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Abstract: Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic 

compounds. While current research is strongly focused on exploring new oligopeptide 

variants and their bioactive properties, the biological role of these compounds remains 

elusive. Oligopeptides production abilities show a remarkably patchy distribution among 

conspecific strains. This observation has prompted alternative approaches to unveil their 

adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of 

intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing 

the diversity, distribution, and dynamics of chemotypes in natural systems have provided 

important insights into the structure and ecology of cyanobacterial populations and the 

adaptive value of oligopeptides. This review presents an overview of the fundamentals of 

this emerging approach and its most relevant findings, and discusses our current 

understanding of the role of oligopeptides in the ecology of cyanobacteria. 
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1. Introduction 

Cyanobacteria are among the oldest and most successful forms of life still present on Earth.  

Ancient cyanobacteria are believed to have been instrumental in the transition of the atmosphere to 

oxic conditions. Today, these phototrophic prokaryotes are present in almost every habitat on Earth, 
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including terrestrial, brackish, marine, and freshwater environments. They can be found in extreme 

environments ranging from arid desert areas and polar regions, to the inside of rocks (endolithic), or as 

symbionts with other organisms. The remarkable adaptability of cyanobacteria is attributable, in part, 

to the production of a wide repertoire of secondary metabolites with diverse bioactive activities, which 

likely contributed to the colonization of such a range of ecological niches.  

The term secondary metabolism is generally used to refer to metabolic pathways that are not 

directly involved in the growth, development or reproduction of the organism. In the case of 

cyanobacteria, secondary metabolites present a vast chemical diversity and are widespread across 

cyanobacterial taxonomic units. A growing number of these compounds has been isolated and 

characterized from cultured strains and field samples. Their discovery has been driven by the growing 

interest toward their potential pharmacological applications or, alternatively, their toxic effects on 

human and animal health. Resulting from this dual interest, we perceive in the literature a somewhat 

artificial separation of these metabolites into cyanotoxins and other bioactive compounds. This 

dichotomy has largely influenced the perspective by which the study of cyanobacterial secondary 

metabolites has been approached in the last decades. Exceptions notwithstanding, much of the research 

effort has targeted these compounds toward their potential pharmacological uses, e.g., as antibacterial, 

antiviral, anticoagulant or anticancer compounds [1–5], whereas their adaptive value for the producing 

organism has remained comparatively less studied. In the case of cyanotoxins, putative ecological 

roles have been explored with greater interest, fueled by water management and public health concerns 

resulting from the increasing occurrence of harmful cyanobacterial blooms in aquatic ecosystems 

worldwide [6,7]. However, even in these studies a clear distinction between cyanotoxins and other 

bioactive compounds is often made, hampering more integrative interpretations of the existing link 

between the secondary metabolism and the ecology of cyanobacteria. In fact, whereas research on 

cyanotoxins has produced a number of hypotheses on their adaptive value, at present, none of them is 

free of controversy (e.g., [8–10]).  

The discovery of intraspecific polymorphisms in picoplanktonic cyanobacteria has stimulated the 

perception that addressing the species as the lowest taxonomic level might be insufficient to 

understand the ecological plasticity of cyanobacteria. Synechococcus and Prochlorococcus populations 

were shown to subdivide into distinct ecotypes with different niche preferences [11–14]. Population 

subdivision allows these genera to rapidly adapt to a range of environmental conditions, which is 

regarded as one the major reasons behind their widespread distribution and ecological success [15]. 

In other cyanobacteria, the existence of intraspecific polymorphisms with regard to the synthesis of 

secondary metabolites is not a new notion. However, chemical polymorphisms have been mostly 

addressed in relation to the co-existence of toxigenic (i.e., toxin producing) and non-toxigenic strains 

exclusively [16–18], neglecting other “non-toxic” metabolites, and thereby sticking to the traditional 

separation of cyanotoxins and other bioactive compounds. In the last decade, however, more integrative 

perspectives have overcome this boundary by addressing the occurrence of both cyanotoxins (e.g., 

microcystins) and other bioactive peptides indistinctively and using them as subpopulation biomarkers, 

based on the overarching hypothesis that the secondary metabolism in cyanobacteria is an important 

feature closely coupled to their ecology [19,20]. 

