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Abstract: The yellow peach (Amygdalus persica), an important fruit in China, is highly susceptible to 
infection by Alternaria sp., leading to potential health risks and economic losses. In the current study, 
firstly, yellow peaches were artificially inoculated with Alternaria alternate. Then, the fruits were 
stored at 4 °C and 28 °C to simulate the current storage conditions that consumers use, and the 
Alternaria toxins (ATs) contents from different parts of the fruits were analyzed via ultra-high-per-
formance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The results showed 
that the growth of A. alternate and the ATs production were dramatically affected by the storage 
temperature. At 28 °C, the fungi grew rapidly and the lesion diameter reached about 4.0 cm within 
15 days of inoculation, while, at 4 °C, the fungal growth was noticeably inhibited, with no significant 
change in the lesion diameter. To our surprise, high contents of ATs were produced under both 
storage conditions even though the fungal growth was suppressed. With an increase in the incuba-
tion time, the amounts of ATs showed a steady tendency to increase in most cases. Remarkably, 
alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) were detected 
in the rotten tissue and also in the surrounding tissue, while a large amount of TeA could also be 
found in the healthy tissue. To the best of our knowledge, this is the first report regarding the pro-
duction of ATs by the infection of Alternaria sp. in yellow peach fruits via artificial inoculation under 
regulated conditions, and, based on the evidence herein, it is recommended that ATs be included 
in monitoring and control programs of yellow peach management and food safety administration. 
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Key Contribution: This is the first report regarding the production of ATs by the infection of Alter-
naria sp. in yellow peach fruits via artificial inoculation under regulated conditions. High contents 
of ATs were produced even though the fungal growth was suppressed, among which, AME, AOH 
and TeA were detected in the rotten tissue and also in the surrounding tissue, while a large amount 
of TeA could also be found in the healthy tissue. 
 

1. Introduction 
Peach (Prunus persica L. Batsch), a climacteric stone fruit species, is the fourth most 

important fruit in China after orange, apple, and pear [1]. The yellow peach (Amygdalus 
persica), a kind of peach with yellow flesh, is favored by consumers because of its delicacy, 
nutrition, and unique function [2]. Unfortunately, this fruit is highly susceptible to fungal 
contamination, especially Alternaria sp., due to its high moisture content, high level of 
nutrients, thin skin, and potentially improper harvest or storage conditions, leading to 
crucial economic and material losses to the food industry and growers [3–7]. 
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Alternaria, a common genus of ascomycete fungi including both plant-pathogenic 
and saprophytic species, is widespread in nature [8,9]. It can easily infect a large variety 
of crops in the fields and cause the spoilage of various fruits, grains, and vegetables 
[10,11]. Alternaria species are known to produce toxic secondary metabolites, and more 
than 70 Alternaria toxins (ATs) have been characterized so far. Among these metabolites, 
alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) (Fig-
ure 1) are the ones most frequently found in a broad spectrum of fruits and processed fruit 
products, including apples, apple juice, tomatoes, tomato ketchup, citrus juice, grapes, 
peaches, etc. [12–15]. It has been reported that ATs have shown various toxicities and pose 
a serious health risk to humans and animals. ATs might be one of the most important 
factors for human esophageal cancer in Linxian, China [16]. TeA, with the highest toxicity 
among the Alternaria toxins, is toxic to many animal species, such as guinea pigs, rabbits, 
mice, dogs, and chickens [8,17]. AOH and AME are mutagenic and genotoxic and exhibit 
significant cytotoxicity in cell culture [18,19]. Due to their widespread occurrence and high 
toxicity, the European Food Safety Authority (EFSA) has established the threshold of tox-
icological concern (TTC) values as 2.5 ng kg−1 body weight per day for AOH and AME 
and 1500 ng kg−1 body weight per day for TeA [18]. The exposure levels of AOH, AME, 
and TeA reported in Belgium (12.6, 0.96, 104.3 ng kg−1 body weight per day) [20], China 
(2.4, 41.6, 6858 ng kg−1 body weight per day) [21], and Europe (71.6, 38.8, 1614 ng kg−1 body 
weight per day) [22] have confirmed that the TTC values for the Alternaria toxins are fre-
quently exceeded, highlighting the necessity of thorough investigations regarding the 
production mechanisms of these toxins so as to establish efficient prevention and control 
strategies. 

