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Abstract: Fusarium spp. are ubiquitous fungi able to cause Fusarium head blight and Fusarium foot
and root rot on wheat. Among relevant pathogenic species, Fusarium graminearum and Fusarium
culmorum cause significant yield and quality loss and result in contamination of the grain with
mycotoxins, mainly type B trichothecenes, which are a major health concern for humans and ani-
mals. Phenolic compounds of natural origin are being increasingly explored as fungicides on those
pathogens. This review summarizes recent research activities related to the antifungal and anti-
mycotoxigenic activity of natural phenolic compounds against Fusarium, including studies into the
mechanisms of action of major exogenous phenolic inhibitors, their structure-activity interaction,
and the combined effect of these compounds with other natural products or with conventional
fungicides in mycotoxin modulation. The role of high-throughput analysis tools to decipher key sig-
naling molecules able to modulate the production of mycotoxins and the development of sustainable
formulations enhancing potential inhibitors’ efficacy are also discussed.

Keywords: phenolics; Fusarium; wheat; Fusarium head blight; trichothecene mycotoxins; cereals;
food safety; fungicides

Key Contribution: The aim of this review is to systematize information on the antifungal and anti-
mycotoxigenic activity of natural phenolic compounds against Fusaria and to elucidate their potential
contribution as a sustainable control strategy in modern agriculture.

1. Introduction

Fusarium spp. are found in various ecosystems, including agricultural soils, where
they have a relevant impact on cereal crops [1–5]. Among the most important cereal
diseases, fusarioses are incited by a complex of toxigenic species of the genus Fusarium [6].
Depending on the cereal type and the geographic area, the range of Fusarium species
present may differ. Fusarium culmorum (W.G. Smith) Sacc., Fusarium graminearum sensu
stricto (Schwabe), and Fusarium pseudograminearum O’Donnell and Aoki are considered as
main pathogens of wheat [7–12]; whereas other species that are detected less frequently
include Fusarium acuminatum Ellis and Everhart, Fusarium avenaceum Fr. (Sacc.), Fusarium
langsethiae Torp and Nirenberg [13], Fusarium poae (Peck) Wollenw., and Fusarium tricinctum
(Corda) Sacc. The presence of one or more Fusarium species also depends on other factors
such as previous crops, management of cultural residues, environmental conditions, and
cultivation techniques.

Fusarium head blight (FHB) is caused on wheat and other small grains, mainly by
F. graminearum and F. culmorum [4,14] (Figure 1).
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frequently detected mycotoxin in cereal grains worldwide [19–22], with incidences 
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fusariosis (F,G) compared to healthy kernels (E).

These fungi reduce yields and cause quality losses due to the production of myco-
toxins [2,15]. F. graminearum and F. culmorum may produce zearalenone (ZEA) and type B
trichothecenes; these include deoxynivalenol (DON) and its two acetylated forms: 3 acetyl-
deoxynivalenol (3-ADON chemotype) and 15-acetyl-deoxynivalenol (15-ADON chemo-
type), as well as nivalenol (NIV chemotype) [16,17] and its acetylated form 4-acetylnivalenol
or fusarenone-X (4-ANIV chemotype) [18]. DON is by far the most frequently detected
mycotoxin in cereal grains worldwide [19–22], with incidences ranging from 50% in Asia
to 76% in Africa [23].

Trichothecenes may occur in food and feed at high concentrations and have toxic
effects on plants and animals [24–26]. They are phytotoxic in wheat, causing chlorosis, inhi-
bition of root elongation, and dwarfism [27]. Moreover, livestock exposure to mycotoxins,
including trichothecenes, may be responsible for direct production losses, such as milk pro-
duction decrease in dairy cattle, but also indirect losses, as a consequence of reduced liver
function immune responses, epithelial barrier function, and reproductive capacity [21,28].
Trichothecenes are also a cause of public health concern: these compounds elicit many
adverse effects in humans, among which the most relevant are emesis, nausea, anorexia,
abdominal pain, growth suppression, diarrhea, hemorrhage, and immunotoxicity [29,30].

Fusarium mycotoxins are among the most relevant causes of concern regarding chronic
toxicity of natural food and feed contaminants and pose critical challenges in food tox-
icology [23,31]. Consequently, maximum contamination levels acceptable for DON in
cereal-based food were set by the European Commission in June 2005 (EC no. 856/2005)
and revised in July 2007 (EC no. 1126/2007) and by amending regulations [32–36]. These
limits were fixed at 1250 µg/kg in unprocessed common wheat and 1750 µg/kg in unpro-
cessed durum wheat for human consumption in the European Union (EC no. 1126/2006).

The efficient containment of Fusarium-associated disease and the reduction in food
and feed trichothecene contamination poses a major challenge and requires integrated
management approaches, spanning from the choice of tolerant cultivars, the adoption of
crop rotation strategies, reduced nitrogen application, management of crop residues, and
seed coating with biocontrol agents or antifungal compounds [23,37–39].

Fungicides bearing an azole unit are widely used in agriculture for the control of
Fusarium species and their mycotoxins as they are generally inexpensive, have a broad
spectrum of action and long stability [40]. Azoles inhibit the ergosterol biosynthesis
pathway by blocking the sterol α-demethylase [41]. Despite their efficacy, though, if used
incorrectly, they may induce a selective pressure on fungal populations, favoring the
appearance of resistant mutants [42–45]. The frequent use of fungicides of the triazole
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family is also associated with a shift in the FHB-causing Fusarium species, e.g., by increasing
the frequency of F. avenaceum (Fr.) Sacc. and F. poae while decreasing the population
of F. culmorum and F. graminearum [46]. Studies on the Fusarium population showed
the proliferation of highly aggressive strains and chemotypes, with high resistance to
certain fungicides [46,47]. For example, a more aggressive and toxigenic Fusarium asiaticum
O’Donnell, T. Aoki, Kistler and Geiser 3-ADON population has now replaced the previous
NIV population in China. Similarly, in North America, a highly toxigenic population
mainly formed by 3-ADON isolates of F. graminearum is replacing the existing 15-ADON
population [47].

On the other hand, azole fungicides do not always warrant the decrease in mycotoxins
in food and feed [48]. Under certain conditions, they may act as stress factors resulting in
the induction of toxin biosynthesis [49–53]. Increased mycotoxin biosynthesis may take
place when fungicides are distributed below the recommended dosage [54,55] or if they
show differential fungicidal control of mixed FHB pathogen populations [56]. Moreover,
chemical fungicides pose adverse effects on human health and on different components of
the ecosystems, including water, soil, and non-target organisms [57,58].

Increasing efforts are now devoted to the design of alternative approaches to re-
place synthetic fungicides, particularly new classes of compounds capable of limiting the
pathogenic and/or the mycotoxigenic potential of Fusarium spp., or able to enhance natural
resistance mechanisms in the host plant [59,60]. For example, antioxidants have attracted
considerable attention as they play a crucial role in the natural defense response of plants
to oxidative stress caused by fungal invasion, and a strong, specific inhibitory activity was
demonstrated for plant antioxidants (e.g., phenolic and polyphenolic compounds) against
trichothecene-producing strains of F. graminearum and F. culmorum [61–63].

The objective of this review is to summarize the potentialities and limits of naturally
occurring phenolic compounds as inhibitors of Fusarium spp. of agricultural interest,
with emphasis on trichothecene producers affecting cereals: after a brief introduction
on the structure and biosynthesis of trichothecene mycotoxins, the role of endogenous
phenolic compounds in wheat defense reaction during fungal attack will be described.
Then, the inhibitory effects of exogenous natural phenols on Fusarium vegetative growth
and mycotoxin production will be illustrated. Finally, the possibility to design different
combinations of phenolics and other natural compounds with improved activity against
pathogenic Fusaria will be discussed.

