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Abstract: After aflatoxins, ochratoxin A (OTA) is the most studied mycotoxin due to the 
toxicological significance in human and animal diets. OTA presence has been extensively 
reported worldwide in the last decade in several agricultural products. The main OTA 
producer in tropical and temperate climates is Aspergillus carbonarius followed by species 
belonging to A. niger aggregate. Currently, many scientists worldwide have studied the 
influence of water activity and temperature for growth and biosynthesis of OTA by these 
species on synthetic media. This article reviews ecophysiological studies of Aspergillus 
section Nigri strains on synthetic media and natural substrates. The results of these 
investigations suggest that significant amounts of OTA can be produced in only five days 
and that the use of different storage practices, such as aW and temperature levels  
below 0.930 and 15 °C, respectively, allow controlling fungal contamination and minimizing 
the OTA production in several products as peanuts, corn, dried grapes and derived products 
for human consumption. 
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1. Introduction 

The Aspergillus genus is distributed worldwide but is most commonly isolated from latitudes 26°–35° 
north or south of the Ecuador. Therefore, these fungi are common in warm and temperate climates. 
Their ability to develop under conditions of high temperature and relatively low aw allows them to 
adapt and colonize a diverse array of cereals and dried fruits [1]. 

Some of the species belonging to this genus, A. niger, A. sojae and A. oryzae, are known as 
producers of industrial enzymes and metabolites able to give flavor to food. However, there are other 
species capable to infect plant tissue and produce mycotoxins [2]. Ochratoxins—the second mycotoxin 
group in importance after aflatoxins—includes at least nine metabolites that are similar in structural 
terms, of which ochratoxin A (OTA) is the most studied metabolite due to its occurrence in food and 
feed and toxicological significance in human and animal diets. This toxin is known to have 
nephrotoxic, immunotoxic, teratogenic and carcinogenic effects on animals. The International Agency 
for Research of Cancer (IARC) has classified OTA as a group 2B carcinogen based on toxicity on  
rats [3,4]. For these reasons, the European Commission has fixed maximum limits for OTA in several 
agricultural products destined for human and animal consumption [5]. 

OTA presence has been extensively reported worldwide in the last decade in several products, such 
as coffee [6,7], wines [8–14], beers [15–17], grapes [18–20], dried grapes [7,21–24], cereals and 
derivatives destined for humans and animals [25–34], oilseeds and derivates products [35] and 
occasionally, in body fluids, plasm, meat and kidneys of several animal species [36,37].  

In the 90s, this toxin was considered to be only produced by Penicillium verrucosum in temperate 
and cold climates, and A. ochraceus and related species in warm and tropical climates. Due to their 
physiological differences, each of these species occupies a particular ecological niche. In the last years, 
several studies reported the presence of potential OTA producers Aspergillus section Nigri species in 
food and feed; considering Aspergillus carbonarius as the main OTA producer followed by species 
belonging to the A. niger aggregate [38].  

In Argentina, as in other temperate and tropical countries, P. verrucosum and A. ochraceus have not 
been reported as frequent colonizers in agricultural products, while A. carbonarius, A. niger aggregate 
species and monoseriates Aspergillus species such as A. aculeatus and A. japonicus have been 
frequently isolated from several agricultural products, e.g., coffee beans, red wine, dried grapes, corn 
and peanut kernels and feeds. OTA was detected in some of these substrates except in coffee beans and 
corn kernels [10,13,21,25,35,39–43]. In others South American countries, several authors have also 
informed the presence of this species in cocoa and coffee beans, grapes and poultry feed [44–48]. 

Crops contaminated with mycotoxins reflect a loss of income for agricultural producers. The 
strategies that prevent the entry of these metabolites in the food chain protect public health and reduce 
economic losses caused by contaminated agricultural products.  

The knowledge of the ecophysiology of OTA producing fungi and ecological factors that influence 
OTA production is essential to optimize the implementation of preventive strategies aimed at 
controlling the sanitary quality of raw materials and/or products susceptible to fungal colonization. 

There are multiple factors significantly involved in the development of section Nigri species and 
secondary metabolites biosynthesis, e.g., humidity, temperature, presence of oxygen and carbon 
dioxide, incubation time, substrate composition, loss of grain integrity caused by insects or 
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mechanical/thermal damage, fungal inoculum, and the interaction/competition between other 
contaminated fungal species. Of these factors, water activity (aW) and temperature have shown the 
greatest effects on growth and OTA production. In general, the toxigenic species are not aggressive 
pathogens, but are often well adapted to substrates with low humidity, and they can easily colonize 
cereal grains and oilseeds that are stored under inappropriate environmental conditions. 