The growth of Alternaria sp. and the production of ATs are affected by multiple en-
vironmental factors, such as substrate, air humidity and temperature, of which tempera-
ture is the most important [23]. It has been suggested that 22–30 °C is the optimum growth 
temperature for Alternaria sp., whereas the fungi could also grow at a low temperature 
[24,25]. It was reported that the production of TeA at 28 °C in soybean-based media was 
higher than that at 4 °C on the same day upon inoculation within 10 d, while the produc-
tion of AOH and AME was more favorable at 4 °C [26]. Therefore, Alternaria sp. has been 
demonstrated to be one of the key pathogens causing the spoilage of fruits stored at a low 
temperature due to the pathogen’s strong survivability under stress conditions. In Shang-
hai, China, the yellow peach is usually harvested in the summer and is stored at room 
temperature (about 28 °C) or in the refrigerator at 4 °C to retain freshness [25]. However, 
little is known about the infection of Alternaria sp. in regard to the production of ATs and 
spoilage in the yellow peach under storage conditions. 

On the other hand, consumers are used to eating healthy, fresh yellow peaches, but, 
when fruits become slight decayed or develop small wounds, some consumers would re-
move the rotten parts and eat the intact portions. The major problem is whether the intact 
portions of yellow peaches that are infected by Alternaria sp. are really healthy. In other 
words, after infection with Alternaria sp., are the parts of the fruits without visible symp-
toms contaminated with ATs? Robiglio and López reported that AOH and AME could be 
detected not only in rotten fruits but also in asymptomatic sound tissues in apples [27]. 
However, to the best of our knowledge, no information has been found to fill the 
knowledge gap for this aspect of the yellow peach. 

Herein, the aim of the present study was (i) to evaluate the fungal growth and pro-
duction of AOH, AME, and TeA in yellow peaches upon artificial inoculation with Alter-
naria alternate stored at different temperatures and (ii) to investigate the distributions of 
these three ATs in different parts of the yellow peach to provide novel insights into the 
monitoring and control of the quality and safety of yellow peaches. 



Toxins 2021, 13, 656 3 of 12 
 

 

 
Figure 1. Chemical structures of alternariol monomethyl ether, AME (A); alternariol, AOH (B); and 
tenuazonic acid, TeA (C). 

2. Results 
2.1. Performance of UHPLC-MS/MS Method 

To ensure the accuracy and reliability of the UHPLC-MS/MS method for the quanti-
fication of ATs, the established approach was carefully validated by the determination of 
linearity, sensitivity, recovery, precision, and matrix effect according to the recommenda-
tions of the European Commission Decision 2006/401/EC [28]. The linearity of the ATs is 
shown in Table 1. Good linear relationships with correlation coefficients (R2) > 0.99 were 
obtained. The limit of detection (LOD) and limit of quantification (LOQ) values were in 
the ranges of 0.07–0.11 µg kg−1 and 0.18–0.28 µg kg−1, respectively. The recoveries and in-
tra- and inter-day precision values for ATs at the three fortified levels (10, 50, and 100 µg 
kg−1) are listed in Table 2. The mean recovery values ranged from 77.5% to 104.9%. The 
intra- and inter-day precision values were between 0.7 and 5.7% and 2.2 and 11.2%. 

Table 1. Linearity, sensitivity, and matrix effect of different ATs. 