Research focusing on the study of cyanobacterial chemotypes and their differential behavior under 

natural conditions has yielded unique insights into the composition and dynamics of natural 
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populations. Furthermore, chemotyping approaches have led to the formulation of new hypotheses 

regarding the role of cyanobacterial oligopeptides, which will most likely shape future research efforts 

exploring their involvement in the ecology of cyanobacteria. Our intent here is not to recreate some 

excellent reviews comprehensively addressing the biosynthesis, chemical diversity, or bioactive 

properties of these compounds (e.g., [21–25]). Rather, we seek to review the fundamentals of 

oligopeptide-based chemotyping approaches in cyanobacteria and discuss the major findings stemming 

from their use. We also aim to highlight how the search for ecologically functional units below the 

species level is contributing to increase our understanding of the structure and dynamics of cyanobacterial 

populations and the putative adaptive value of their strongly diversified secondary metabolism. 

2. Cyanobacterial Oligopeptides 

A major part of the array of secondary metabolites produced by cyanobacteria is represented by 

oligopeptides, a highly diverse group of low molecular weight peptides containing a range of both 

proteinogenic and non-proteinogenic amino acids. Oligopeptides display a surprisingly high level of 

structural variability, although many compounds share in common conserved substructures. These 

structural similarities led to the current, most widely accepted classification of oligopeptides, proposed 

by Welker and von Döhren [26], which establishes seven major peptide classes: aeruginosins [27], 

cyanopeptolins [28], anabaenopeptins [29], microginins [30], microviridins [31], cyclamides [32], and 

the well-studied microcystins [33], known for raising public health concerns as a result of their toxic 

effects on mammals (Figure 1).  

Most oligopeptides are synthesized following non-ribosomal pathways (e.g., [34–36]), although 

ribosomal synthesis, coupled with further posttranslational modifications has also been documented for 

a few oligopeptide classes [37–39]. Unlike ribosomal products, non-ribosomal oligopeptides are 

assembled by large multifunctional enzyme complexes, commonly non-ribosomal peptide synthases 

(NRPS) or hybrid NRPS/PKS (polyketide synthases), which are in turn encoded in large gene clusters 

with a modular architecture. In general, each biosynthetic step is encoded in a single module, whereas 

each module is comprised by several catalytic domains [40].  

Non-ribosomal pathways are pivotal in (cyano)bacterial secondary metabolism. NRPS genes may 

account for up to 5% of the genome (e.g., [41,42]). Notably, the set of proteins comprising a complete 

NRPS synthetic pathway can be twice the size of the ribosome. Whereas the ribosome translates 

thousands of different proteins, NRPSs produce only small compounds. The transcription and translation 

of these enzyme complexes and their modular architecture imply enormous metabolic expenses for the 

producing cell [43,44]. Each NRPS module consists of approximately 1000 to 1500 amino acids and is 

responsible for the incorporation of a single monomer into the end-product’s peptide chain. Despite the 

burdens to maintain this massive biosynthetic machinery, non-ribosomal pathways are believed to be 

of ancestral origin and have been conserved and exploited in distantly related linages [45]. Therefore, 

the selective forces fueling their maintenance are expected to be accordingly high. In this regard,  

some authors have suggested that such cellular burdens are likely compensated by the modular 

architecture of these pathways, which allow the producing organism to profit from module reshuffling 

(e.g., module reorganization, duplication or skipping, recombination, point mutations, etc.), as a 

mechanism to introduce metabolic novelty with minimal genetic changes [46,47]. A representative 
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example of such metabolic plasticity in cyanobacteria is the gene cluster encoding the synthesis of the 

hepatotoxin nodularin, which evolved from the microcystin gene cluster through the deletion of two 

modules, thereby giving rise to a brand new end-product [48]. 

Figure 1. Examples of chemical structures of the seven major oligopeptide classes after 

Welker and Von Döhren [26]. Bold lines stand for conserved substructures within 

oligopeptide class. Thin lines stand for variable parts of the molecules that give rise to the 

existence of multiple chemical congeners within oligopeptide classes.  
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In addition, single NPRS gene clusters can be responsible for the synthesis of multiple chemical 

variants (e.g., >100 microcystin variants have been described). A significant part of this structural 

variability is achieved by relaxation of substrate specificities, resulting in variable incorporation of 

amino acids at some residues and thereby leading to the existence of multiple chemical variants 

synthesized by the same enzyme complex [49,50]. Substrate promiscuity, together with further 

modifications like methylation, glycosylation, halogenation or sulfatation at different residues [34,51–54] 

allow for the existence of hundreds of congeners within the same peptide class, whose minor structural 

differences often result in differences in their bioactive properties [55–57]. Both the modular 

architecture of encoding gene clusters and the high structural diversity of their end-products indicate 

that non-ribosomal pathways show high intrinsic plasticity, which confers (cyano)bacteria an enormous 

metabolic versatility and arguably counterbalances the high cellular costs associated to their synthesis.  

