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Abstract: In this work, we proposed an acid hydrolysis-based analytical method for the detection of
Alternaria toxins (ATs) in solanaceous vegetables and their products with solid-phase extraction (SPE)
and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS).
This study was the first to reveal that some compounds in the eggplant matrix bind to altenusin
(ALS). Validation under optimal sample preparation conditions showed that the method met the
EU criteria, exhibiting good linearity (R2 > 0.99), matrix effects (−66.6–−20.5%), satisfying recovery
(72.0–107.4%), acceptable precision (1.5–15.5%), and satisfactory sensitivity (0.05–2 µg/kg for limit
of detection, 2–5 µg/kg for limit of quantification). Out of 393 marketed samples, only 47 samples
were detected, ranging from 0.54–806 µg/kg. Though the occurrence ratio (2.72%) in solanaceous
vegetables could be negligible, the pollution status in solanaceous vegetable products was much
more serious, and the incidences were 41.1%. In the 47 contaminated samples, the incidences were
4.26% for alternariol monomethyl ether (AME), 6.38% for alternariol (AOH) and altenuene (ALT),
42.6% for tentoxin (TEN), and 55.3% for tenuazonic acid (TeA).

Keywords: Alternaria toxins; modified analytical method; solanaceous vegetables; solanaceous
vegetable products; UPLC–MS/MS

Key Contribution: An acid hydrolysis-based analytical method had been development for the
analysis of six Alternaria toxins and this proposed method was applied for their occurrence in
solanaceous vegetables and solanaceous vegetable products in Shanghai, China.

1. Introduction

As secondary metabolites of Alternaria strains, Alternaria toxins (ATs) are readily pro-
duced during unfavorable climatic conditions, insect attacks, and the transport, processing,
and storage of agricultural products, and are widely found in various foods, posing great
potential risks to human and animal health due to their carcinogenic, teratogenic, and
cytotoxic properties [1–4]. Although more than 70 ATs had been confirmed to be poisonous,
contamination and dietary safety assessments had focused on only some ATs, including
alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altenusin (ALS),
tentoxin (TEN), and tenuazonic acid (TeA) [5–7]. Previous studies had revealed that AT
contamination in vegetables [8], fruits [8–10], tomato products [11], wine [12,13], cereal
grains [14,15], dried fruits [16], and juices [12] was widespread, and a high incidence had
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been observed in processed products, ranging from 62–100% [11,12,17–19]. Among these,
vegetables and their products were also considered to be some of the most highly AT-
contaminated foods [20]. Therefore, due to the considerable consumption of these products
and their high susceptibility to Alternaria infection, the occurrence of ATs on vegetables
and their products in China had been studied, revealing the contamination status and
providing data regarding dietary safety risks, which have rarely been reported in China
compared to other countries.

As described in these reports, many analytical methods have been proposed for the
detection of ATs or ATs and other mycotoxins in various food matrixes. Compared with
gas chromatography-mass spectrometry (GC-MS) and liquid chromatography–diode array
detection (LC–DAD), liquid chromatography–tandem mass spectrometry (LC–MS/MS)
was the best choice for detecting ATs due to its excellent sensitivity and high efficiency [2,6,8,
9,21–23]. However, for sample pretreatment, acetonitrile or formic acid-acetonitrile were the
most common extraction solvents following solid-phase extraction (SPE), the QuEChERS
(quick, easy, inexpensive, effective, rugged, and safe) method, or direct injection with the
isotope internal standard method [4,19,24,25]. Given the availability of different matrixes,
SPE cartridges (HLB) and adsorption materials (GCB and C18) had been optimized and
utilized to clean up the samples [1,5,10,22]. However, among these studies, only a few had
achieved the simultaneous detection of six ATs (AOH, AME, ALT, ALS, TEN, and TeA)
in wine [12], herbs [6], and juices [12] via the QuEChERS method or direct analysis. It is
well known that the adjustment and optimization of the sample pretreatment are necessary
for accuracy when the analytes and matrixes have been changed. As shown in this work,
the existing analytical methods would not be applicable because of the binding residue
of ALS. Therefore, a new method needed to be established to ensure the accuracy of the
monitoring results.