2. Trichothecenes: Biosynthesis and Regulation

Trichothecenes are esters of sesquiterpenoid alcohols positioned around a trichothecane
tricyclic ring characterized by a double bond at C9–C10 and an epoxide at C12–C13 [64].
Trichothecene compounds are divided into four main groups, namely A, B, C, and D, based
on their chemical properties and on the producing fungi. Trichothecenes synthesized by
Fusarium spp. are included in groups A and B (Figure 2, Scheme 1).
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Scheme 1. Trichothecene biosynthesis pathway.

Type A trichothecenes include: T-2 toxin and HT-2 toxin, diacetoxyscirpenol (DAS),
scirpentriol (STO), 4-monoacetoxyscirpenol (MAS), and neosolaniol (NEO). These metabo-
lites are mainly produced by Fusarium sporotrichioides Sherb., Fusarium sambucinum Fuckel,
F. poae, F. langsethiae, and Fusarium equiseti Corda (Sacc.) [39,65,66]. Type B trichothecenes
are characterized by a C-8 keto group and include: deoxynivalenol (DON), the acetyl deriva-
tives (3-ADON), and 15-ADON), as well as nivalenol and fusarenone-X (4-ANIV) [18,67,68].
These compounds are predominantly produced in cereals by F. culmorum, F. graminearum,
and Fusarium crookwellense L.W. Burgess, P.E. Nelson and Toussoun [17,69–72]. Types C and
D share the presence of a carbonyl group attached to C-8 of the sesquiterpenoid backbone
of trichothecenes. The presence of additional 7, 8 epoxides allows differentiation between
type C from the other types. Type D contains a macrocyclic ring that connects C-4 and C-15
of the sesquiterpenoid backbone [67].

The precursor of trichothecene biosynthesis is the farnesyl pyrophosphate (FPP), an
intermediate of the mevalonate pathway with a backbone of 15 carbon atoms [21,73]. The
biosynthetic enzymes needed for trichothecene production are encoded by at least 15 TRI
genes, which are located at three different loci on different chromosomes in F. graminearum:
a 12-gene core TRI cluster, two genes at the TRI1-TRI16 locus, and the single-gene TRI101
locus [18,68,74]. Trichothecene production is driven by the expression of the TRI5 gene,
encoding the key biosynthesis enzyme trichodiene synthase, which cyclizes FPP to tricho-
diene (TDN), the first step in trichothecene biosynthesis [75,76]. TDN is then converted to
calonectrin (CAL) following nine reactions that are sequentially catalyzed by TRI4 (a key
multifunctional CYP58 family cytochrome P450 monooxygenase allowing four consecutive
oxygenation steps in trichothecene biosynthesis, converting TDN to isotrichotriol), TRI101
(C-3 acetyltransferase), TRI11 (C-15 hydroxylase), and TRI3 (15-O-acetyltransferase). The
reaction steps are found in Fusarium species producing type A trichothecenes (T-2 toxin
and HT2) and type B trichothecenes (NIV and DON). In DON producers, CAL is hydroxy-
lated at both the C-7 and C-8 positions by the cytochrome P450 monooxygenase TRI1 and
deacetylated by the esterase TRI8 [77], leading to the formation of either 3-ADON or 15-
ADON, followed by DON. A sequence variation in the coding region of the trichothecene
biosynthetic gene TRI8 was reported in Fusarium spp., indicating that differential activity of
the TRI8 protein determines the 3-ADON and 15-ADON subchemotypes in Fusarium [78].
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All these reaction steps catalyzing FPP to CAL are shared among Fusarium species that
produce type A trichothecenes (T-2 toxin and HT2) and type B trichothecenes (NIV and
DON). Two alternative pathways for NIV biosynthesis were observed for F. graminearum,
involving either the TRI13-TRI7-TRI1-TRI8 pathway (and the CAL as a substrate) or the
TRI13-TRI7-TRI8 pathway (with the 3, 15-ADON as the initial substrate) [79,80]. Depend-
ing on the type of trichothecenes produced, different chemotypes have been described:
chemotype I, producing DON and/or its acetylated derivatives (3-ADON and 15-ADON),
and chemotype II, producing nivalenol (NIV) and/or 4-acetyl-NIV [19].

Similar to other secondary metabolites, mycotoxins may be over-produced in response
to external stresses, e.g., oxidative, nutritional, or light stress, as well as other environmental
factors, such as pH, temperature, water activity, exposure to fungicides or plant secondary
metabolites [81,82]. Temperature and water activity (aw) are the primary environmental
factors influencing mycotoxin production by several Fusarium species [49,83–85]. For
instance, F. culmorum and F. graminearum grow optimally at 15–25 ◦C in an aw range of
0.98–0.99. Optimum DON production is situated at aw = 0.97–0.99 for F. culmorum and at
aw = 0.98–0.99 for F. graminearum, all with an optimal temperature range of 15–25 ◦C [83].

Control of trichothecene production is driven by various transcriptional regulators
involved in basal metabolic functions [86], e.g., the Pac transcription factor, which governs
fungal responses to environmental changes such as pH [87–89] the velvet complex involved
in response to light [90], and the F. graminearum FgAp1 factor, playing a role in response to
oxidative stress [91]. Understanding the effect of each of these factors is essential to predict
and prevent mycotoxin development.

During infection, plant cells respond to mycotoxin presence by a hypersensitive reac-
tion that triggers the generation of reactive oxygen species (ROS), such as H2O2 and super-
oxide [24]. The oxidative properties of H2O2 modulate trichothecene biosynthesis [92,93]
and induce increased expression of TRI genes [94,95]. However, Fusarium response to oxida-
tive stress may vary depending on the ability to activate antioxidant defense responses and
on the chemotype of the isolate: in vitro production of DON and 15-ADON by F. culmorum
and F. graminearum chemotype I isolates can be enhanced upon H2O2 treatment, whereas
NIV and 4-ANIV production by chemotype II isolates is reduced [96]. Similarly, differences
in the detoxification ability were reported in the two chemotypes: isolates in chemotype I,
when exposed to oxidative stress, react by increasing the catalase activity, resulting in a
higher H2O2-degrading ability [96].

3. Role of Trichothecene Detoxification in Wheat Resistance against Fusarium

The ability of both F. culmorum and F. graminearum to spread in wheat is dependent
on their potential to produce larger amounts of DON in culture [97,98] or in infected
tissues [97–100], although this correlation is not always linear [97,101,102]. Trichothecenes
also play an important role as virulence factors by inhibiting defense mechanisms activated
by the plant [9]. Mutants of F. graminearum in which the ability to produce DON is impaired
are able to infect but not to spread within the host plant [103–106].

Genetic improvement of wheat varieties by breeding or transgenesis to select wheat
varieties resistant or partially resistant to Fusarium spp. is definitely the most sustain-
able approach to reduce the occurrence of these fungi and the contamination of grain
with mycotoxins [82,107]. Plant resistance to FHB is a highly complex quantitative trait
controlled by multiple genes [107–110]. The differing susceptibility of wheat cultivars to
infection by Fusarium spp. is associated with different levels of mycotoxin contamination.
This variability results from breeding programs, as well as agronomic and environmental
cultivation conditions in individual countries [111]. Moreover, while the mechanisms by
which abiotic stress may influence wheat resistance traits toward Fusarium spp. are still
largely unknown, it is generally acknowledged that wheat would be more susceptible to
Fusarium infection under future climate change conditions [112,113].