Oligopeptides are widespread in at least four of the five cyanobacterial taxonomic orders or 

subsections [26]. However, production abilities among conspecific strains show a highly uneven 

distribution [58,59]. This has been attributed to frequent horizontal gene transfer, recombination and 

gene loss events affecting the respective gene clusters [36,54,60,61]. As a result, strains under the 

same taxonomic affiliation, yet presenting dissimilar oligopeptide profiles, are commonly found in 

natural populations. In fact, the distribution of oligopeptide production abilities do not match with 

phylogenies based on extensively used phylogenetic markers (e.g., 16S-23S rRNA ITS or cpcBA) [19,62], 

or the geographical origin of the strains [61,63]. Similarly, taxonomic affiliation or morphological 

features do not correlate with the widely variable oligopeptide cellular compositions. Instead, single 

chemotypes can be represented by different morphospecies and vice versa [19,20,64,65]. It has, thus, 

become evident that traditional taxonomic systems to classify cyanobacteria, despite recurrent 

revisions, are unable to tackle the true extent of cyanobacterial metabolic biodiversity. 

3. Typing of Cellular Oligopeptide Patterns by MALDI-TOF MS  

The rapid development of bioinformatic tools has contributed to the increased discovery of new 

microbial secondary metabolites in the last years (e.g., [66–68]). New sequencing technologies  

(e.g., pyrosequencing), genome mining, and metagenomics have substantially increased our ability to 

identify novel NRPS and PKS gene clusters in microbial genomes. Alternatively, analytical methods 

based on Tandem Mass Spectrometry (e.g., LC/MS-MS), which yield increasingly higher levels of 

resolution, are especially useful for the separation of unknown compounds from complex natural 

matrices and the subsequent elucidation of their chemical structures (e.g., [35,36,69]). The potential of 

these techniques to further contribute to the discovery and characterization of new microbial 

metabolites is unquestionable. However, with regard to the use of metabolite patterns as biomarkers, 

these techniques do not proof particularly useful for metabolite typing at the individual level, mainly 

due to commonly laborious sample preparations or long analysis times.  

Instead, Matrix Assisted Laser Desorption/Ionization–Time of Flight Mass Spectrometry  

(MALDI-TOF MS) has become the technique of choice for chemotyping applications. MALDI-TOF MS 

enables a rapid determination of intracellular constituents from fresh biomass. As a result, this 

technique has been increasingly used for the analysis of taxon-specific microbial metabolite patterns 

for the rapid identification of infective or pathogenic bacterial taxa [70,71]. Similarly, MALDI-TOF MS 
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allows for the rapid analysis of oligopeptide compositions from cyanobacterial specimens for 

chemotaxonomic purposes [58,72,73].  

MALDI-TOF mass spectrometry consists in the ionization, separation and detection of analytes.  

A small amount of fresh cell biomass (e.g., individual colonies/filaments) is mixed with a co-crystallizing 

matrix. Most commonly used matrices are low weight, organic, aromatic acids, usually 2,5-dihydroxy 

benzoic acid (DHB) or α-cyano-4-hydroxycinnamic acid (CHCA), that are dissolved in a mixture of 

solvents like water, ethanol and acetonitrile, and acidified by a strong acid, usually trifluoracetic  

acid [73]. Upon solvent evaporation, matrix crystals begin to form, embedding proteins and other 

cellular constituents (i.e., co-crystallization). A high energy beam laser is then focused on the sample 

and ions are thereby produced. The co-crystallizing compound partially absorbs the energy of the 

ionizing laser, allowing for a soft ionization that maintains the integrity of the molecules during 

analysis and producing easily identifiable singly-charged ions. Ions are accelerated in an 

electromagnetic field and guided through a drift-free area, where they travel at different velocities 

depending on their respective mass/charge ratios. Analyte separation is thereby achieved. Accelerated 

molecules eventually collide against a detector that provides a resolved mass spectrum.  