Alternaria 
Toxins Linear Range Linear Equation Correlation 

Coefficient (R2) 
LOD 

(µg kg−1) 
LOQ 

(µg kg−1) 
Matrix 
Effects 

AME 0.3–200 y = 2662.59x + 718.912 0.998 0.07 0.18 74.65 
AOH 0.3–200 y = 3335.09x + 540.209 0.999 0.11 0.28 110.91 
TeA 0.2–200 y = 1082.09x + 67.7107 0.998 0.07 0.20 41.05 

Table 2. Recovery and intra- and inter-day precision values for ATs in yellow peaches. 

Alternaria 
Toxins 

Spiked Levels 
(µg kg−1) 

Recovery (Mean ± SD, %) Intra-Day Precision 
(RSD, %) 

Inter-Day Precision 
(RSD, %) 

AME 
10 104.9 ± 1.2 5.5 6.0 
50 96.3 ± 7.6 5.6 4.1 
100 98.6 ± 6.2 4.1 3.3 

AOH 
10 96.0 ± 7.4 5.7 9.7 
50 91.1 ± 6.0 3.1 8.1 
100 97.8 ± 3.5 1.9 6.0 

TeA 
10 77.5 ± 0.9 1.8 11.2 
50 97.3 ± 4.7 2.7 4.7 
100 85.0 ± 7.0 0.7 2.2 

2.2. The visual Appearance of Yellow Peaches Decay upon Inoculation with A. alternate 
After inoculation with A. alternate, the yellow peaches were stored at 28 °C for 15 d 

and 4 °C for 60 d, respectively, and the diameters of the lesions were determined. Signifi-
cant differences were observed in the decay of yellow peach fruits under different storage 
temperatures (Figures 2 and 3). At 28 °C, the fungal growth was relatively slow at the 
early stage (i.e., 3–6 d), but it was rapidly extended after 12 d. The lesions of the yellow 
peaches increased rapidly and extensive rot on the surface was observed 15 d post-
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inoculation. At 4 °C, the fungal growth was rather gradual before 30 d post-inoculation, 
and the growth rate was only 0.01 cm d−1. After 30 d, the growth rate increased slightly, 
but only to 0.03 cm d−1. Even on day 60, the diameter of the lesion was only 1.5 cm. In 
contrast with 28 °C, the fungus growth was inhibited at 4 °C; the rotten symptoms exhib-
ited a slight and slow increase over the whole trial. 

 
Figure 2. The symptoms of yellow peaches stored at 28 °C (A) and 4 °C (B) upon inoculation with 
A. alternate, respectively. 

 
Figure 3. The lesion diameters on the surface of yellow peaches inoculated with A. alternate and 
stored at 28 °C and 4 °C, respectively. 

2.3. Production of Alternaria Toxins upon Inoculation with A. alternate 
The contents of ATs, including AME, AOH, and TeA, in yellow peaches stored at 28 

°C and 4 °C were determined by UHPLC-MS/MS (Figures 4 and 5). Overall, the ATs con-
centrations showed a steady increase in most cases under the two different storage condi-
tions, with TeA being the most extensively produced toxin. The productions of AME and 
AOH were more favorable at 4 °C, while 28 °C seemed more suitable for the TeA produc-
tion with the same incubation time—i.e., the contents were 4556.8 µg kg−1 at 28 °C and 
743.5 µg kg−1 at 4 °C for TeA at around 9–10 d after inoculation, respectively. 