In recent years, scientific studies have focused mainly on the influence of environmental factors on 
OTA production by P. verrucosum and A. ochraceus since they are recognized as the main producer 
species. Several ecophysiological studies on A. ochraceus were reported in the two last decades [49–55] 
as well as studies on P. viridicatum, nowadays classified as P. verrucosum [56–59]. 

Currently, many scientists worldwide have studied the influence of water activity and temperature 
for biosynthesis of OTA by other ochratoxigenic species belonging to section Nigri such as A. niger 
aggregate and A. carbonarius [60–79], although only a few studies have reported the effect of 
incubation time on the amount of OTA produced by some strains belonging to the genera Aspergillus 
section Nigri [80–82]. 

Besides environmental factors, biological factors have a noticeable influence on growth and OTA 
production. Some of these biological factors are intrinsic; hence, depend only on the genetic basis of 
the fungal strain. The strains vary in their ability to produce OTA as well as the quantity produced. 
Recently, several studies have allowed the detection of some genes that may be involved in the 
biosynthesis of this toxin. Initially, genes encoding a polyketide synthase of A. ochraceus [83,84],  
P. verrucosum [85] and P. nordicum [86] were characterized; but these genes had low homology 
between the last two species. The simultaneous presence of different bacteria or other fungi in the 
substrates also influences the growth of these ochratoxigenic species and OTA production.  

2. Ecophysiological Studies of Aspergillus Section Nigri Strains on Synthetic Media 

Several authors have shown minima and optima conditions for mycelial growth of ochratoxigenic 
species belonging to Aspergillus section Nigri on different culture media [60,64–72,76,77,79,80,82] 
(Table 1). In these studies, growth rates of Aspergillus section Nigri species showed a marked decrease 
with the reduction of temperature and water activity level, and were not higher than 3 mm day−1  
at 15 °C at the lowest aW. The highest growth rates of these species found at optimal conditions differ 
depending on the agar media used. The highest growth rates achieved by A. carbonarius species was 
found on CYA by Romero et al. [79] at 0.95 aW and 30 °C (17.46 mm day−1) with a strain isolated 
from Argentinean dried vine fruits and Leong et al. [77] reported a maximum growth rate 
(11.35 mm day−1) for an A. niger aggregate strain at 0.98 aW and 35 °C on a simulated grape juice 
medium. However, the literature shows that in most combinations of temperature and aw tested, 
A. niger grew more rapidly than A. carbonarius. The reproducibility of these optima for growth 
indicates that A. niger aggregate has a higher optimum temperature for growth than A. carbonarius and 
possibly also takes greater advantage of high water activities for rapid growth. In general, the optimum 
conditions for growth of assayed strains belonging to the A. niger aggregate and A. carbonarius strains 
were similar than that reported by the former authors. These optimal conditions for growth by 
Aspergillus section Nigri strains are in agreement with previous European works [60,63,70,81],  
which reported optimal growth rates for A. carbonarius strains at temperatures between 30–35 °C  
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and 0.950–0.980 aW. The environmental conditions of growth inhibition observed by Astoreca et al. 
[64] agree with those obtained previously on synthetic media with strains of section Nigri isolated 
from maize grains [87] and from grapes [60,70,81]. In another study from Argentina, Romero et al. 
[79] evaluated the growth rate of A. carbonarius strains isolated from dried grapes at different aW and 
temperature conditions and the results showed that the inhibition of growth occurred at 15 °C  
among 0.825 to 0.900 aW, and 25 °C at 0.825 aW. 

Ochratoxin A production in relation to ecophysiological factors by Aspergillus section Nigri strains 
was evaluated by several authors on synthetic media [62,63,65–71,73,81,82] (Table 2).  

Astoreca et al. [65] evaluated the influence of ecophysiological factors on OTA production by 
six A. niger aggregate strains isolated from peanut seeds, corn kernels and coffee beans; and 
two A. carbonarius strains isolated from dried grapes in Argentina. These authors observed that the 
optimum temperature for OTA production was 25 °C for all strains belonging to the A. niger 
aggregate; while the A. carbonarius strains produced the highest OTA levels at 25 and 30 °C, without 
significant differences in production profiles between these strains. These OTA production patterns 
agree with those previously reported by Bellí et al. [72]. In this study, the results of OTA production 
by Aspergillus section Nigri species on a medium similar to grape composition were modeled by a 
multiple linear regression and predictive models were obtained. The results showed that high levels of 
aW (0.960 and 0.995) favored OTA production by A. carbonarius and A. niger aggregate strains as 
Bellí et al. [81], Esteban et al. [61,62], Joosten et al. [6] and Romero et al. [78] reported. On the other 
hand, Oueslati et al. [80] evaluated the effect of three alternating temperatures cycles (20/30, 20/37 
and 25/42 °C) and photoperiod on growth and OTA production of six strains of A. carbonarius from 
Tunisian grapes on synthetic nutrient medium. The different temperature regimes assayed affected 
significantly both the mycelial growth and the OTA production. The best growth and OTA production 
were recorded with the 20/30 °C cycle. 