A commonly highlighted limitation of MALDI-TOF MS is that analysis only yields qualitative  

(or semi-quantitative) results, as peptides differ in their ionization due to differences in amino acid 

compositions and hydrophobicity. For example, peptides containing arginine in their structure show 

preferential ionization [74]. Similarly, some oligopeptide classes like microcystins and cyanopeptolins 

are readily ionized and thereby easily detected by MALDI-TOF MS, whereas other peptide classes, 

such as microviridins or cyclamides produce only poor signals and may be difficult to detect by 

MALDI-TOF MS. For these reasons, MALDI-TOF mass signals do not directly reflect actual cellular 

peptide concentrations, hampering quantitative interpretations of the mass spectra [75]. Despite this 

limitation, the indisputable advantage of MALDI-TOF MS compared to other competing techniques is 

speed of analysis. MALDI-TOF MS enables the typing of cellular oligopeptide compositions in single 

cyanobacterial specimens (e.g., filaments or colonies) within minutes. Hundreds of samples can be 

analyzed overnight using automated routines, allowing for high throughput analyses without complex 

sample preparation and at relatively low cost. Fresh biomass can be directly analyzed and only a small 

amount is needed to obtain satisfactory mass spectra. Besides, in contrast to MALDI MS, competing 

molecular techniques based on the amplification of genes responsible for biosynthesis are unable to 

provide information on the chemical diversity of the end-products. 

4. Suitability of Oligopeptides as Biomarkers and Definition of Chemotypes 

Oligopeptides are suitable biomarkers of cyanobacterial subpopulations, as their synthesis at the 

individual level is determined by the presence or absence of the respective gene clusters. Given the 

patchy distribution of these clusters among co-existing strains, cyanobacterial cells can present any 

combination of these clusters and thereby exhibit distinctive qualitative oligopeptide compositions, 

which delineate different chemotypes [58,59]. Cyanobacterial isolates have been observed to produce 

the same set of peptides for decades [19] and oligopeptides remain largely within the producing cells 

and are only significantly released upon cell lysis [76]. Furthermore, because peptide synthesis is 

constitutively regulated and peptides exhibit only slight fluctuations in cell quota [77–79], it seems 
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evident that overall oligopeptide synthesis is genetically, rather physiologically, controlled. Therefore, 

it is generally assumed that oligopeptides are consistent subpopulation markers and consequently, that 

the pheno/chemotype faithfully represents the genotype as far as NRPS/PKS gene clusters is concerned.  

Several studies have evaluated the stability of oligopeptide patterns as reliable subpopulation 

markers under a range of environmental conditions. Whereas these studies report overall stability of 

peptide fingerprints, in some cases, nutrient limitation, high irradiance [80,81] and cyanobacterial cell 

densities [82] were observed to induce distortions in oligopeptide signatures of some strains of the 

genera Microcystis and Radiocystis. In particular, nutrient deprivation and high light resulted in the 

disappearance of minor microcystin variants (i.e., low intensity spectral signals) from the peptide 

fingerprints, presumably due to physiologically induced reductions in oligopeptide synthesis. Alternatively, 

several aeruginosin, cyanopeptolin, and microcystin variants could only be detected at high cell densities, 

remaining otherwise undetectable under low cell concentrations [82]. Difficulties in consistently 

detecting minor mass signals by MALDI-TOF MS had been reported earlier [56,83], although they 

were not interpreted in the context of the delimitation of chemotypes. Variations in peptide patterns are 

likely attributable to physiological fluctuations in overall oligopeptide synthesis at the individual level. 

For example, nitrogen inputs [84] and intracellular availability of free amino acids [85] were shown to 

impact microcystin intracellular shares by promoting the synthesis of some variants over others. 

Similarly, oligopeptide cellular concentrations, although constitutively regulated, exhibit up to  

five-fold fluctuations under changing conditions [78,86]. These variations, although minor, may turn 

out critical to detect minor peptides present at cellular concentrations close to analytical detection 

limits. In fact, peptides accounting for distortions in oligopeptide fingerprints are usually accompanied 

by one or more signals corresponding to major congeners of the same peptide class [80–82]. However, 

in the context of the definition of chemotypes, inconsistent detection of minor oligopeptides has to be 

treated with caution, especially when investigating chemotypes directly from natural populations. 

Under natural conditions, physiologically-induced variability in the detection of minor peptides might 

suggest shifts in the phenology of chemotypes under unchanged clonal compositions, thereby acting as 

a potential cause of confusion.  