10 d 20 d 30 d 40 d 50 d 60 d 

3 d  6 d  9 d  12 d 15 d 

(A)

(B)
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Figure 4. Contents of AME (A), AOH (B), and TeA (C) in yellow peaches stored at 28 °C upon inoc-
ulation with A. alternate. Note: For each toxin in the same part of the yellow peach, the small letters 
of a, b, c, d, and e and their combinations were utilized to investigate the differences in the toxin 
contents with different incubation times. Different letters indicate the significance at p ≤ 0.05, while 
combinations and individual letters—e.g., ab and a—indicate no significant differences. Hollow 
squares indicate that the amount of ATs was lower than the LOQ. 
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Figure 5. Contents of AME (A), AOH (B), and TeA (C) in yellow peaches stored at 4 °C upon inoc-
ulation with A. alternate. Note: For each toxin in the same part of the yellow peach, the small letters 
of a, b, c, d, and e and their combinations were utilized to investigate the differences in the toxin 
contents with different incubation times. Different letters indicate the significance at p ≤ 0.05, while 
combinations and individual letters—e.g., ab and a—indicate no significant difference. Hollow 
squares indicate that the amount of the ATs was lower than the LOQ. 

2.3.1. Production of Alternaria Toxins Stored at 28 °C upon Inoculation with A. alternate 
The productions of AOH (up to 2.8 µg kg−1) and AME (up to 6.7 µg kg−1) were signif-

icantly lower than those of TeA (up to 4760.0 µg kg−1). AME was not detected in any 
healthy tissue (HT), and its amount in surrounding tissue (ST) was very low (no more 
than 0.8 µg kg−1). Relatively higher AME contents in the range of 1.4–2.8 µg kg−1 were 
found in rotten tissue (RT). Similarly, the amounts of AOH in RT and ST were in the range 
of 0.4–6.7 µg kg−1, and trace amounts of 0.7 and 0.4 µg kg−1 were found in HT at 12 and 15 
d after inoculation. Dramatically higher amounts of TeA were produced by A. alternate, 
and the highest amounts of 3620.6 and 4760.0 µg kg−1 in ST and RT were achieved at 9 and 
12 d after inoculation, respectively. The content of TeA in HT increased gradually and 
reached 43.8 µg kg−1 15 d after inoculation. 
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2.3.2. Production of Alternaria Toxins Stored at 4 °C upon Inoculation with A. alternate 
Under this condition, the contents of AME, AOH, and TeA in RT gradually increased 

with the increase in inoculation time and reached maximums of 251.3, 74.2, and 15,819.2 
µg kg−1 60 d after inoculation, respectively. AME, AOH, and TeA could also be detected 
in ST, with the maximal contents being 15.7, 13.4, and 3043.5 µg kg−1, respectively. In HT, 
both AME and AOH could only be detected at day 60 at low concentration levels of 0.9 
and 0.7 µg kg−1, respectively, while, for TeA, much higher amounts of up to 60.2 µg kg−1 
were found at day 60. 

3. Discussion 
In Shanghai, the cultivation area of yellow peaches has reached 2700 hm2 in recent 

years, accounting for 50% of the total area of peaches. To ensure the safety and quality of 
this fruit and minimize economic losses, this study thoroughly investigated the infection 
of Alternaria sp. and assessed the presence of related toxins during storage. 

A reliable and accurate UHPLC-MS/MS method based on the QuEChERS technique 
was developed for the simultaneous determination of typical ATs, including AME, AOH, 
and TeA. After careful validation through the determination of linearity, sensitivity, re-
covery, and precision, the analytical performance of the established approach was found 
to be comparable or even better than that of the previous methods [10,29], and it was evi-
dently suitable to be applied to evaluate the contents of ATs in yellow peaches. 

Environmental factors, especially temperature, played an important role in the fun-
gal growth and ATs production [23]. The optimum temperature for the growth of Alter-
naria sp. was 22–30 °C, while the fungus could also grow at low temperatures, even at −5 
°C [24,25]. To simulate the real-life situation, 4 °C (the typical household temperature in 
the refrigerator) and 28 °C (room temperature) were chosen as the storage conditions in 
this study. The temperature of 28 °C was suitable for fungal growth and the lesion diam-
eter reached almost 4.0 cm within 15 d, which was similar to the results of fungal growth 
in soybean medium [26] or tomato medium [30] inoculated with A. alternata. At 4 °C, the 
fungal growth was inhibited (the growth rate was about 0.01–0.03 cm d−1) and the decay 
of the yellow peach was slight even though the storage time was extended to 60 d (the 
lesion diameter was only about 1.5 cm). These results were consistent with those obtained 
by Vaquera et al. [31] in which the growth of Alternaria sp. was also inhibited at a low 
temperature (6 °C) and the growth rate was only 0.52 mm d−1 on tomato medium. Similar 
results were also obtained in strawberries with the maximum storage time (1–5 weeks) at 
6 °C, while there was a maximum of 8 d for those samples stored at 22 °C in relation to 
the fungal growth [25].  