Among the various vegetable species, including cucumber, tomato, eggplant, and pep-
per, solanaceous vegetables undoubtedly play an important role in vegetable production,
household consumption, and processed products [26]. Solanaceous vegetables are well
known to be susceptible to Alternaria infection, which occurs more widely in processed
products [11]. Therefore, tomato and its products are the main vegetables used for AT
contamination monitoring and safety evaluation. However, in China, relevant reports have
tended to focus more on the development of methods than on the investigation of contami-
nation status, and due to differences in consumption habits, it has been more realistic and
in line with the requirements for food safety assessment to carry out pollution monitoring
of ATs in the main foods consumed in China, such as chili paste and cherry tomato. In this
work, using solanaceous vegetables and their products as the subject, an AT occurrence
assessment was first carried out to determine the contamination level in Shanghai, which is
often overlooked and has become a monitoring gap in food safety evaluations in China.

Based on validation via the reported analytical methods, a new and reliable analytical
method was developed and validated for the detection of six ATs (AOH, AME, ALT, ALS,
TEN, and TeA) in solanaceous vegetables and their products using acid hydrolysis, SPE,
and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–
MS/MS). To ensure the reliability and credibility of the research results, 939 commercial
samples were collected, including chili paste, eggplant, ketchup, pepper, and tomato sam-
ples. Finally, a survey of AT contamination in solanaceous vegetables and their production
in the Shanghai area was proposed, representing the first time that the regional contam-
ination levels of six ATs in solanaceous vegetables and their products had been studied
in China.

2. Results and Discussion
2.1. Optimization of Extraction
2.1.1. Validation via Reported Methods

By using previously reported methods [10,16], validation was carried out via extraction
with acetonitrile, but the matrix was replaced with chili paste, eggplant, and tomato. As
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shown in Figure 1A, although the results showed that most recoveries were acceptable
(74.3–104.7%), the value for ALS in eggplant was only 16.2% when the spiked level was 1000
µg/kg. Then, regardless of whether the volume of the extraction solution was expanded,
or whether the extraction solvent (such as acetone and methanol) was adjusted and some
substances (such as formic acid and ammonium acetate) were added, there was no obvious
improvement in the recovery of ALS in eggplant.
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Figure 1. Optimization of the extraction conditions (1000 µg/kg, n = 5). (A) Recoveries of Alternaria
toxins from chili paste, eggplant, and tomato by extraction with acetonitrile. (B) Optimization of the
hydrochloric acid concentration at 80 ◦C for 15 min in eggplant. (C) Optimization of the heating time
with 0.1 mol/L hydrochloric acid at 80 ◦C in eggplant. (D) Optimization of the heating time with
0.5 mol/L hydrochloric acid at 80 ◦C in eggplant. (E) Optimization of the heating time with 1 mol/L
hydrochloric acid at 80 ◦C in eggplant. (F) Optimization of the heating temperatures with 0.5 mol/L
hydrochloric acid for 30 min in eggplant.

In line with the structural formula of ALS, there were two hydroxyl groups and one
carboxyl group, and the bound residues may have formed because of the presence of
alkaline compounds in eggplant; in comparison, good results were obtained in tomato due
to its acidity. Additionally, this result was confirmed by spiking 2 mL of ALS standard
solution in acetonitrile (1000 µg/L) into 2 g of eggplant. After vortexing for 15 min, the
concentration of ALS in acetonitrile was only 380 µg/L, showing the existence of a binding
residue. Therefore, as the first step, it was necessary to eliminate the binding residue
between ALS and the eggplant matrix to improve the recovery of ALS.

2.1.2. Optimization of Extraction Conditions

According to the relevant literature, hydrochloric acid and calefaction were selected to
remove the binding residue, which was a conventional and effective approach used in some
analytical methods [23,27–30]. Focusing on the concentration of hydrochloric acid, heating
time, and heating temperature, the optimization of extraction conditions was carried out
using the recovery test in 2.0 g of eggplant (1000 µg/kg) and direct analysis after extraction
in 8 mL of acetonitrile.