Perhaps due to such inconsistencies, existing studies using oligopeptides as subpopulation markers 

often apply heterogeneous criteria for chemotype delineation, each of which offers a dissimilar  

trade-off between resolution and stability. Criteria based on (1) single oligopeptide classes (e.g., [87]); 

(2) “strict” individual-oligopeptide-based chemotyping (i.e., chemotypes display identical oligopeptide 

profiles, [20,63]); and (3) “lax” individual-oligopeptide-based chemotyping (i.e., chemotypes share 

resembling, but not necessarily identical peptide compositions, [19,65]) coexist in the literature. 

However, harmonized benchmarks for the definition of cyanobacterial oligopeptide chemotypes  

seem necessary, especially if comparisons among studies are to be made. In this regard, assessing the 

appropriateness of chemotype definitions based on single oligopeptide variants compared to criteria 

based on general structural classes seems crucial. The significance of structural ambiguities inherent to 

oligopeptide synthesis plays an important role in this question. In this regard, studies undertaking 

structure-activity relationship (SAR) analysis have repeatedly reported changes in oligopeptide bioactivity 

resulting from structural variability: cyanopeptolin moieties exhibit differences in protease inhibition 

capabilities [56], whereas methylations [55] and amino acid variability at some microcystin residues [88] 

result in changes in chymotrypsin and phosphatases inhibition, respectively. Similarly, aeruginosin 
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variants differ in their inhibitory properties of different groups of serine proteases ([57] and references 

therein). These findings indicate that oligopeptide unique moieties, variable amino acid residues and 

general structural variability affect the bioactive properties of oligopeptides and determine their degree 

of specificity and activity. Therefore, chemotype definition based on individual oligopeptide variants 

likely encompasses functionally dissimilar subpopulations with regard to their bioactive potential and 

seems therefore preferable to chemotyping criteria considering general peptide classes.  

Chemotype delineation based on individual peptide variants, however, reveals a picture of high 

complexity. The extent of structural variability throughout oligopeptide classes could be enormous. 

Microcystins present over 100 structural variants, whereas other oligopeptides may bear even more 

structural variability. Cyanopeptolins, for instance, display variable amino acids at all positions, except 

for two highly conserved residues. One could hence argue that the potential structural diversity of 

oligopeptides, considering combinatorial incorporation of amino acids and modifications at variable 

residues across peptide classes, can give rise to up to hundreds, if not thousands of individual 

oligopeptides, and, thus, may lead to a virtually endless number of chemotypes. However, field studies 

have shown that naturally-occurring chemotypes delineate intraspecific linages that present unique 

ecological features [19,20] and, therefore, the distribution of oligopeptide production abilities is 

unlikely a random process. Instead, it arguably constitutes an adaptive response to selective pressures 

exerted by their environment.  

5. Distribution, Composition and Dynamics of Chemotypes in Natural Populations 

Research addressing the composition and dynamics of cyanobacterial oligopeptide chemotypes has 

revealed that natural populations exhibit a mosaic structure of coexisting strains with different 

oligopeptide production abilities. Chemotype assemblages showed to be stable over for long periods of 

time in their respective ecosystem, as evidenced by the continuous presence of four different Planktothrix 

chemotypes in a Norwegian lake for over 30 years [19]. In contrast, the relative abundances of 

chemotypes in the population are not static and individual subpopulations are subject to strong 

fluctuations over the season, leading to marked temporal dynamics. The seasonal succession of 

chemotypes does not follow any apparent cyclic trends, although, in light of their long-term stable 

coexistence, periodic interseasonal patterns cannot be discarded.  

As a result of the different chemical profiles among coexisting strains, the phenology of individual 

chemotypes dynamically affects the properties of the whole-population with regard to average 

oligopeptide contents [19], including hepatotoxic peptides like microcystins. Fluctuations in toxin 

loads are of obvious relevance from the water management and public health perspectives. In fact, 

cyanobacterial blooms are well known for exhibiting variations in microcystin concentrations of up to 

several orders of magnitude in space and time [89–91]. Such differences cannot be explained by 

physiological changes, as toxin production at the individual level varies within a narrow range [92]. 