Besides causing the fruits to rot, the fungi could also produce a variety of ATs. In 
this work, three typical toxins, AME, AOH, and TeA, were found in yellow peach fruits 
stored at 4 °C and 28 °C, which was consistent with those produced in other fruits and 
vegetables—i.e., tomatoes [32], citrus [33], etc. Among these three toxins, the amount of 
TeA was about 100 orders of magnitude larger than that of AOH and AME. Similar results 
were also found by Cabral et al. [32] in a tomato-based medium; for example, the produc-
tion of AME was 4.8 µg g−1, while the content of TeA was up to 363.6 µg g−1 under the 
same conditions. It was not surprising to find that TeA would be produced the most by 
A. alternate, since TeA has a rather different type compared to other Alternaria toxins, 
which was consistent with the results of previous studies [32,34]. 

The amounts of the three ATs exhibited a continuous increase along with the incuba-
tion time, similar to the results reported for wheat, rice, and tomato matrices [31,35]. In a 
few cases, the contents of ATs such as AOH and TeA decreased at a late storage stage, 
which might be due to the insufficient nutrients in the rotten yellow peaches, the accumu-
lation of inhibitory metabolites, or the transformation of ATs into new compounds [36]. 
Low temperature was usually proposed as a good strategy for the post-harvest storage 
and preservation of peaches [37] because it could inhibit the fungal growth and prevent 
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the decay of the fruits. However, in the present work, at the temperature of 4 °C, with the 
extension of the incubation time, the amount of ATs accumulated rapidly and could reach 
a high content, though the growth of fungi was suppressed. 

To clarify the distributions of ATs in yellow peaches after the inoculation of A. alter-
nate, we further analyzed the ATs contents in different parts of yellow peaches. As ex-
pected, large amounts of ATs were observed in rotten tissue (RT), but, surprisingly, the 
ATs were also detectable in surrounding tissue (ST) and even in healthy tissue (HT), es-
pecially for TeA, which was considered to be the most toxic of the ATs. Similar results 
were reported in apples by Robiglio and Lopez, in which AOH and AME were detected 
in asymptomatic tissues [27]. Jiang et al. [38] also found that ATs produced in infected 
tomatoes can rapidly spread from infected to healthy parts. It is worth emphasizing that, 
although the rotting area at 4 °C occupied just approximately 2% of the whole surface area 
of the peach, the TeA content in yellow peaches was extremely high, including in the 
healthy parts. As a consequence, significant potential health risks were related to the rot-
ten yellow peaches, even with the consumption of only the healthy parts, so a call for 
thorough monitoring and control programs for ATs in fruits and their products is neces-
sary. 

To reduce health risks, based on our investigations, some suggestions were thus pro-
posed: first, the fruits should be intact without any physical defect or surface damage, and 
they ought to be stored at a low temperature for a short time. Once the fruits have been 
infected with toxigenic fungi, yellow peaches should not be consumed—either the de-
cayed or un-decayed parts—due to the potential contamination by Alternaria toxins. 
Moreover, considering a variety of metabolites produced by Alternaria sp., a higher num-
ber of analytes—i.e., altenuene (ALT) and altertoxin (ATX–I)—could be used in further 
studies. 