After exposure to 80 ◦C for 15 min, the effect of the different concentrations of hy-
drochloric acid (2 mL) on AT recovery was first estimated. The volume of hydrochloric acid
solvent was 2 mL, and the concentrations of hydrochloric acid selected were 0, 0.01, 0.05,
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0.1, 0.5, 1, 2, and 5 mol/L. Figure 1B showed that the recovery of ALS was closely related to
the concentration of hydrochloric acid, but for other ATs, the values were not significantly
changed, ranging from 81.1–113.4%. When the concentration of hydrochloric acid was 0.1,
0.5, or 1 mol/L, the recoveries (56.1–68.9%) of ALS were distinctly higher than the values
(38.9–55.1%) under other conditions reported for the analytical method, which was a signif-
icant improvement over the reported analytical methods. Therefore, at three hydrochloric
acid concentrations (0.1, 0.5 and 1 mol/L) and 80 ◦C, the recoveries were determined while
varying the heating time. Figure 1C–E showed the results at the three different hydrochloric
acid concentrations. At heating times ranging from 0–60 min, the recoveries of ALT, AME,
AOH, and TEN were stable and acceptable, with values of 74.1–111.7%. Although the
range (77.8–113.3%) for TeA was satisfactory, the values decreased when increasing the
hydrochloric acid concentration or heating time, especially when the heating time was
45 min or 60 min. However, for ALS, the heating time had a significant effect on the
results, and all the recoveries increased as the heating time was extended under the three
hydrochloric acid concentrations. At hydrochloric acid concentrations of 0.5 mol/L and
1 mol/L and heating times of 30–60 min, the recoveries of ALS were fairly good, ranging
from 77.4–94.6%. Therefore, 0.5 mol/L and 30 min were selected as the best hydrochloric
acid concentration and heating time, respectively.

Finally, based on the above tests, the heating temperature was also investigated, and
five heating temperatures (25, 40, 60, 80, and 90 ◦C) were included in the experiment. The
results (Figure 1F) showed that the recoveries (75.8–115.5%) of ALT, AME, AOH, and TEN
were all acceptable and were consistent with the results of previous experiments. For TeA,
when the heating temperature was 90 ◦C, the recovery was only 49.0%, but in the lower
temperature conditions, the values were much more stable and acceptable (77.0–108.9%).
The recoveries of ALS increased when increasing the heating temperature (25–80 ◦C),
ranging from 12.4% to 87.8%. However, when the heating temperature was 90 ◦C, similar
to TeA, the value decreased to 48.4%, revealing that both ALS and TeA were degraded at
higher temperatures or longer heating times.

Therefore, the following sample pretreatment conditions were established: 2 mL of
0.5 mol/L hydrochloric acid, 30 min of heating time, and a heating temperature of 80 ◦C.

2.2. Optimization of Clean-Up Conditions

To ensure the accuracy of the method and based on other papers, acetonitrile was used
to extract the target compounds from the hydrochloric acid mixture, and the extraction
solvent volume was optimized. With the volume of acetonitrile set to 2, 4, 6, 8, 12, 16, or
20 mL, the recoveries of ATs in eggplant were determined. As shown in Figure 2A, when
the volume of acetonitrile was in the range of 4–20 mL, the recoveries of ALS, ALT, AME,
AOH, and TEN were 72.2–91.0%, but for TeA, the volume of acetonitrile needed to be at
least 8 mL, attaining recoveries of 81.7–87.3%. Therefore, 8 mL was selected as the volume
of acetonitrile for the extraction solvent.