Instead, it has become evident that the wax and wane of toxigenic and non-toxigenic chemotypes is  

the factor driving bloom toxicity [20,65,91]. Therefore, elucidating the mechanisms governing the 

complex succession of chemotypes is crucial, not only to identify the factors that promote more toxic 

blooms, but also to interpret cyanotoxin occurrence in an ecological context.  
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Tracking individual oligopeptide-based subpopulations in their natural habitat revealed  

that cyanobacterial chemotypes delineate subpopulations that interact differently with their  

environment [19,20]. The annual life-cycle of planktonic colonial cyanobacteria of the order 

Chroococcales, such as the bloom-forming genus Microcystis, is well described. Toward the end of the 

blooming season colonies settle down to the sediments, where they spend the winter in the so-called 

overwintering phase. Toward spring, benthic colonies regain buoyancy and are recruited back into the 

water column, giving rise to the summer pelagic population, thereby closing the cycle [93]. In this 

regard, recent findings indicate that individual chemotypes may go through shifts in their life-cycle 

with different outcomes. First, the comparison of benthic and pelagic compositions of chemotypes 

during the season revealed notorious differences, with some chemotypes exclusively present as benthic 

subpopulations [20]. Habitat segregation is indicative of dissimilar recruitment success among 

chemotypes. Benthic recruitment is considered a major process determining the size and composition 

of summer pelagic populations (e.g., [94]). Therefore, although recruitment in genus Microcystis is 

traditionally supposed to be triggered by physical factors (e.g., light, temperature, sediment resuspension, 

or bioturbation), chemotype segregation among benthic and pelagic habitats indicates that reinvasion 

might be more complex than previously described and suggests that recruitment might operate as a 

selective process that shapes strain compositions in benthic inocula. In fact, promoted recruitment of 

microcystin-producing strains has been reported in genus Microcystis [95,96], supporting the idea that 

chemotypes might as well display different success rates reinvading the water column.  

Over the course of the season, the temporal evolution of the benthic composition of chemotypes 

reflects with fair fidelity the major shifts occurring in the overlaying water column [65]. This indicates 

that chemotype dynamics are mostly driven by differential settling among subpopulations. In fact, later 

quantitative studies identified asynchronous sedimentation among co-existing chemotypes as the 

primary contribution to the succession of chemotypes in the water column [20]. Much like in the case 

of benthic recruitment, evidence for differential settling of co-existing subpopulations seriously 

challenges views considering autumnal sedimentation as an unspecific process homogenously 

affecting the whole-population as a result of essentially physical phenomena, such as attachment of 

clay particles to colonies [97] or low temperatures [98].  

In light of these considerations, we believe that the ecological relevance of the subspecific level in 

cyanobacteria as operating basis for biological process is indisputable. Therefore, revisiting the 

ecology and life-cycles of cyanobacteria under perspectives that recognize the intraspecific dimension 

of their populations is needed to increase our understanding on how the interplay of ecological 

processes dynamically shape the populations along their life-cycle at its different stages. Moreover, 

addressing differential behaviors among chemotypes in their environment constitutes a promising way 

to identify the selective forces driving their dynamics and thereby unravel the biological role of 

oligopeptides in the producing organisms. 

6. Insights into the Biological Role of Oligopeptides and the Evolution of Chemotypes 

The notion that chemotypes represent ecologically relevant units raises important research 

questions: Which factors drive the succession of chemotypes in nature? What is the adaptive value of 

oligopeptides in the ecology of chemotypes? Furthermore, what forces are behind the subdivision of 
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cyanobacterial populations into distinct chemotypes? Do chemotypes represent discrete evolutionary 

units? If so, what is their evolutionary history? In our opinion, these questions delineate current 

frontiers of knowledge on the topic.  

The adaptive value of cyanobacterial oligopeptides remains, despite intensive research, still 

ambiguous. A number of biological functions have been proposed, including their role as defense 

compounds against grazers [56,99–101], allelopathic metabolites against eukaryotic algae [102–104], 

info-chemicals involved in quorum sensing [105,106], or compounds involved in bloom termination [107]. 

However, none of these hypotheses has reached full consensus and the role of cyanobacterial 

oligopeptides is still a matter of intense scientific discussion.  

Traditional approaches to address this issue typically focus on individual peptides to investigate 

their effects on the producing organisms or their competitors. Alternatively, cyanobacterial chemotyping 

constitutes a complementary approach based on the study of oligopeptide-based subpopulations to 

infer a general biological role of these compounds. Combined interpretations of the findings stemming 

from these approaches have contributed to the formulation of novel hypotheses on the adaptive value 

of oligopeptides that are consistent with observations at different organizational levels (e.g., population 

and molecular levels).  