4. Conclusions 
In the present study, the infection of Alternaria sp. and the production of related tox-

ins were thoroughly investigated in yellow peaches under common storage conditions 
(28 °C and 4 °C) for the first time. High amounts of ATs were produced by the infected 
fungi under both conditions, whether the fungal growth was promoted at 28 °C or inhib-
ited at 4 °C. As expected, after inoculation, AOH, AME, and TeA were detected in rotten 
tissue and also the surrounding tissue, but, worse than that, high amounts of TeA and 
trace amounts of the others could be found even in the healthy tissue. These interesting 
observations provide insight in regard to the quality and safety control of yellow peaches, 
and the findings also provide direct evidence for the development of the efficient man-
agement of various fruits. 

5. Materials and Methods 
5.1. Reagents and Chemicals 

Acetonitrile and methanol (HPLC grade) were obtained from Merck (Darmstadt, 
Germany). Sodium chloride (NaCl, analytical grade), anhydrous magnesium sulfate 
(MgSO4, analytical grade) and ammonium acetate (HPLC grade) were supplied by 
ANPEL (Shanghai, China). Purified water was prepared using a Milli-Q Plus apparatus 
(Millipore, Billerica, MA, USA). 

The analytical standards (stock solutions) of AOH (100.0 µg mL−1), AME (100.3 µg 
mL−1) and TeA (101.1 µg mL−1) dissolved in acetonitrile were purchased from Romer labs 
(Union, MO, USA). 

Yellow peaches with uniform fruit size, ripeness and the absence of physical defects 
or apparent infections were collected from local retail markets and brought to the labora-
tory in pre-sterilized polyethylene bags. 
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5.2. Fungal Material and the Preparation of Spore Suspension 
The strain of A. alternate (GenBank accession number MW517324) was isolated from 

the yellow peaches by single spore isolation. It was stored both on PDA slants at 40 °C 
and in 40% glycerol at −40 °C in the Herbarium of the Institute of Agro-food Standard and 
Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China. 

After activation, the fungus was inoculated on PDA plates and then incubated at 28 
°C for 7 d. Conidia were collected with a coating stick within sterile water and filtered 
through Miracloth. Spore suspension was adjusted to a concentration of 2 × 106 conidia 
mL−1 using a Thoma counting chamber and used for inoculation. 

5.3. Artificial Inoculation 
Before inoculation, the yellow peaches were firstly washed with tap water and sub-

merged in 1% sodium hypochlorite solution for 2 min, and then they were rinsed with 
sterile distilled water and dried with sterile filter paper. Under aseptic conditions, the yel-
low peaches were three-times injured on the equatorial section with the help of a sterilized 
borer. Then, 20 µL of spore suspension was inserted into the wound through a sterilized 
micropipette, and the fruits that were inserted with 20 µL sterile water were used as the 
control. All of the inoculated yellow peaches were stored at 28 °C and 4 °C in covered 
plastic trays lined with filter paper moisturized with sterile water. 

At specific time intervals after inoculation, five peaches of each treatment were taken 
to the laboratory, where the diameters of the lesions were assessed. The samples, includ-
ing RT, ST, and HT (as shown in Figure 6), were separately collected and homogenized to 
be used for the analysis of ATs by UHPLC-MS/MS. 

 
Figure 6. Schematic illustration of different parts of yellow peaches for Alternaria toxins (ATs) anal-
ysis. 

5.4. UHPLC-MS/MS Analysis 
The UHPLC analysis was performed via a Waters ACQUITY Ultra High-Perfor-

mance LC system (Waters, Milford, MA, USA). Separation was achieved on an XBridge® 
BEH C18 column (3.0 mm × 100 mm, 2.5 µm) at 40 °C with a flow rate of 0.4 mL min−1. The 
mobile phase consisted of methanol (A) and water containing 5 mmol L−1 ammonium ac-
etate (B). A linear gradient elution program was set as follows: initial 10% A; 1 min, 10% 
A; 5 min, 90% A; 6 min, 90% A; 6.5 min, 10% A; 8 min, 10% A. The injection volume was 
3 µL. 

