases [43,44]. The latter can activate members of the MAPK
family, which mediate transcription factor activation and mRNA stabilization, and lead to



Toxins 2021, 13, 422 12 of 15

an increased expression of the pro-inflammatory gene mRNA and ultimately, protein [14].
He and co-workers found that the ability of DON to change the translation and expression
of inflammation-related genes is mainly driven by selective transcription and mRNA
stabilization through ERK and p38 MAPK signaling pathways [13]. On the other hand,
studies have also shown that activation of the ERK, JNK and p38 MAPK signaling pathways
contribute to the promotion PCV2 infection [30,37]. These viewpoints are consistent with
the findings in our study.

4. Conclusions

Treatment of PK-15 cells with DON or PCV2 can induce the expression of IL-1β and
IL-6 mRNA; this is both time-dependent and dose-dependent. Furthermore, the combined
effect of DON and PCV2 could increase the expression of IL-1β and IL-6 mRNA. The
expression of IL-1β and IL-6 mRNA induced by DON is dependent on the ERK and p38
MAPK signaling pathways, while the expression of IL-1β and IL-6 mRNA induced by
PCV2 depends on the ERK, JNK, and p38 MAPK signaling pathways.

5. Materials and Methods
5.1. Toxin and Virus

Deoxynivalenol (DON) were purchased from Sigma-Aldrich (Shanghai, China). PCV2
strains were kindly donated by the Laboratory of Infectious Disease, Department of Preven-
tion Veterinary Medicine, Nanjing Agricultural University. It was isolated and sequenced
from the kidneys of piglets, naturally infected with multiple system failure syndrome of
weaned piglets, and stored at −80 ◦C.

5.2. Cell Cultures and Virus Cultures

Porcine kidney cell (PK-15) cell line (without PCV contamination) was kindly donated
by the Laboratory of Internal Veterinary Medicine, Department of Clinical Veterinary
Medicine, Nanjing Agricultural University. All cells were cultured in DMEM (Gibco,
Shanghai, China) medium with 10% newborn calf serum (Gibco, Shanghai, China) and 1%
penicillin, at 37 ◦C and 5% carbon dioxide.

PCV2 was amplified using PK-15 cells. The cytopathic effect (CPE) was observed and
PCV2 was detected by the indirect immunofluorescence assay in inoculated PK-15 cells.
The viral titers were determined to be 106.1 TCID50/0.1 mL, using the Reed–Muench assay.

5.3. Experimental Design

Three specific inhibitors U0126, SP600125 and SB203580 (MedChemExpress, Shang-
hai, China) were added in the PK-15 cells to block ERK, JNK and p38 MAPK signaling
pathways, respectively. Then, PK-15 cells were treated with DON or PCV2. Total cell RNA
was extracted, then an ultra-micro nucleic acid protein analyzer was used to determine
OD260/OD280 value and detect RNA quality. qRT-PCR was used to detect the expression
of IL-1β and IL-6 mRNA.

5.4. Quantative Real-Time PCR (qRT-PCR) Analysis

Total RNA was isolated from PK-15 cells using TRIzol Reagent (Takara, Dalian, China).
cDNA was obtained by reverse transcription using a cDNA transcription kit (Takara, Dalian,
China). qRT-PCR was performed using SYBR Premix Ex Taq™ (Takara, Dalian, China)
and the primers are shown as IL-1β (F: 5′-TACCTCTTGGAGGCACAAAGG-3′ and R:5′-
CTTCCTTGGCAGGTTCAGGT A-3′), IL-6 (F: 5′-AGCAAGGAGGTACTGGCAGA-3′ and R:
5′-CAGGGTCTGGATCAGTGCTT-3′) and GAPDH (F: 5′-CGTCAAGCTCATTTCCTGGT-3′

and R: 5′-TGGGATGGAAACTGGAAGTC-3′). Fold changes in cytokines were determined
using 2(−∆∆Ct) method and gene expression levels were normalized to GAPDH [45]. qRT-
PCR was performed using the ABI PRISM 7900HT Real-Time PCR System.



Toxins 2021, 13, 422 13 of 15

5.5. Statistical Analyses

Statistical analyses were performed using GraphPad Prism 8.0 Software (GraphPad
Software, Inc., San Diego, CA, USA). Data for each assay were analyzed with one-way
analysis of variance (ANOVA) or two-way ANOVA. Data were expressed as the mean ±
SEM. Statistical significance was set at p < 0.05.
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