Chemotypical subpopulations in their environment can be controlled either by bottom-up or  

top-down mechanisms. Bottom-up mechanisms are mediated by resource competition among 

subpopulations. However, although a role of oligopeptides as chelating agents putatively enhancing 

nutrient uptake has been proposed [108,109], attempts to correlate the prevalence of chemotypes with 

abiotic factors like temperature, light or macronutrients turned out unfruitful [19,20,78]. This is 

coherent with the co-occurrence of chemotypes in geographically distant water bodies with widely 

different morphologies and trophic states [63,110]. Altogether, these findings cast doubts on the 

likelihood of bottom-up control mechanisms effectively shaping chemotype communities.  

Alternative notions for the existence of top-down mechanisms controlling cyanobacterial populations 

are not new. However, grazing and competition with other phytoplankton have been typically pointed 

out as their possible drivers. In fact, putative roles of oligopeptides as grazing deterrents [56,99,100] or 

allelopathic compounds against eukaryotic algae [104] have been intensively explored. However, the 

fact that oligopeptides remain within the producing cell and are only released upon cell lysis [76,111] 

has often been raised as a strong argument against this possibility; an effective allelopathic or defensive 

effect could only take place upon cell death or ingestion and the benefits of such “post-mortem” 

protection are questionable.  

Other proposed forms of top-down control refer to parasitic interactions. Parasites in aquatic 

ecosystems have traditionally been neglected, mostly due to methodological limitations. At present, 

however, host-parasite interactions are increasingly regarded as fundamental in the functioning of  

the ecosystem and considered important driving forces of ecological and evolutionary processes,  

such as species succession, population dynamics or gene flows [112–114]. Parasites are also relevant 

ecosystem components that enhance the transfer of nutrients and energy to higher trophic levels and 

contribute to the recycling of organic matter [115]. Parasites can impose strong top-down control on 

host populations. Cyanobacteria are no exception and they are indeed targeted by potent pathogens  

like phages [116] and parasitic fungi [117], which can inflict significant mortality on cyanobacterial 

populations. Among the latter, parasitic fungi of the order Chytridiales, commonly referred to as 
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chytrids, are regarded as important parasites of cyanobacteria, whose infection is considered as an 

omnipresent phenomenon in aquatic ecosystems [117]. Chytrid parasites display absorptive nutrition; 

they encyst at the host cell surface and form intracellular rhizoids to extract nutrients from the  

host [118]. In the process, chytrids secrete digestive proteases into the host cell [119–121]. 

Cyanobacterial hosts, however, are endowed with an intracellular cocktail of oligopeptides, most of 

which display potent enzyme inhibitory properties that often target proteolytic enzymes: Oligopeptides 

belonging to the cyanopeptolin, aeruginosin, anabaenopeptin, and microginin classes display diverse 

inhibitory effects on a range of proteases (e.g., [27,122–128]). In fact, in a recent study, Planktothrix 

mutants unable to synthesize microcystins, anabaenopeptins and microviridins, respectively, displayed 

higher susceptibility to chytrid infection, compared to the wild-type strain [129]. These findings 

convincingly demonstrate that cyanobacterial oligopeptides are effectively involved in defense 

mechanisms against chytrid parasites, most likely by inhibiting chytrid proteases involved in pathogenicity. 

In contrast to grazing protection or allelopathy, an anti-fungal defensive role is compatible with the 

intracellular compartmentalization of oligopeptides.  

Interestingly, further studies exploring the relationship between cyanobacteria and their fungal 

parasites reveal that chytrid strains present chemotype-specific host preferences [130]. The fact that 

chemotypes display different susceptibility to co-existing chytrid parasites and that such susceptibility 

responds to different combinations of intracellular inhibitory oligopeptides, led to the formulation of 

evolutionary scenarios to explain the subdivision of cyanobacterial population into different chemotypes. 

According to evolutionary theory, host and parasite are caught in a close antagonistic relationship of 

reciprocal adaptations, commonly defined as an evolutionary arms race [131]. Since parasites typically 

have shorter generation times than their antagonists, and hence display higher evolutionary rates, hosts 

cannot keep pace and are strongly selected toward diversification [132,133]. By diversifying, hosts 

hamper the ability of parasites to optimally exploit the whole population. This theoretical framework 

was first proposed by Sonstebø and Rohrlack [130] to explain the subdivision of Planktothrix 

populations into distinct chemotypes. Under this scenario, individual chemotypes are considered 

evolutionary units that co-evolve with chytrid parasites. Narrow host range and high chemotype 

specificity of chytrid fungi are consistent with co-evolutionary models, whereas chemotype subdivision 

is also compatible with predicted host diversification as a strategy to resist rapidly evolving parasites.  