As shown in the literature and for the standards, SPE is a powerful clean-up tool in
analytical methods [9,13,16,22]. Although some papers have described the application
of SPE for the detection of ATs, to date, simultaneous analysis of all six major toxins via
SPE has not been reported. Therefore, in this work, we attempted to select a suitable SPE
column due to the change in the target object. Eleven kinds of commercial SPE columns
were tested. As shown in Figure 2B, after clean-up using the SPE columns and elution
with 2 mL of acetonitrile, except for the C8 columns, none of the 10 columns could achieve
the simultaneous purification of six target compounds, attaining recoveries of 0.2–123.1%,
which did not meet the requirements of the EU guidelines (70–120%). However, with
the C8 columns, the recoveries (77.7–112.7%) of the six ATs were much better and met
the requirements of analytical methods. Therefore, the C8 columns were selected as the
clean-up tool.
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2.3. Validation Method

For validation, five typical solanaceous vegetables and vegetable products, namely
chili paste, eggplant, ketchup, pepper, and tomato, were selected as the evaluation matrixes.
Moreover, six ATs were isolated through chromatographic separation (Figure 3). As shown
in Table 1, in different concentration ranges and matrixes, the target compounds exhibited
a good linear relationship, with correlation coefficients exceeding 0.998. Then, for the MEs,
as shown in Figure 4, the values in these matrixes indicated obvious matrix inhibition
effects, and the recoveries in unpurified samples and purified samples were −94.7–−47.1%
and −66.6–−20.5%, respectively. All the absolute values for the ME were significantly
lower than those of the unpurified samples, proving that the proposed method had an
obvious impurity removal effect. However, because the values exceeded ±20%, the matrix
standard solution was indispensable for accurate quantitative analysis. The accuracy and
precision were determined via the spiked recovery test. Table 1 showed that in the five
matrixes, all the recoveries and RSDs were acceptable, reaching 72.0–107.4% and below
15.5%, respectively. Calculated according to three signal/noise ratios, the LODs of the
six ATs ranged from 0.05–2 µg/kg in the five matrixes. The LOQ of AME was 5 µg/kg,
and for other ATs, the LOQ was 2 µg/kg. Therefore, the validation results demonstrated
that the proposed analytical method was acceptable and satisfactory, complying with EU
criteria [31].
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Table 1. Method validation for Alternaria toxins in solanaceous vegetables and their products.

Compound Matrix Linear Range
(µg/L)

Calibration
Curve

Correlation
Coefficient (R2)

LOD
(µg/kg)

Average Recovery Rate (%) (RSD (%)) (n = 6)

2 µg/kg 10 µg/kg 1000 µg/kg

ALS Chili paste 1–1000 y = 4802x + 14064 1.000 0.5 77.2 (5.7) 76.0 (2.6) 82.8 (2.8)
Eggplant 1–1000 y = 4548x + 39771 0.999 0.5 75.2 (3.4) 81.0 (8.2) 75.6 (3.0)
Ketchup 1–1000 y = 5456x + 26143 1.000 0.5 75.6 (3.6) 72.0 (2.8) 80.0 (6.4)
Pepper 1–1000 y = 3766x + 21551 1.000 0.5 72.4 (2.3) 76.0 (4.5) 81.6 (4.6)
Tomato 1–1000 y = 5304x + 47966 0.999 0.5 76.8 (3.4) 76.6 (3.5) 82.8 (3.4)

ALT Chili paste 1–1000 y = 1400x + 5590 1.000 0.5 100.4 (15.5) 96.2 (7.5) 91.2 (3.5)
Eggplant 1–1000 y = 1963x − 1128 0.999 0.5 85.4 (6.7) 85.8 (5.5) 91.2 (4.9)
Ketchup 1–1000 y = 1780x + 1184 1.000 0.5 97.4 (13.0) 82.6 (5.4) 98.0 (12.5)
Pepper 1–1000 y = 1219x + 6487 1.000 0.5 96.4 (13.0) 91.0 (4.2) 92.6 (6.6)
Tomato 1–1000 y = 1329x + 9554 1.000 0.5 103.6 (11.6) 89.0 (4.3) 90.8 (5.9)