In wheat, two types of resistance to FHB were first described by Schroeder and
Christensen [114]: type I (resistance to initial infection) and type II (resistance to fungal
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spread within the host tissue). Out of approximately 500 quantitative trait loci (QTLs)
for FHB resistance mapped so far in wheat, most refer to type I and type II resistance,
indicating their key role in controlling FHB. Some of these QTLs have been successfully
applied in marker-assisted selection to improve FHB resistance [110,115].

Three additional types of resistance were defined: type III (ability to resist kernel
infection); type IV (plant tolerance to infection and to the presence of DON and other
secondary metabolites); and type V (resistance to the accumulation of mycotoxins in grain
by converting them into non-toxic derivatives or by impeding the generation of toxic
metabolites [39,116,117].

Given the key role of DON as a virulence factor for Fusarium, resistance to DON
through detoxification or modulation mechanisms is considered as an innate component of
FHB resistance. Kluger et al. [118] described the various metabolic routes involved in the
detoxification of DON and reported a correlation between the efficiency of detoxification
and a QTL for FHB resistance called Fhb1. Due to its pivotal role in wheat FHB resistance,
Fhb1 has been the subject of extensive map-based cloning studies to identify the causal
gene. An early study has shown that Fhb1 is involved in the conversion of DON into
non-toxic DON-3-glucoside (D3G) [119]. Later, the Fhb1 locus has been cloned from the
resistant wheat cultivar Sumai 3 and shown to encode a chimeric lectin with two agglutinin
domains relevant in carbohydrate binding. This protein also contains an ETX/MTX2
domain involved in pore forming, named PFT (pore-forming toxin-like) [120]. However,
Yang et al. [121] found that TaPFT is also present in a number of highly FHB-susceptible
wheat accessions, leading to reconsider the identity of Fhb1. Cloning of Fhb1 has shown that
its DON-detoxifying ability is not associated with PFT activity but rather with a putative
uridine diphosphate (UDP)-glucosyltransferase that is also located on the chromosomal
region introgressed from the cultivar Sumai 3 [120]. Fhb1 was recently identified as an
atypical disease resistance gene by two independent studies [122,123] reporting on the
map-based cloning of Fhb1. In both papers, a critical deletion in the same gene coding
for a reticulum histidine-rich calcium-binding-protein gene (His; also called HRC) was
identified as the key determinant of Fhb1-mediated resistance to FHB in bread wheat.
However, while these authors acknowledged the role of Fhb1 in FHB resistance, they
reached diverging conclusions on the causative allele: Su et al. [123] hypothesized that the
Fhb1-mediated resistance is caused by a loss-of-function mutation; whereas Li et al. [122]
concluded that this deletion results in a gain of function. Lagudah and Krattinger [124]
explained the findings reached by these two apparently contradictory concurrent studies
by conjecturing that the critical deletion may generate a dominant-negative effect. Fhb2
is located on chromosome 6BS and confers enhanced type II FHB resistance [125,126].
Metabolomic and transcriptomic analyses of a recombinant inbred line carrying the Fhb2-
resistant allele highlighted increases in defense-related compounds (phenylpropanoids,
lignin, glycerophospholipids, flavonoids, fatty acids, and terpenoids), along with significant
induction of genes encoding receptor kinases, transcription factors, signaling as well as
mycotoxin detoxification proteins [127].

In the same QTL region, different putative defense-associated genes were identified,
such as 4-coumarate: CoA ligase, callose synthase, basic helix loop helix transcription
factor, glutathione S-transferase, ABC transporter-4, and cinnamyl alcohol dehydrogenase,
suggesting that DON detoxification and cell wall reinforcement may be concurrently
driven by Fhb2-regulated genes, thereby limiting the colonization of the wheat spike by the
pathogen [127].

Fhb5 is linked to a glutamate-gated ion channel, which is capable of triggering Ca2+

influx for early defense signaling in response to FHB [128,129].
The gene Fhb7 from Thinopyrum elongatum, a wild relative of wheat used in breeding

programs to improve cultivated wheat, encodes a glutathione S-transferase (GST). When
introgressed into wheat backgrounds, Fhb7 confers broad resistance to both FHB and
Fusarium crown rot by detoxifying trichothecenes through de-epoxidation [130].
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Manadalà et al. [131] demonstrated the efficacy of the barley HvUGT13248 expressed
in both bread wheat and durum wheat. The transgenic durum wheat displayed much
greater DON-to-D3G conversion ability and a considerable decrease in total DON + D3G
content in flour extracts, while the transgenic bread wheat exhibited a UGT dose-dependent
efficacy of DON detoxification.

4. Major Plant Phenolic Compounds and Their Effect on Fusarium

Phenolic compounds contain at least one hydroxylated aromatic ring, with the hy-
droxyl group attached directly to the phenyl unit representing the core of the molecule.
More oxygenated functionalities can be present and distributed in the other positions
of the phenolic ring. Phenyl, aryl, aliphatic rings, and aliphatic chain, often containing
hydroxylated functionalities, can be bound to the parent phenolic ring (Figure 3).
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They contribute to various traits, such as pigmentation and resistance to pathogens in
plants [132–134], and are generally present in food, spices, or food preservatives or belong
to the list of generally recognized as safe (GRAS) compounds [135].

Phenolic compounds derive from the phenylpropanoid pathway [136], and their
production is driven by phenylalanine ammonia-lyase (PAL), which converts phenylalanine
into trans-cinnamic acid. This phenolic acid undergoes other enzymatic transformations,
yielding a broad range of related phenylpropanoids [137] (Scheme 2).
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They are chemically divided into two groups (Figure 4): flavonoid phenylpropanoids,
including flavones, flavonols, flavanones, flavanols, anthocyanins, and chalcones; and non-
flavonoid phenylpropanoids such as stilbenes, lignans, and phenolic acids [63] (Figure 4).
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The majority of phenolic compounds are bound to the cell wall [138], which suggests their
contribution to the preformed general defense system against potential pathogens [139,140].
The main role of flavonoids in plant defense mechanisms depends on their antioxidant
properties [141–144], allowing them to quench ROS generated by both the pathogen and
the plant during the infection process [145]. In addition, flavonoids, similarly to other non-
flavonoid compounds such as cinnamic acids, are thought to take part in the reinforcement
of plant cell walls and act as a physical barrier against fungal infection [146]: they protect
plant cell wall integrity by hampering the activity of plant cell wall-degrading enzymes
secreted by pathogens. Flavonoids are also known for their inhibitory activity toward
fungal spore development, hyphal elongation, and fungal biofilm formation [109,147].

Phenolic acids form one of the main classes of non-flavonoid phenylpropanoids. Based
on the number and position of hydroxyl groups on the aromatic ring, they can be divided
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into two main groups: the hydroxybenzoic acids and the hydroxycinnamic acids [148]
(Figure 5).
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Benzoic acid derivatives include gallic, p-hydroxybenzoic, syringic, protocatechuic,
and vanillic acids, while caffeic, chlorogenic, p-coumaric, ferulic, and sinapic acids are
included in the group of cinnamic acid derivatives (Figure 5). Cereals contain phenolic
acids in both soluble (free) and insoluble (cell-wall-bound) forms [149]. Soluble phenolic
acids include either free acids or esterified to sugar conjugates, whereas insoluble phenolic
acids are conjugated to several polysaccharides and to lignin through ester and ether bonds.
The soluble forms are compartmentalized within the vacuoles, while the insoluble forms
are incorporated in cell walls [63,150–152].