For the MS/MS analysis, a Waters TQS mass spectrometer system (Waters, Milford, 
MA, USA) was used in positive electrospray ionization mode (ESI+) with the following 
parameters: interface voltages of capillary, 2.5 kV; source temperature, 150 °C; desolvation 
temperature, 500 °C. The nebulizing gas and desolvation gas flow rates were 7.0 bar and 
1000 L/h, respectively. Multiple reaction monitoring (MRM) mode was used for the quan-
tification and confirmation of the ATs with the parameters shown in Table 3. 
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Table 3. MS/MS parameters for the determination of ATs. 

Alternaria Toxins Precursor Ions (m/z) Product Ions (m/z) Dwell Times (s) Cone Voltage (V) Collision Energy (eV) 
AME 273.0 [M + H]+ 128.1/258.0 * 0.018 54/54 26/25 
AOH 259.0 [M + H]+ 185.1*/213.1 0.018 64/64 28/24 
TeA 198.1 [M + H]+ 125.0/153.1 * 0.018 42/42 16/12 

* Primary production. 

5.5. Sample Preparation 
The ATs determination was carried out according to the method previously estab-

lished in our lab [29], with minor modifications. Briefly, the homogenized samples (2.0 g) 
were put into a 50 mL centrifuge tube and 10 mL of acetonitrile containing 1% formic acid 
was added. The mixture was vortexed for 30 s, and ultrasonic extraction took 40 min. 
Subsequently, 0.5 g of anhydrous magnesium sulfate and 0.5 g of sodium chloride were 
added to the slurry and vigorously shaken for 30 s immediately. After centrifugation at 
4500 rpm for 10 min, 5 mL of the supernatant was transferred into 10 mL centrifuge tubes 
and dried by nitrogen stream at 40 °C. The residues were re-dissolved in 1 mL acetoni-
trile/water containing 5 mmol L−1 ammonium acetate (20/80, v/v), passed through a 0.22 
µm PTFE membrane filter to be ready for analysis. Once the concentrations of ATs in the 
samples were out of the linear range, they were appropriately diluted to fit the calibration 
curve and re-analyzed. 

5.6. Method Validation 
The standards of the ATs were spiked into acetonitrile/water containing 5 mmol L−1 

ammonium acetate (20/80, v/v) solutions and blank matrix, respectively, to yield a concen-
tration sequence of 0.1, 0.2, 0.3, 0.5, 1, 5, 10, 50, 100 and 200 ng mL−1. The calibration curves 
were created by plotting the responses versus the concentrations. The matrix effect was 
assessed by the ratio of the slope matrix to slope solvent, where the slope matrix and slope 
solvent indicated the slope of the matrix-matched calibration curve and standard calibra-
tion curve, respectively. The sensitivity was determined by the limit of detection (LOD) 
and limit of quantification (LOQ), which were expressed as the concentrations of the tox-
ins that produced signal-to-noise ratios (S/N) of 3 and 10 in the matrix, respectively. Re-
covery intra- and inter-day precision tests were performed in quintuplicate using blank 
samples spiked with low, intermediate and high concentration levels (10, 50 and 100 µg 
kg−1) of ATs. The recovery was calculated by comparing the measured concentration using 
the matrix-matched calibration curves with the spiked (theoretical) concentration of each 
toxin. The intra- and inter-day precisions were evaluated by the relative standard devia-
tions (RSDs) determined on the same day and the values for five consecutive days. 

5.7. Statistical Analysis 
All of the tests were performed with three replications, and the results were repre-

sented by their mean values and the standard deviations. The statistical analysis of the 
data was performed by analysis of variance (one-way ANOVA). The differences between 
the treatments were evaluated by the Tukey method (p ≤ 0.05). 
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