AME Chili paste 5–1000 y = 290x + 2029 0.999 2 93.0 (3.1) a 87.8 (12.8) 92.6 (8.0)
Eggplant 5–1000 y = 541x + 5632 0.999 2 105.2 (13.7) a 91.0 (1.3) 89.8 (4.1)
Ketchup 5–1000 y = 627x + 6041 0.999 2 85.4 (10.1) a 86.2 (3.3) 92.8 (10.8)
Pepper 5–1000 y = 484x + 1091 1.000 2 103.2 (12.2) a 93.2 (6.3) 89.2 (2.9)
Tomato 5–1000 y = 607x + 13240 0.998 2 87.6 (14.2) a 96.6 (3.2) 96.0 (2.4)

AOH Chili paste 5–1000 y = 840x + 6452 1.000 2 86.0 (14.1) 93.8 (7.2) 92.2 (3.5)
Eggplant 1–1000 y = 1291x + 9660 1.000 0.5 86.8 (5.3) 101.4 (2.6) 95.2 (3.6)
Ketchup 1–1000 y = 1559x + 11605 0.998 0.5 107.4 (4.7) 89.2 (6.6) 95.8 (10.8)
Pepper 1–1000 y = 875x + 8618 1.000 0.5 85.4 (14.8) 92.6 (5.3) 92.4 (4.2)
Tomato 1–1000 y = 1056x + 12184 0.999 0.5 84.2 (15.1) 89.8 (7.1) 93.0 (3.8)

TeA Chili paste 0.5–1000 y = 9007x + 59591 1.000 0.2 73.2 (3.5) 75.4 (4.8) 78.6 (3.6)
Eggplant 0.1–1000 y = 12988x + 70681 1.000 0.05 74.8 (2.4) 77.2 (2.8) 76.8 (6.4)
Ketchup 0.1–1000 y = 13465x + 36066 1.000 0.05 75.4 (4.5) 76.2 (3.3) 82.0 (4.6)
Pepper 0.5–1000 y = 10670x + 22379 1.000 0.2 72.6 (3.3) 75.2 (1.5) 77.8 (3.7)
Tomato 0.5–1000 y = 10876x + 70959 1.000 0.2 75.8 (2.9) 75.8 (3.4) 81.8 (7.7)

TEN Chili paste 0.1–1000 y = 12846x + 23279 1.000 0.05 87.6 (8.2) 80.6 (5.5) 96.0 (2.4)
Eggplant 0.1–1000 y = 14980x + 31438 1.000 0.05 86.8 (1.5) 84.0 (2.4) 93.6 (3.8)
Ketchup 0.1–1000 y = 15575x + 12590 1.000 0.05 94.0 (11.2) 78.2 (4.2) 96.0 (10.7)
Pepper 0.1–1000 y = 12366x + 25385 1.000 0.05 90.2 (2.1) 94.6 (4.1) 93.4 (3.5)
Tomato 0.1–1000 y = 14814x + 26054 1.000 0.05 94.4 (10.6) 92.2 (5.9) 92.4 (3.9)

a: The lowest spiked level of AME was 5 µg/kg.
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2.4. Method Application

In 2019, a total of 939 commercialized samples were randomly collected from super-
markets, online vendors and farmer’s markets in Shanghai, China. The collected samples
comprised 33 chili paste, 244 eggplant, 23 ketchup, 450 pepper, and 189 tomato (including
cherry tomato) samples. As shown in Table 2, overall, the results showed that only 5.00%
were (47/939) positive samples among the collected samples, and except for ALS, the other
five target compounds were detected, with levels ranging from 0.54–806 µg/kg. Although
the AT contamination range in the solanaceous vegetables was low (only 2.72%; 24/883),
the rate in the solanaceous vegetable products was much higher, reaching 41.1% (23/56).
Among the samples, the rates of positive samples, from high to low, were as follows: 65.2%
(15/23) for ketchup, 24.2% (8/33) for chili paste, 3.70% (7/189) for tomato, 2.46% (6/244) for
eggplant, and 2.44% (11/450) for pepper. In general, the contamination rates (2.44–3.70%)
in solanaceous vegetables were not significantly different among eggplant, pepper, and
tomato, but the values in ketchup and chili paste reached up to 65.2% and 24.2%, respec-
tively, proving that AT contamination in solanaceous vegetable products was greater than
that in solanaceous vegetables. Although there had been reports on AT contamination
in vegetables, some studies had focused on other foods [5,10,12–14]. Among them, some
studies in several countries revealed the AT contamination in ketchup, and the positive
rates of the ketchup samples were much higher (40–92%), and the pollution level of ATs
ranged from 42–814 µg/kg, which was similar to the results of our study [11,18,19,32,33].