Species, cultivar, and environmental conditions determine phenolic richness and com-
position in cereal grains through both constitutive and induced biosynthesis [153]. They
likely reduce mycotoxin accumulation in plants, including trichothecenes [154] and fumon-
isins [155–157]. It is generally acknowledged that the fungus-plant interaction involves
oxidative stress with the production of radical oxygen species (ROS) that enhance the
biosynthesis of mycotoxins. The antioxidant metabolites present in cereal grains can play a
crucial role in the resistance to Fusarium and in the production of mycotoxins [60,63,142].
Among phenolic acids, cinnamic acid derivatives accumulated in the kernel and well known
as antioxidants are considered as the main contributors to FHB resistance [59,109,153,154].
Reactive oxygen species (ROS) are generated by fungi during their metabolic activity
playing a crucial role when phytopathogenic fungi interact with plant cells. Gallic acid,
a widespread plant metabolite, exhibits antioxidant activity interfering with ROS as a
scavenging agent and produces cell apoptosis in the organism that generates ROS. In virtue
of the metal-chelating properties of gallic acid due to the presence of hydroxyl groups in
the aromatic ring, gallic acid might promote radical production exhibiting pro-oxidant
activity. This behavior may appear in some conditions that depend on the concentration of
the acid and in the presence of transition metals (i.e., Cu2+ and Fe2+). Pro-oxidant activity
can accelerate damage to sensitive parts of the cell such as DNA, proteins, carbohydrates
molecules, provoking the death of the organism [158].

5. Antifungal Activity of Exogenous Phenolic Compounds on Fusarium
Vegetative Growth

Phenolic acids are common metabolites in plants and exert toxic effect on diverse fungi,
including Fusarium species [60–63,109,132,143,150–152,159]. In cereal grains such as wheat,
corn, rice, barley, sorghum, rye, oat, and millet, the predominant phenolic acids include
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ferulic acid, dimers of ferulic acid, p-hydroxybenzoic acid, sinapic acid, cinnamic, and
vanillic acid [62,63,109,143,153,159]. A higher concentration of phenolic acids was observed
in Fusarium-resistant wheat and corn plants than in susceptible ones, thus identifying
these compounds as biomarkers of plant resistance [60,132,143]. The antifungal effect of
phenolic acids was assayed in vitro by artificial amendment of each compound to the
pathogenic fungi. According to the species of Fusarium on which the exogenous phenolic
compounds are tested and on their concentration level, different antifungal activity was
observed [153,160,161].

The bioactivity of phenolic compounds mainly depends on their ability to affect
cellular membranes, with consequent impairment of cellular ionic homeostasis, acidifi-
cation of vacuolar and cytosolic pH, and ultimately the destruction of structural cellular
integrity [162–166].

Chlorogenic acid or 5-O-caffeoylquinic acid (CHLO), generated by the esterification
of caffeic acid (CA) with quinic acid, is a cinnamic acid derivative (Figure 5). It is one of
the most widespread soluble phenolic compounds in the plant kingdom and represents a
key component of the plant defense mechanism against Fusarium [33,143,164,167]. CHLO
was found to be the main phenolic acid that F. graminearum is likely to cope with when
it infects the ear [168,169]. Gauthier et al. [33] tested CHLO and one of its hydrolyzed
compounds in vitro on both F. culmorum and F. graminearum at concentrations close to the
physiological amount previously quantified in kernels by Atanasova-Pénichon et al. [169].
Both chlorogenic and caffeic acids reduced fungal growth. CHLO showed a moderate
antifungal effect with LC50 values > 10 mM, while caffeic acid was significatively more
toxic. However, there is great variability in sensitivity to phenolic acids among Fusarium
strains [33]. When comparing results obtained in the same conditions by Gauthier et al. [33]
and Ponts et al. [59], it appears that F. culmorum strains (LC50 between 8.8 and 10 mM) are
likely less susceptible to caffeic acid than F. graminearum (LC50 between 4 and 10.1 mM) [63].
Lately, Gauthier et al. [170] investigated caffeic acid (0.5 mM) on F. avenaceum at different
pH conditions in liquid medium: caffeic acid inhibited only 10% of the growth at pH = 6
while at pH = 3, the fungal biomass was increased upon exposure.

Similarly, ferulic acid has a remarkable antifungal effect on Fusarium species. Boutigny
and coworkers reported that ferulic acid reduces fungal biomass of F. culmorum by 39% at
2.5 mM and by 85% at 5 mM [154], whereas Pani et al. [161] found a significant inhibition
of F. culmorum at the concentration of 0.5 mM. Ferulic acid is also reported to inhibit
fungal growth in F. graminearum: 0.7 mM of ferulic acid reduced fungal growth by 50%,
while 0.5 mM had no significant effect, albeit inhibitory concentrations are often strain
dependent [59].

The fungistatic effects of phenolic acids on F. graminearum were ranked in ascending
order of toxicity as follows: chlorogenic acid < p-hydroxybenzoic acid < caffeic acid <
syringic acid < p-coumaric acid < ferulic acid: therefore, cinnamic-derived acids appear as
more toxic compared to benzoic acid-derived ones [59,154,161].

Under certain conditions, fungal biomass can be increased by sublethal doses of
ferulic, caffeic, or coumaric acid [170]. For example, ferulic acid applied at 0.5 mM
induced an increase in fungal biomass of F. langsethiae, while at 1 mM, it reduced its
growth [171]. In contrast, some phenolic acids display moderate effects on fungal growth:
p-hydroxybenzoic acid has a minor effect at concentrations > 15 mM, reducing by 50% the
growth of F. graminearum [59,153].

Two phenylpropanoids, zingerone (4-(3-methoxy-4-hydroxyphenyl)-butan-2-one) and
dehydrozingerone (Figure 6), are constituents of Zingiber officinale, structurally and biologi-
cally related to curcumin, with marked antifungal and antibacterial activity [172–174].
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Pani et al. [161] studied comparatively the antifungal effect of dehydrozingerone
and Me-zingerone on F. culmorum: both reduced fungal growth by >50% at 1.5 mM, but
dehydrozingerone retained its inhibitory effect at 1 and 0.5 mM, whereas Me-zingerone
had a stimulating effect on vegetative growth when applied at 0.5 mM. Tested at 0.5 mM,
zingerone reduced by 83% the fungal growth and by 33% the DON production [161].

Chen et al. [175] tested different compounds derived from Curcuma longa, including
curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin (Figure 6), ger-
macrone, and curcumol at 0.5 mg/mL, by calculating the percent inhibition of mycelial
growth in the untreated control. All these compounds displayed an inhibitory effect toward
F. graminearum. Curdione showed an inhibitory rate of > 50%. The inhibitory effect of
curdione in combination with isocurcumenol and β-elemene (tested at 0.25 mg/mL for each
component) was 100%, while curdione combined with curcumin, curzerene, curcumenol,
curcumol, and germacrone allowed inhibition rates of 93.6%, 88.9%, 82.7%, 63.6%, and
56.4%, respectively. Their toxicity involved fungal cell membrane disruption and inhibition
of ergosterol biosynthesis, respiration, succinate dehydrogenase (SDH), and NADH oxidase
activity [175].