Several studies have detected similar minimum aW level, 0.90–0.94 for OTA production by 
Aspergillus niger aggregate and A. carbonarius strains on different synthetic media (Table 2), whereas, 
Romero et al. [78] reported A. carbonarius strains able to produce traces amounts of OTA at lowest aW 
level (0.87) on CYA medium. The results present in the literature shows that different substrates 
significantly affect the optimum and the minimum aW conditions for OTA synthesis. 

3. Ecophysiological Studies of Aspergillus Section Nigri Strains on Natural Substrates 

Results obtained on synthetic substrates may not accurately represent the real fungal ability to 
produce OTA on a natural substrate. Therefore, studies on OTA production have been frequently 
carried out on natural and common substrates for ochratoxigenic A. ochraceus and P. verrucosum, 
such as cereal grains, green coffee beans and grapes, but there is little information about the influence 
of aW and temperature on growth parameters and OTA production of Aspergillus section Nigri strains 
on natural substrates.  
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Table 1. Optima and minima conditions (temperature and water activity) for Aspergillus section Nigri species growth on different culture media. 

Fungal species Medium Tested temperature
range (°C) 

Optimum 
temperature (°C) Optimum aW Minimum aW References 

A. section Nigri 
Grains and fruits based 15–30 30 0.97 0.85 Astoreca et al. [64] 

Synthetic nutrient 10–37 30–37 0.98 - Bellí et al. [72] 
CYA-YES 5–45 30–35 - - Esteban et al. [82] 

A. niger aggregate

Corn grains 15–30 30 0.95 0.91 Astoreca et al. [66] 
Peanut seeds 15–30 30 0.99 0.91 Astoreca et al. [67] 
Coffee beans 15–30 25 0.99 0.93 Astoreca et al. [68] 

Synthetic nutrient 10–37 25 0.95 - Selouane et al. [76] 
Simulated grape juice 15–35 35 0.98 0.92 (15 °C) Leong et al. [77] 

A. carbonarius 

Synthetic grape juice 10–40 35 0.98 0.88 Mitchell et al. [60] 
Dried grapes 15–30 25–30 0.99 0.91 Astoreca et al. [64] 

Synthetic grape 15–37 30 0.95–0.99 0.90 (15 °C) Bellí et al. [70] 
Synthetic nutrient 20–28 28 - - Bellí et al. [71] 
Synthetic nutrient 10–37 25 0.95 - Selouane et al. [76] 

Simulated grape juice 15–35 30 0.965 0.92 (15 °C) Leong et al. [77] 
CYA 15–35 30 0.95 0.85 Romero et al. [79] 

Synthetic nutrient 
20/30 
20/37 
25/42 

20/30 - - Oueslati et al. [80] 

CYA: Czapek Yeast Autolysate agar;  
YES: Yeast Extract Sucrose agar;  
-: Data not reported. 
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Table 2. Optima and minima conditions for ochratoxin A (OTA) production by Aspergillus section Nigri species on different culture media. 

Fungal species Medium Tested temperature
range (°C) 

Optimum 
temperature (°C) Optimum aW Minimum aW References 

A. section Nigri Grains and fruits based 15–30 25–30 0.97–0.99 0.89–0.90 Astoreca et al. [65] 
CYA-YES 5–45 25 - - Esteban et al. [82] 

A. niger aggregate

CYA-YES - - 0.99 0.94 Esteban et al. [61] 
15–30 15 0.98 0.90 Esteban et al. [62] 

Corn grains 15–30 25 0.97 0.91–0.93 Astoreca et al. [66] 
Peanut seeds 15–30 25 0.97 (25°C) 0.91 Astoreca et al. [67] 
Coffee beans 15–30 30 0.99 0.95 Astoreca et al. [68] 

Synthetic nutrient 10–37 30–37 0.90–0.95 - Selouane et al. [76] 
Simulated grape juice 15–35 15 0.95 - Leong et al. [77] 