In contrast, AOH, AME, ALT, TEN, and TeA were detected in solanaceous vegetables
and solanaceous vegetable products, but the degree of contamination varied with the matrix
and AT. Among them, TeA and TEN were the two toxins with the highest contamination
frequencies, accounting for 55.3% (26/47) and 42.6% (20/47) of the positive samples,
respectively. TeA and TEN were recognized as the most widespread of these toxins, present
in materials such as ketchup [11,32], wolfberry [5], grain [17], food commodities [34], and
grain-based products [14]. As the most frequently detected toxin, the concentrations of TeA
in the five matrixes were in the range not detected (ND) to 19.3 µg/kg in chili paste, ND–214
µg/kg in eggplant, ND–337 µg/kg in ketchup, ND-806 µg/kg in pepper, and ND in tomato.
The concentrations of TEN in the five matrixes were in the range of ND–0.56 µg/kg in chili
paste, ND–6.44 µg/kg in eggplant, ND–2.81 µg/kg in ketchup, ND–13.1 µg/kg in pepper,
and ND–6.43 µg/kg in tomato. The TeA-positive samples were solanaceous vegetable
products (four chili paste and fourteen ketchup) and related solanaceous vegetables (two
eggplant and six pepper samples). This was very different from the result for TEN, as the
numbers of TEN-positive samples of solanaceous vegetables and solanaceous vegetable
products were fifteen (four eggplant, five pepper, and six tomato samples) and five (two
chili paste and three ketchup samples), respectively.
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Table 2. Contamination by Alternaria toxins in solanaceous vegetables and their products in Shang-
hai, China.

Matrix Npos/N Nqual Nquant Avgquan (µg/kg) Minquan (µg/kg) Maxquan (µg/kg)

Chili paste (N = 33)
ALS 0/33 0 0 - - -
ALT 0/33 0 0 - - -
AME 0/33 0 0 - - -
AOH 0/33 0 0 - - -
TeA 4/33 0 4 12.1 3.44 19.3
TEN 2/33 2 0 - -

Eggplant (N = 244)
ALS 0/244 0 0 - - -
ALT 0/244 0 0 - - -
AME 0/244 0 0 - - -
AOH 0/244 0 0 - - -
TeA 2/244 0 2 128 41.8 214
TEN 4/244 2 2 4.27 2.10 6.44

Ketchup (N = 23)
ALS 0/23 0 0 - - -
ALT 0/23 0 0 - - -
AME 2/23 0 2 12.3 11.9 12.6
AOH 3/23 0 3 8.06 5.75 10.3
TeA 14/23 0 14 85.1 5.61 337
TEN 3/23 2 1 2.81 2.81 2.81

Pepper (N = 450)
ALS 0/450 0 0 - - -
ALT 2/450 0 2 18.2 16.3 20.0
AME 0/450 0 0 - - -
AOH 0/450 0 0 - - -
TeA 6/450 0 6 157 7.29 806
TEN 5/450 2 3 8.07 2.28 13.1

Tomato (N = 189)
ALS 0/189 0 0 - - -
ALT 1/189 0 1 5.29 5.29 5.29
AME 0/189 0 0 - - -
AOH 0/189 0 0 - - -
TeA 0/189 0 0 - - -
TEN 6/189 4 2 4.58 2.72 6.43

Npos/N: Number of positive samples/number of samples analyzed, Nqual: number of samples above LOD but
below LOQ, Nquant: number of quantified samples, Avgquan: mean concentrations of Alternaria toxins in quantified
samples, Minquan: minimum concentrations of Alternaria toxins in quantified samples, Maxquan: maximum
concentrations of Alternaria toxins in quantified samples.