Significant antimicrobial activity against pathogenic microorganisms has also been
reported for thymol [5-methyl-(1-methylethyl) phenol], a natural monoterpene phenol
found primarily in thyme, oregano, and tangerine peel [176]. Gao et al. [177] studied the
hyphal growth, the conidial production, and germination of 59 isolates of F. graminearum
under thymol treatment: the mean EC50 value for F. graminearum was 26.3 µg/mL. The
molecular structure of thymol is responsible for its ability to dissolve and accumulate within
the cell membrane, causing its destabilization, which has been related to the disruption
of proton transfer efficiency [178]. In F. graminearum, the antifungal activity of thymol has
been related to cell membrane damage as a consequence of lipid peroxidation and the
disturbance of ergosterol biosynthesis [177]. Accordingly, thymol is reported to induce
damages on the membrane integrity and the cell wall of other microorganisms such as
Candida sp. [178], Saccharomyces cerevisiae [179], and Bacillus cereus [180].

Magnolol (1,5,5′-diallyl-2,2′-dihydroxybiphenyl), a natural hydroxylated biphenyl
isolated from Magnolia officinalis, displays a wide range of biological activities [181]. Tested
at 1.5 mM, magnolol exhibits a marked fungicidal activity in vitro toward F. culmorum;
while a progressive decline in its activity has been observed at 1.0, 0.5, and 0.25 mM, the
antifungal effect of magnolol remains significant at 0.25 mM [166,182]. Magnolol interacts
with ergosterol in the cell membrane, inducing a partial disruption of its structure [183]:
cell wall components, such as β-1,3-glucans, have been proposed as potential targets of
magnolol, similarly to fungicides belonging to the echinocandin family [184]. Incidentally,
magnolol is also potentially applicable to control human fusarioses: when tested on a
collection of representative isolates of Fusarium oxysporum Schlechtend. emend. Synd.
and Hans., Fusarium solani (Mart.) Sacc. and Fusarium verticillioides (Sacc.) Nirenberg of
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clinical and ecological concern, magnolol displayed a fungicidal activity similar to that
shown by fluconazole (1–50 µg/mL), a fungicide widely used in treating fungal infections
on humans [165]. Honokiol showed an even stronger antifungal activity than its isomer
magnolol at 0.5 mM against Fusarium spp. [165]. The role of honokiol as an activator of
mitochondrial ROS by dysfunction and depolarization of mitochondrial membrane poten-
tial in C. albicans has been highlighted [185]. Honokiol is also thought to burden the high
content of pro-oxidant iron ions in yeast by sequestration [186]. Some differences between
magnolol and honokiol in safety and toxicology have been reviewed by Sarrica et al. [187].

The efficacy of flavonoids as inhibitors of fungal growth has been referred to as their
ability to react with nucleophilic amino acids in fungal proteins [188]. Compared to LC50
values described for phenolic acids, those detected for flavones and flavanones against
Fusarium species, including F. culmorum and F. graminearum, are substantially weaker.

The promising ability of flavonoids to inhibit spore development and mycelium elon-
gation of plant pathogens has been the subject of some studies [146,189]. Unsubstituted
flavones and flavanones (with LC50 values comprised between <0.05 and 1.6 mM against
Fusarium species, including F. culmorum and F. graminearum) display a higher antifungal ac-
tivity than hydroxylated flavones (e.g., flavonol), with an LC50 in the 2.9–4.8 mM range [63].
Medical research has also focused on flavonoids as potential alternatives to synthetic drugs
against human fungal pathogens displaying resistance to commonly used antifungal agents
(e.g., triazoles).

Benzoxazinoids, a group of secondary metabolites present in several cereals, such as
rye, wheat, and maize, play a key role as allelochemicals in the defense against predators
and pathogen infection [190]. Their antifungal activity has been reported [181–193], and
their role in wheat resistance to Fusarium spp. is being increasingly highlighted [134].

Inhibition of colony growth, of cell wall and membrane constituents (such as ergos-
terol and glucosamine), and alterations in enzyme activity with a consequent reduced
biomolecular synthesis are all indicators of mechanisms involving the inhibition of cell
multiplication. As previously mentioned, the inhibitory behavior of phenolic compounds
depends on their ability to disrupt the integrity of the plasma membrane and to induce
mitochondrial dysfunction, leading to metabolic stagnation [154,194]. For example, cur-
cumin may disrupt the synthesis of critical proteins and enzymes, leading to inhibition
of F. graminearum growth: this compound downregulates D-glyceraldehyde 3-phosphate:
NAD+ oxidoreductase (GAPDH); moreover, it inhibits the biosynthesis of ergosterol and
suppresses the activity of B-nicotinamide adenine dinucleotide (NADH) oxidase and suc-
cinate dehydrogenase (SDH), thereby interfering with the tricarboxylic acid cycle as well
as inhibiting adenosine triphosphate (ATP) synthesis in the mitochondria [175]. Ferulic
acid, instead, acts on the cell membrane, inducing significant changes in intracellular ATP
concentrations, a decrease in the intracellular pH, cell membrane hyperpolarization, a re-
duction in cell membrane integrity, and ultimately evident morphological alterations. Gallic
acid exhibits both antioxidants as well as pro-oxidant features, displaying a double-edged
sword behavior, which turns it into an efficient apoptosis-inducing agent [158].

Quite regrettably, despite the powerful antimicrobial potential of these compounds,
their poor delivery and bioavailability, coupled to the scarce stability, especially in the case
of curcumin, do not allow them to reach the biological target at the bioactive concentration
in plants.

6. Inhibition of Trichothecene Biosynthesis by Exogenous Phenolic Compounds

From a human health perspective, the main issue to consider in cereal protection is the
capability of Fusarium to synthesize mycotoxins. Several phenolic compounds are able to
modulate the production of mycotoxins in vitro in Fusarium species. However, their effect
is highly variable depending on the class of mycotoxins, on the fungal species, the applied
concentration as well as on the experimental conditions [153]. Some phenolics may even
increase the biosynthesis of secondary metabolites in Fusarium spp.; therefore, it is essential
to carefully consider each individual case: a partial inhibition of fungal growth is not
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necessarily correlated with the impairment of mycotoxin biosynthesis since the fungistatic
activity could trigger secondary metabolic routes as a response to stress [195].

Cinnamic acid derivatives, such as ferulic acids, caffeic, p-coumaric, chlorogenic,
and sinapic acid, are all efficient inhibitors of trichothecene mycotoxins produced by
F. graminearum and F. culmorum [63,154].

Increased concentrations of ferulic acid reduce substantially most analyzed mycotox-
ins [153,196]. Bily et al. [150] reported a 57% inhibition of trichothecene production by
F. graminearum in media supplemented with 0.25 mM ferulic acid. Moreover, antioxidant
phenolic acids (e.g., ferulic acid) proved highly inhibitory toward both type A and type B
trichothecenes [153,154], thereby suggesting a link with the evidence that accumulation
of ferulic acid is positively correlated to Fusarium resistance in wheat varieties [153]. Fer-
ulic acid inhibited the in vitro production of 3-ADON by 16–30% in F. graminearum and
F. culmorum when applied at 0.5–1.0 mM [161,166]. This compound was also found to exert
a transcriptional control, reducing the expression of key biosynthetic genes, namely TRI5,
TRI6, and TRI12 [82,154,197]. In the course of other studies, ferulic acid proved a powerful
phenolic acid with anti-mycotoxigenic effects against various Fusarium species, including
F. graminearum, F. verticillioides, F. poae, F. langsethiae, and F. sporotrichioides [63,153,171,198].
This compound and its dimeric forms play a key role in cereal resistance to F. graminearum
and to DON accumulation and may also contribute to improving resistance to the infection
by F. avenaceum and the associated contamination with enniatins [62,109,150,170]. The
presence of dimeric forms of ferulic acid (DFAs) in the wheat kernel pericarp is associated
with F. graminearum and F. culmorum resistance [62,150]. The main forms of DFAs are
8-5′-diferulic acid benzofuran, 8-0-4′-diferulic acid, 8-5′-diferulic acid and 5,5′-diferulic
acid. DFAs are produced by coupling reaction of ferulate monomers catalyzed by peroxi-
dase during cell wall deposition, conferring hardness to pericarp and resistance to fungal
penetration. Fungal esterases and other hydrolytic enzymes attack the plant and induce
the release of free DFAs from the plant cell wall polysaccharides. High concentrations of
free DFAs during the plant-fungus interaction contribute to the inhibition of trichothecene
biosynthesis by Fusarium [62].