Synthetic nutrient 10–37 30 0.995 - Bellí et al. [81] 

A. carbonarius 

Coffee cherries 15–35 25 0.99 0.94 Joosten et al. [6] 
Synthetic grape juice 10–40 15–20 0.95–0.98 - Mitchell et al. [60] 

Dried grapes 15–30 30 0.99 0.91 Astoreca et al. [69] 
Synthetic grape 15–37 20 0.95–0.99 0.90 Bellí et al. [70] 

Synthetic Nutrient 20–28 28 - - Bellí et al. [71] 
Table grapes 20–30 30 0.99 - Bellí et al. [73] 

Synthetic nutrient 10–37 25–30 0.95–0.99 - Selouane et al. [76] 
Simulated grape juice 15–35 15 0.95–0.98 - Leong et al. [77] 

CYA 15–35 15 0.95 0.87 Romero et al. [78] 

Synthetic nutrient 
20/30 
20/37 
25/42 

20/30 - - Oueslati et al. [80] 

Synthetic nutrient 10–37 25 0.96 - Bellí et al. [81] 
CYA: Czapek Yeast Autolysate agar;  
YES: Yeast Extract Sucrose agar;  
-: Data not reported. 
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Most of the studies were done on solid synthetic and different substrate based media. The first study 
carried out with OTA producing strains belonging to Aspergillus section Nigri on natural substrate was 
reported by Joosten et al. [6], who studied the effect of environmental factors on growth parameters 
and OTA production by A. carbonarius strains on coffee cherries in Thailand. These authors showed 
that the optimal conditions of OTA production by A. carbonarius were 25 °C and 0.990 aW. In other 
study, four ochratoxigenic A. carbonarius strains isolated from wine grapes were used to inoculate 
artificially damaged and undamaged table grapes [73]. Grapes were stored at three levels of relative 
humidity (80, 90 and 100%) and at two temperatures (20 and 30 °C). The results showed that 
temperature and relative humidity significantly influenced both infection and toxin content. At 30 °C, 
the detected OTA amount was higher than at 20 °C in most of the treatments. The highest relative 
humidity (100%) led to maximum OTA amounts while no significant differences were found  
between 90% and 80% in the OTA content.  

Recently, Astoreca et al. [66–69] reported on the influence of environmental factors  
(aW: 0.995, 0.973, 0.951, 0.928 and 0.910 and temperature: 15, 25 and 30 °C) on lag phase, growth 
rate, and OTA production by strains belonging to A. niger aggregate on irradiated corn, peanuts, dried 
grapes and coffee beans at 7, 14 and 21 days of incubation. The observed general pattern of in vitro 
growth [64,65] was different from those obtained on the natural substrates. The assayed strains on 
irradiated peanut seeds showed the shortest lag phases at the optimum conditions (7 h at 30 °C  
and 0.995) while the other strains reached the exponential phases only after around 35.3, 13.2 and 94.8 h 
at the same condition on irradiated corn, dried grapes and coffee beans, respectively. Under optimal 
conditions (0.973 aW, 25 °C and seven days of incubation), the OTA production in irradiated corn, 
peanut and dried grapes were significantly greater than the concentrations obtained by these strains on 
the medium based on each substrate.  

Marín et al. [88] developed a suitable validated model to predict the growth and OTA production 
boundaries by an A. carbonarius strain in the function of moisture content and storage temperature of 
pistachios. These authors showed that OTA accumulation was mainly a function of the temperature of 
storage, with a sharp increase at <15–20 °C; this value was very different from 30 to 35 °C, which was 
optimum for growth. This suggests that the substrate combined with certain environmental conditions 
on which strains are developed affects OTA production. According to these results, significant 
amounts of OTA on natural substrates could be produced in only five days at aW ≥ 0.970 in a wide 
temperature range. These studies of predictive models represent an essential improvement to the 
quality and safety of food, allowing the prediction of toxin contamination. 

4. Conclusions  

In general, temperature and aW range for OTA production is more restricted than fungal growth, 
both on natural substrate but also on the culture media based substrate. The knowledge of the 
ecophysiology of strains belonging to the genera Aspergillus section Nigri is critical in the 
development and prediction of risk models for contamination of both raw materials and finished foods 
with these species under the interaction of several environmental parameters. The use of different 
storage practices, such as aW and temperature levels below 0.930 and 15 °C, respectively, allow 
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controlling fungal contamination and minimizing OTA production in several products as peanuts, corn, 
dried grapes and derived products for human consumption. 
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