However, for AOH, AME, and ALT, there were very few positive samples, with propor-
tions of 6.38% (3/47), 4.26% (2/47), and 6.38% (3/47), respectively. Additionally, the concen-
trations were also much lower than those of TeA or TEN, with values of 5.29–20 µg/kg for
AOH, 11.9–12.6 µg/kg for AME, and 5.75–10.3 µg/kg for ALT. All the samples positive for
AOH and AME were ketchup samples; in contrast, ALT was detected only in solanaceous
vegetables (one tomato and one pepper).

Therefore, from the above survey results, AT contamination in solanaceous vegetable
products is higher and more widespread than that in solanaceous vegetables. Compared
with the reported papers, the rates of positive samples or the pollution level in ketchup
were prominent, which was similar to the results of our study [32,33]. The low occurrence
rate of Alternaria infection may be due to the shorter preservation and transportation time
of the commercialized solanaceous vegetables. The other reason may be the concentration
factors in the processing of the vegetable products. For example, the dry matter of tomatoes
is 5–6%, while in ketchup it is 28–30%; this difference may cause the higher detection rates
of ATs in the vegetable products. Anyways, the current situation of severe contamination
in solanaceous vegetable products led to concerns regarding food safety, and it prompted
us to study the contamination in processed foods.
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3. Conclusions

In light of the ALS binding residue present in the alkaline matrix, the strategy involving
the addition of acid and heating at an optimal temperature and time was proposed. The
development method was first established for detecting six ATs in eggplant and was also
validated in other solanaceous vegetables and their products for monitoring the six ATs in
accordance with the EU criteria [31].

Furthermore, a survey of AT contamination was carried out in Shanghai, China. The
experimental results for a total of 939 commercialized samples indicated that the AT levels in
solanaceous vegetables were negligible with (2.72%, 24/883), but the incidence in solanaceous
vegetable products was much higher (41.1%, 23/56). Among the six toxins detected (AOH,
AME, ALT, TEN, and TeA), as the most frequently detected ATs, TEN and TeA were present
at similar levels, with a detection rate of 42.6–55.3% in the positive samples, which was much
higher than the values for AOH, AME, and ALT (4.26–6.38%). This study was the first to
describe the issue of mycotoxin-bound residues in a plant origin matrix, and the proposed
analytical method also led to the creation of a new preprocessing approach. Additionally,
this study revealed AT contamination in solanaceous vegetables and their products in China,
which revealed the high detection rate in the solanaceous vegetable products.

4. Materials and Methods
4.1. Chemicals, Reagents, and Materials

The AOH standard (95% purity) was purchased from Cayman Chemical (Ann Arbor, MI,
USA) and the ALT standard (98% purity) was purchased from Toronto Research Chemicals
(North York, ON, Canada). The AME (99.5% purity), TeA (99.5% purity), and ALS (99.4%
purity) standards were purchased from AdipoGen Life Sciences (San Diego, CA, USA), and
the TEN standard was purchased from LKT Laboratories (Sao Paulo, Brazil). HPLC-grade
solvents (acetonitrile and methanol) were purchased from Merck (Darmstadt, Germany).
Octylsilane (C8) (100 mg, 1 mL), ethylsilane (C2) (100 mg, 1 mL), phenyl (PH) (100 mg, 1 mL),
primary secondary amine (PSA) (100 mg, 1 mL), graphitized carbon black (GCB) (100 mg,
1 mL), and alumina (Al2O3) (100 mg, 1 mL) columns were obtained from Shimadzu Corp.
(Kyoto, Japan). Aminopropyl (HN2) (500 mg, 6 mL) and florisil (500 mg, 3 mL) columns
were obtained from Agilent Technologies Inc. (Wilmington, DE, USA). Octadecylsilane (C18)
(200 mg, 3 mL), hydrophilic–lipophilic balance (HLB) (60 mg, 3 mL), and silica (Si) (1 g, 6 mL)
columns were obtained from ANPEL Laboratory Technologies Inc. (Shanghai, China).