Caffeic acid showed an inhibitory effect toward trichothecene: when tested at 1.0 mM,
it led to complete inhibition of 3-ADON without affecting the mycelial growth of
F. culmorum [161]. Similarly, 0.5 mM caffeic acid decreased the synthesis of type B tri-
chothecenes by F. graminearum, whereas no significant effect on mycelium development
was observed [86]. The ability of these compounds to impair mycotoxin production with
no significant effects on fungal growth may be particularly useful for achieving myco-
toxin control without applying selection pressure on resistant mutant populations [199].
Nonetheless, despite much evidence on the inhibitory effect of both ferulic and caffeic
acid on trichothecene production by Fusarium, Ponts et al. [59] and Etzerodt et al. [200]
highlighted a stimulating effect of these compounds on trichothecene biosynthesis. This
could be explained by differences in strains, culture medium, and in vitro conditions of
the experiment, reflecting fluctuating contexts in the delivery and bioavailability of the
exogenous molecule.

Sinapic acid displays both antioxidant and antibacterial effects and plays an intriguing
role as a preservative in foods [201,202]. Furthermore, it has been proposed as a resistance
biomarker metabolite in cereals against Fusaria [203]. Kulik and coworkers [164] tested
different levels of sinapic acid on both F. culmorum and F. graminearum under in vitro
conditions, finding that exogenous application of this compound decreases the production
of trichothecenes by both species, leading to 73.2–97.7% reduction at 3.6 mM. The expression
of TRI4, TRI5, and TRI10 genes was inhibited by sinapic acid, whereas an increase in
ergosterol biosynthesis was observed. Thus, sinapic acid may bear the potential for its
ability to limit mycotoxin contamination in food and feed [164].

Eugenol is another phenylpropanoid compound extracted from different plants with
antifungal bioactivity toward Fusarium spp. [204–206]. Tested in vitro at 1.0 mM, eugenol in-
duced complete inhibition of 3-ADON with no effects on vegetative growth in F. culmorum [161].
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Similarly, the natural acetophenone apocynin (0.5 mM) reduced DON production of
F. graminearum by 90% [166] and significantly reduced 3-ADON in F. culmorum without
affecting fungal growth [161]. Both eugenol and apocynin proved efficient inhibitors of
trichothecene also in field tests, albeit their bioactivity was transient and limited to the first
post-inoculation stages [207].

Several studies illustrated the effect of flavonoids on mycotoxin production. Brown
et al. [208] observed the ability of flavones to inhibit trichothecene production through the
modulation of cytochrome P-450 monooxygenase-catalyzing conversion of TDN. Takahashi-
Ando et al. [209] revealed that TRI4 is the potential target site of flavone and furanocoumarin
in the inhibition of trichothecene biosynthesis. Bollina and Kushalappa [210] showed that
naringenin and quercetin (Figure 7) induced complete inhibition of trichothecene biosyn-
thesis in F. graminearum at early stages of incubation in artificial media. Bilska et al. [211]
tested various amounts of exogenous flavonoids on different strains of F. graminearum and
F. culmorum. Most flavonoids reduce trichothecene biosynthesis, but their effect depends
on the fungal strain, the flavonoid compound, and its concentration. Quercetin was the
most efficient compound, leading to a significant reduction (78.2% to 99.8%) in the accumu-
lation of trichothecene, and the inhibition occurred at the transcriptional level. These data
also confirm the role of the antioxidant activity on trichothecene inhibition: in virtue of
differences in the structural feature and polarity existing between quercetin and naringenin,
quercetin exerts a protective effect against bulk lipid oxidation, whereas naringenin fails.
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The balance between lipophilicity and antioxidant activity can be a key factor in
predicting the capacity of a phenolic compound to inhibit mycotoxin production. The
ability of a compound to cross the fungal membrane lipids is mandatory to exert its anti-
fungal/inhibitory activity. Fungal cultures are a peculiar system where both lipidic and
emulsion systems coexist. In such a multicomponent environment, different physicochemi-
cal parameters, such as temperature, light, or pH, have a direct effect on lipophilicity and on
the antioxidant capacity of phytochemicals. Therefore, correlating theoretical antioxidant
potential and lipophilicity values with experimental data is far from being straightfor-
ward [161]. Nonetheless, the hypothesis that antioxidant properties of cereal metabolites
can play a critical role in their anti-mycotoxigenic activity is consistent with the postu-
lated activating effect of oxidative stress on the biosynthesis of mycotoxins [63]. Montibus
et al. [212] emphasized the modulation of fungal secondary metabolism by oxidative stress
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and the enhancement of mycotoxin production, including DON, after exposure to reac-
tive oxygen species. Thus, due to their ability to quench oxygen free radicals, antioxidant
metabolites may reduce or suppress upstream signals such as oxidative stress that modulate
toxin biosynthesis.

The toxicity of phenolic acids can also be linked to their interaction with various intra-
and extracellular fungal enzymes, including phenol oxidases and several hydrolytic activ-
ities [63,213,214]. Moreover, Passone et al. [215] mentioned that antioxidant compounds
interfere with mycotoxin production, probably indirectly via their capacity to perturb the
membrane function and modify its permeability.

7. Effect of the Combination of Phenolic Compounds with Other Natural Products or
Conventional Fungicides

Phenolic compounds isolated from natural sources present valuable antifungal prop-
erties, but their efficacy as inhibitors of mycotoxins and fungal growth is often strain and
molecule dependent [33,154]. The scarce stability and/or solubility of the compound may
also play a putative role. A possible strategy to improve their bioactivity is to combine natu-
ral compounds with other phenolic acids or benzo analogs or with conventional fungicides,
resulting in the enhancement of antifungal activity against fungi [216].

In clinical practice, the synergetic use of antifungals is becoming popular to avoid re-
sistance and reduce the required dosage of specific drugs [217]. Different studies described
the efficacy of this method in containing Candida spp., a major group of fungal pathogens
in humans [218–221]. By following the same approach, Dzhavakhiya and coworkers [216]
found that the activity of azole and strobilurin fungicides can be significantly enhanced
through their co-application with certain natural products against several economically im-
portant plant pathogenic fungi: thymol emerged as a potent chemosensitizing agent when
combined with azoxystrobin on Bipolaris sorokiniana Shoemaker, Phoma glomerata (Corda)
Wollenw. and Hochapfel, Alternaria sp. and Parastagonospora nodorum (Berk.) Quaedvl.,
Verkley and Crous at a non-fungitoxic concentration [216]. In addition, difenoconazole
applied in combination with thymol significantly enhanced antifungal activity against
B. sorokiniana and P. nodorum, while tebuconazole combined with 4-hydroxybenzaldehyde
(4-HBA), 2,3-dihydroxybenzaldehyde inhibited the growth of F. culmorum at a significantly
higher level than the fungicide alone [216].

