Next Article in Journal
Isolation and Biochemical Characterization of Rubelase, a Non-Hemorrhagic Elastase from Crotalus ruber ruber (Red Rattlesnake) Venom
Next Article in Special Issue
Mucosal Injuries due to Ribosome-Inactivating Stress and the Compensatory Responses of the Intestinal Epithelial Barrier
Previous Article in Journal
Immunotoxins and Anticancer Drug Conjugate Assemblies: The Role of the Linkage between Components
Previous Article in Special Issue
Inhibition of the Unfolded Protein Response by Ricin A-Chain Enhances Its Cytotoxicity in Mammalian Cells
Article

Gi/o Protein-Dependent and -Independent Actions of Pertussis Toxin (PTX)

1
Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya, Rajathevi, Bangkok 10400, Thailand
2
Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
*
Author to whom correspondence should be addressed.
Received: 13 April 2011 / Revised: 14 June 2011 / Accepted: 16 June 2011 / Published: 15 July 2011
(This article belongs to the Special Issue Novel Properties of Well-Characterized Toxins)
Pertussis toxin (PTX) is a typical A-B toxin. The A-protomer (S1 subunit) exhibits ADP-ribosyltransferase activity. The B-oligomer consists of four subunits (S2 to S5) and binds extracellular molecules that allow the toxin to enter the cells. The A-protomer ADP-ribosylates the α subunits of heterotrimeric Gi/o proteins, resulting in the receptors being uncoupled from the Gi/o proteins. The B-oligomer binds proteins expressed on the cell surface, such as Toll-like receptor 4, and activates an intracellular signal transduction cascade. Thus, PTX modifies cellular responses by at least two different signaling pathways; ADP-ribosylation of the Gαi/o proteins by the A-protomer (Gi/o protein-dependent action) and the interaction of the B-oligomer with cell surface proteins (Gi/o protein-independent action). View Full-Text
Keywords: A-protomer; ADP-ribosylation; B-oligomer; Gi/o-dependent; Gi/o-independent; heterotrimeric G protein; G protein-coupled receptor; pertussis toxin; Toll-like receptor 4 A-protomer; ADP-ribosylation; B-oligomer; Gi/o-dependent; Gi/o-independent; heterotrimeric G protein; G protein-coupled receptor; pertussis toxin; Toll-like receptor 4
Show Figures

Figure 1

MDPI and ACS Style

Mangmool, S.; Kurose, H. Gi/o Protein-Dependent and -Independent Actions of Pertussis Toxin (PTX). Toxins 2011, 3, 884-899. https://0-doi-org.brum.beds.ac.uk/10.3390/toxins3070884

AMA Style

Mangmool S, Kurose H. Gi/o Protein-Dependent and -Independent Actions of Pertussis Toxin (PTX). Toxins. 2011; 3(7):884-899. https://0-doi-org.brum.beds.ac.uk/10.3390/toxins3070884

Chicago/Turabian Style

Mangmool, Supachoke; Kurose, Hitoshi. 2011. "Gi/o Protein-Dependent and -Independent Actions of Pertussis Toxin (PTX)" Toxins 3, no. 7: 884-899. https://0-doi-org.brum.beds.ac.uk/10.3390/toxins3070884

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Search more from Scilit
 
Search
Back to TopTop