4.2. Sample Preparation

Approximately 2.0 g of homogenized sample were weighed into 50 mL polytetraflu-
oroethylene (PTFE) centrifuge tubes. After adding 2 mL of 0.5 mol/L hydrochloric acid
solvent, the tube was heated in an 80 ◦C water bath for 30 min. Then 8 mL of acetonitrile
were added to the tube at room temperature. After shaking vigorously for 3 min, 2 g of
NaCl were added to the tube, and the tube was shaken for 30 s and centrifuged at 4500 rpm
for 5 min in preparation for cleanup.

The supernatant was transferred into the SPE cartridge for the cleanup. In the SPE
cleanup procedure, the C8 cartridge was pre-eluted with 1 mL of acetonitrile, then 4 mL of
the extraction solution were loaded into the C8 cartridges, and 2 mL of acetonitrile were
loaded onto the cartridge for elution. The collected eluate was dried in a 60 ◦C water bath
under nitrogen. The sample was redissolved in 1 mL of acetonitrile and passed through a
0.22 µm PTFE filter for analysis.

4.3. Apparatus and UPLC–MS/MS Conditions

Detection was performed with a UPLC-MS/MS instrument (triple–quadrupole mass
spectrometer) from Shimadzu (Kyoto, Japan) equipped with an electrospray ionization
source. Separation of the ATs was achieved using a Waters ACQUITY UPLC BEH C18
(2.1 mm × 50 mm, 1.7 µm) column (Waters, Milford, MA, USA). The injection volume,
column temperature, and flow rate were set at 5 µL, 40 ◦C, and 0.4 mL/min, respectively.
The mobile phase included acetonitrile (A) and 0.1% formic acid water, with the follow-
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ing elution gradient: 0–0.5 min (10% A), 0.5–1.5 min (10–90% A), 1.5–3.0 min (90% A),
3.0–3.5 min (90–10% A), and 3.5–5.0 min (10% A).

The low-energy collision dissociation tandem–mass spectrometric analysis (CID–
MS/MS) conditions were set using the following parameters: 1.5 mL/min nebulizing
gas flow (99.9%, N2), 400 ◦C heat block temperature, 15 mL/min drying gas flow (99.9%,
N2), 3.5 kV interface voltage, and 230 kPa collision-induced dissociation gas pressure
(99.999%, Ar). After automatic optimization, the MS parameters of the ATs were deter-
mined and are shown in Table 3. Quantification was performed using multiple reaction
monitoring (MRM) of selected precursor ion→ product ions transitions.

Table 3. MS/MS parameters for analyzing Alternaria toxins.

Compound Structure Retention
Time (min)

Precursor
Ion (m/z)

Product Ion
(m/z) Q1 Pre Bias (v) CE

(v) Q3 Pre Bias (v)
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4.4. Method Validation

As an essential step, validation of the analytical method was carried out by determin-
ing a series of parameters, including the linear curve, matrix effect (ME), accuracy, precision
(relative standard deviations, RSDs), limit of detection (LOD), and limit of quantitation
(LOQ). A series of standard solutions with five concentrations were prepared, and the
linear curve was described using the concentrations and the instrument response. The
ME was obtained via the following formula: ME = (the slope of calibration curves in the
matrix—the slope of calibration curves in solvent)/the slope of calibration curves in solvent
× 100%. If the ME was within ±20%, it could be ignored; otherwise, there was an obvious
ME, and a matrix standard solution was necessary to ensure the accuracy of the analytical
methods [35]. After spiking with three different levels and five repetitions in five matrixes
(chili paste, eggplant, ketchup, pepper, and tomato), the accuracy and precision of the
proposed method were determined. The LOD was the concentration corresponding to three
times the signal/noise ratio [7], and the LOQ was considered the lowest spiked level [36].
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