Also, the combination of phenolic molecules and other natural compounds with dif-
fering modes of action may improve the inhibitory efficacy, as they could act in synergism
with a multitarget effect [222]. For instance, Siranidou et al. [223] reported a synergis-
tic antifungal effect of p-coumaric with ferulic acid in reducing the mycelial growth of
F. culmorum. An equimolar combination of propyl gallate and thymol tested at a final
concentration of 0.25 mM proved a strong inhibitor of trichothecenes both in vitro and in
plants [224]. Oufensou et al. [166] tested an equimolar solution of thymol and magnolol,
which had an additive effect on F. graminearum, possibly due to the different mode of action
of the two compounds, or/and to the ability of one compound of the mixture to cross the
fungal membrane, thereby improving the delivery of the other compound. Accordingly,
plant extracts including various phenolic compounds and terpenes were highlighted as
promising antifungal agents, the efficacy of which was attributed to a potential synergistic
effect of the different components [225,226]. Recently, Montibus et al. [226] investigated
the effect of maritime pine sawdust, a by-product from the industry of wood transforma-
tion, which includes, among other bioactive molecules, 11 compounds belonging to three
families of phenolics, namely phenolic acids, lignans, and flavonoids, on various strains of
F. graminearum. Pine sawdust tested at 500 mg/L proved extremely efficient, leading to a
total inhibition of trichothecene production, with no fungal biomass reduction, for five out
of six strains of F. graminearum tested.

Several compounds have different behavior in vitro and in plants. In vitro, the fun-
gus is closely in contact with the potential inhibitor, whereas in plants, the effect of the
compound is weaker due to the need to reach fungal cells within the colonized plant
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tissues. Lipophilicity and antioxidant activity of the inhibitor and composition of the carrier
solution are key elements to magnify the effect of the potential inhibitor in plants. Phenolic
compounds may be combined with essential oils to improve their bioavailability. The
hydrophobicity of essential oils enables a better partition of phenolic compounds within the
lipids of the cell membrane and mitochondria, thereby increasing their permeability and ul-
timately leading to the release of intracellular constituents [227,228] and to interference with
many biological processes [229]. Wang et al. [230] showed that Colletotrichum gloeosporioides
(Penz.) Penz. and Sacc. exposed to clove oil exhibits morphological and ultrastructural
alterations, confirming the disruption of the fungal cell wall and of the endomembrane sys-
tem, increased permeability, and loss of intracellular constituents. Therefore, investigations
on the essential oils as co-formulants open a new scenario in the antifungal strategy, even
though the reproducibility and stability of the essential oil mixture represent two elements
of weakness in this approach. Nevertheless, essential oils are gaining popularity as safe and
effective antifungal agents, in combination with other naturally occurring phenol exhibiting
a different mode of action. For instance, Ochoa-Velasco et al. [231] reported antifungal
effects of carvacrol and thymol below their MIC values against F. verticillioides and Rhizopus
stolonifer (Ehrenb.) Vuill.

The ability to increase aqueous solubility is definitely a valuable aid to resolve the
solubility problems of hydrophobic compounds, especially if the bioactive compound
should be applied on the canopy by spray method. In this case, a right compromise between
lipophilicity of the compound and wettability and complexation ability of the delivery
composition is of paramount importance for the efficiency of the inhibitor/fungicide.

8. Sustainable Formulations for Bioprospecting Phenolic Compounds

Formulation technology plays a crucial role in the efficacy of the potential phenolic
inhibitors: without a proper formulation, even the most effective compound is worth
nothing [232]. Nowadays, formulation technology offers a wide choice of molecules,
polymers, and materials; nevertheless, the search for sustainable agrochemical formulations
is still open and strict rules concerning the safety of humans, animals, and the environment
must be taken into account [233,234]. Many bioprospecting phenolic compounds are not
water soluble or water dispersible [171], and this is a major drawback since the most
common mode of delivery of any active ingredient into a crop is via spray applications
of an aqueous solution or treatment of seeds with aqueous emulsions. Although many
efforts have been devoted to the search for phenolic compounds effective against Fusarium
spp., the medium used to solubilize the compound often lacks in safety for eventual
application in the field. Dimethyl sulfoxide, acetone, and ethanol are the most common
solvents used in vitro to assess the effectiveness of phenols. Usually, the concentration of
the compound in these solvents ranges between 0.05 and 0.5 mM, which represent the
minimum concentrations that allow the solubilization of the compound by preventing toxic
effects due to the solvent present in the aqueous solution (1–10%) [153].

Tween 20, a non-ionic surfactant, improved dispersion of a hydrophobic curcumin
derivative in aqueous solution, thereby allowing the aspersion of the aqueous fungicidal
solution onto phytopathogenic fungi [235]. Tween 20 is a polysorbate containing lauric
acid and 20 repeat units of polyethylene glycol distributed across four different chains.
A nano and micro-emulsion of thymol and Tween 20 was used in combination with
sunflower oil favoring the dispersion of the phenol in wheat plants [236]: complete FHB
inhibition was achieved at 0.5% thymol, but phytotoxic effects were observed [236]. Among
commercial polysorbates, Tween 20 is allowed in feed at a maximum concentration of
5000 mg/kg without any safety concern, while Tween 80 is generally used in vitro assay at
the concentration of 10% (v/v) [237].

Other biomatrices recovered from waste of industrial activity or produced on a large
scale have been assayed as safe formulating agents: collagen, chitosan, starch, cyclodextrins
(CDs), carboxymethylcellulose (CMC), polylactic acid, polyethylene glycol (PEG) [232].
Water-soluble microcapsules made of a blend of collagen hydrolysates, CMC, and thyme



Toxins 2022, 14, 72 17 of 29

oil were applied as a film on wheat seeds surfaces [238]: the authors investigated only
the preparation of the microcapsule and their characterization in terms of water content,
shelf-life stability, and release of the active ingredients.

CDs, cyclooligosaccharides obtained as by-products of starch degradation, are now
produced by effective biotechnological processes in α-CD (six-cycloamylose units), β-CD
(seven-cycloamylose units), and γ-CD (eight-cycloamylose units) [232] separately. Struc-
turally, CDs are constituted by an amphiphilic torus with a hydrophobic interior cavity able
to host lipophilic molecules. Due to a truncated conical shape and an external hydrophilic
surface, CDs can form water-soluble inclusion complexes with lipophilic molecules or acti-
vate strong interactions with them, facilitating the delivery/solubilization of the molecule
in aqueous solutions. Due to these properties and their non-toxicity, CDs have been largely
used in medicine, food, and materials, and promising carriers in antifungal formulations
were proposed [239]. The synergistic effect of CDs with phenol-based essential oils was
observed against fungal pathogens [240,241]. Although phenolic molecules activate strong
interactions with CDs, only few examples appeared in literature as emulsifier for in vitro
antifungal assay [161,182] and as formulating agents in agriculture against F. graminearum
and F. culmorum [207,242]. All the available examples are based on the use of 3 mM aqueous
solution of β-CD as an emulsifier agent of phenols.

Efforts were devoted to the preparation of technologically advanced biomaterials
where the fungicide is embedded in nanoparticles or hydrogels. These formulations im-
prove the shelf-life of the fungicide, its delivery, and permeability through the fungal
membrane, maintaining safety and health criteria. Among the naturally occurring biomatri-
ces, nanosized chitosan particles and hydrogel chitosan-based are now considered suitable
formulating agents [232].

Loron et al. [243] tested the starch octenylsuccinate (OSA-starch) and the chitosan
as a matrix for the encapsulation of the curcumin derivative tetrahydrocurcumin (THC),
demonstrating the antifungal and anti-mycotoxigenic properties of the encapsulated parti-
cles against F. graminearum. Both starch and chitosan spray-dried particles seemed to better
protect THC and to extend its time of release, even though THC-loading aspects should be
taken into account.

An ideal formulation should be inexpensive, environmentally sustainable, easy to
distribute, and should present a shelf-life long enough for proper storage. Coating-forming
agents may contribute to enhancing the properties of formulations. Although many promis-
ing bioformulations appeared in literature, unfortunately, no biomatrices have yet reached
an advanced stage of development and commercialization to be applied in agriculture.

9. Structure-Activity Interactions

As previously mentioned, some phenolic compounds are reported as strong inhibitors
of mycotoxin production without any effect on the fungal biomass [244]. Identifying
molecules with specific molecular targets in the trichothecene biosynthesis pathway with
no fungitoxic effects would be highly desirable to reduce the selective pressure on fungal
populations, hence limiting the onset of resistant mutants. Given the fact that DON acts as
a virulence factor, its inhibition may reduce the infection process and the development of
the disease symptoms.

An early molecular docking study was carried out with the trichothecene 3-O-acetyltr-
ansferase TRI101 as the target protein. The ligand, a phenyl derivative of pyranocoumarin
(PDP) extracted from Psoralea corylifolia seeds, showed a strong affinity toward the TRI101
by inhibiting the acetylation mechanism of the trichothecene and leading to the destruction
of the “self-defense mechanism” of Fusarium sp. [245].

Pani et al. [182] investigated the mechanism of trichothecene inhibition by focusing on
the binding mode of diverse naturally occurring phenols. Docking analyses were performed
onto a 3D atomic-level protein model of the F. culmorum trichodiene synthase TRI5, based
on the crystal structure of F. sporotrichioides TRI5 [246]. Docking analyses identified two sites
(named site 1 and site 2) located on the surface of TRI5 F. culmorum as privileged sites for
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phenol-based hydrophobic ligands inhibiting trichothecene biosynthesis in vitro. Phenols
with a long aliphatic chain and in dimeric form (i.e., hydroxylated biphenyls) interact
simultaneously with sites 1 and 2. Propyl gallate, ellagic acid, magnolol, eugenol, and the
eugenol dimer bind preferentially to sites 1 and 2 and far from the catalytic domain. With
few exceptions, no-charged phenols interact with the same set of amino acids identified
as: Gln68, Thr69, Tyr76, Trp298, Leu300, Cys301, Asp302, Ala303, His308, Phe329, Ala333,
Gly336, Ala337, Val338, Trp343.

Aiming to provide further insight into the understanding of structure-activity relation-
ship, Maeda et al. [244] have identified NPD352 [testosterone 3-(O-carboxymethyl)oxime
amide-bonded to phenylalanine methyl ester], a TDN inhibitor identified from a chemical
library of the RIKEN Natural Product Depository by chemical array screening using a
recombinant trichodiene synthase tagged with hexahistidine (rTRI5) as a target protein.
Unfortunately, the high lipophilicity of NPD352, its high molecular weight, and the high
cost of production do not permit the development of the compound for a straightforward
application in agriculture. The author also highlighted that, by optimizing the steroid
skeleton, so to minimize endocrine perturbation and by modifying the side chains of the
aromatic amino acids for higher activity, effective natural-like inhibitors of trichothecene
biosynthesis may be developed in the future [244].

Another computational study on TRI5 protein has been recently carried out by Oufen-
sou et al. [224]. A set of 15 naturally occurring compounds belonging to cinnamic acids,
gallic esters, terpenes, phenylpropanoids, and 1 phenylethanone was selected for docking
onto TRI5. Based on this protein model, the binding capacity of the selected compounds
and of NPD352 [244] with the TRI5-inorganic pyrophosphate model (TRI5-PPi) was studied
by comparing the most populated sites with those evaluated when the same compounds
were docked with TRI5 containing the substrate (i.e., farnesyl pyrophosphate (FPP)). The
five sites previously identified by Pani et al. [182] in the TRI-PPi model were also confirmed
for the tested phenolic compounds, thereby confirming sites 1 and 2 as the privileged ones.
Notably, NPD352 interacted with the same sites and with the same set of amino acids,
providing further proof of the reliability of the in silico TRI5 model.

Recently, several computational analyses have been introduced for the prediction of
drug targets in F. graminearum [247,248]. However, not enough effort for discovering novel
natural drugs has been reported because of the unavailability of the crystal structure of
drug targets.

10. Conclusions and Future Trends

Fusarium mycotoxins are an important challenge in agriculture worldwide, particularly
in the cereal and grain production sector. Control of Fusarium spp. is largely based on
the use of fungicides bearing an azole unit that is used for both plant and human therapy,
as they are generally inexpensive, share a broad spectrum of action and long stability.
In recent years, large-scale abuse of azoles in agricultural settings has been blamed as a
major driver of the increasing resistance phenomena that are also being reported in human
pathogenic fungi [40,249]. These concerns will certainly lead to drastic restrictions in the
use and availability of active ingredients to cope with phytopathogenic fungi. Under such
circumstances, natural phenolic compounds are becoming increasingly attractive, as they
prove potent antifungal agents, when applied singly or in combination, with less or no
toxic effect and differing mechanisms of action. Phenolic compounds with low/moderate
molecular weight are rapidly metabolized by the natural microflora, thereby providing
an essential alternative to industrial agrochemicals, which are often detrimental to the
environment. Most of these compounds are widely used as food additives, as they are
commercially available at a reasonable price [250].

The antifungal and anti-mycotoxigenic activity of different cinnamic acids, acetophe-
nones, benzaldehydes, benzoic acids, phenylpropanoids, or hydroxylated biphenyls, has
been widely reported over the last decades. Yet, their efficacy appears dose and strain
dependent, often leading to inconsistent results, especially when moving from the lab
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to the field. Additional studies are required to highlight their in vivo activity, toxicity,
and bioavailability through the design of sustainable formulations. This shall pave the
way for the selection and identification of new fungal targets and possibly of new “anti-
mycotoxin” molecules with no fungicidal effect, aiming to reduce the selection of resistant
mutants [251].

The recent improvements in analytical platforms using integrated high-throughput
technology, such as transcriptomics, proteomics, microbiomics, and metabolomics, pro-
viding multi-level omics data, may help to further identify relevant factors governing
mycotoxin production and shall improve significantly our understanding of the mode of
action of natural bioactive molecules to be used as new eco-friendly targets to mitigate
the issue of food and feed contamination. A combination of 1H NMR and LC-QTOF-MS
analyses tools have been implemented by Atanasova-Pénichon et al. [86] to explore the
interdependence between the biosynthetic pathway of DON and the central metabolism,
comparing the exo- and endo-metabolomes of F. graminearum grown in different culture
media amended with phenolic compounds as toxin-inducing or -repressing conditions.
Metabolome alterations induced by DON-producing Fusarium have also been evidenced
aiming to the characterization of key plant metabolites that may contribute to resistance to
fusarioses or interfere with DON accumulation [109,252–254].

Despite our growing understanding, it is evident that further research will continue
to more accurately define the food safety risks management associated with new eco-
sustainable molecules with different mechanisms of action and to shed light on the factors
contributing to the success of these versatile and interesting compounds as plant protectants.
Given the importance of phenolics in industry, food safety, and human health, and the
growing interest in understanding the regulation and expression of the fungal secondary
metabolome, this field is likely to represent a fertile prairie for the next generation of
researchers.
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