In cyanobacteria, predicted host diversification might be reflected, first, at the population level by 

the co-existence of chemotypical subpopulations with dissimilar susceptibility to parasites. Rather than 

maintaining an ideal genotype, cyanobacteria may profit from preserving an array of chemotypes to 

prevent parasites from exploiting the whole population efficiently. The dynamic composition of 

chemotypes might therefore respond to top-down pressures exerted by parasites or, alternatively, other 

pathogens (e.g., cyanophages). Secondly, signs of diversification are also evident at the peptide level. 

It is somewhat notorious that during their evolutionary history, the vast pool of peptide congeners has 

not been reduced to a few efficient ones. Instead, oligopeptide synthesis is characterized by widespread 

structural ambiguities that result in the production of a wide array of peptide variants, which in fact 

exhibit different inhibitory properties [55–57]. As discussed above, relaxation of substrate specificities 

during biosynthesis accounts for a significant part of such variability. In-depth analyses of the 

oligopeptide encoding gene clusters evidenced that the majority of the cluster is under purifying 

selection and therefore highly conserved. However, small genic regions presenting relaxed selective 
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constrains could also be identified [45,61,134,135]. Interestingly, some of these sites are located close 

or within adenylation domains (i.e., domains mediating for the activation and incorporation of amino 

acids into the growing peptide chain), which are responsible for amino acid hypervariability during 

biosynthesis. This suggests that domains responsible for substrate promiscuity might be under positive 

selection and hence, the synthesis of new oligopeptide variants might be promoted, thereby further 

contributing to the diversifying potential of oligopeptide repertoires.  

Differences in oligopeptide profiles arguably imply dissimilar fitness costs among coexisting 

subpopulations, which likely result from energy burdens, but also from antagonistic pleiotropy 

associated with oligopeptide synthesis [136]. Intraspecific competitive differences among chemotypes 

are therefore likely to exist. However, considering the diversity of chemotypes in nature, these 

differences do not seem to lead to the competitive exclusion of chemotypes in the long term. 

Conversely, stable chemotype consortia are observable over decades in the same system [19]. Considering 

top-down control mechanisms mediated by parasites, the concept of “killing the winner” introduced by 

Thingstad and Lignell [137] provides a plausible explanation for the long-term maintenance of the 

diversity of chemotypes observed in natural populations. According to this idea, the superior 

competitor, which is expected to be the most abundant subpopulation, would be most intensively 

decimated by the pool of coexisting parasites. This negative feedback exerts a stabilizing effect, 

preventing the exclusion of otherwise less competitive subpopulations and maintaining chemotype 

diversity over time, in spite of competitive differences among subpopulations. This process is compatible 

with field observations reporting that shifts in the mosaic composition of cyanobacterial populations, 

which are typically characterized by the dominance of one or a few abundant chemotypes [20,65], are 

often reflected as the decline of the dominant chemotype, with minor chemotypes taking over. In fact, 

chemotype-specific losses selectively inflicting massive cell-lysis-related mortality to the dominant 

chemotype have recently been reported [20]. These selective loss processes are compatible with the 

chemotype-specific preferences of chytrid strains reported in laboratory experiments [130] and support 

the existence of parasitic top-down control, coupled with massive epidemics as stabilizing mechanisms 

behind the long-term maintenance of chemotype diversity.  

While some aspects of this novel hypothesis definitely remain to be experimentally demonstrated, 

we believe that the coherence between the available pieces of evidence (at both the population and 

molecular levels), and the theoretical framework explaining the emergence of intraspecific chemotypes 

is too striking to be overlooked and deserves serious consideration in future research. 

7. Conclusions and Future Research 

The use of oligopeptides as cyanobacterial markers is still in its infancy, but has strongly contributed 

to tackle the chemical variability among co-existing cyanobacterial strains. High throughput analytical 

techniques like MALDI-TOF MS allow the rapid analysis of qualitative oligopeptide compositions at 

the individual level and, thereby, enable the delimitation of chemotypical subpopulations. Oligopeptides 

proofed to be in general suitable subpopulation markers, given their constitutive synthesis and their 

steady intracellular concentrations. The analysis of chemotypical subpopulations under natural 

conditions has revealed that cyanobacterial populations are comprised by a stable mosaic of coexisting 

chemotypes that are subject to marked seasonal dynamics. Close examinations of the succession of 
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subpopulations in aquatic ecosystems show that chemotypes interact differently with their environment 

and present different ecological traits. The existence of ecologically functional units below the species 

level stresses the relevance of the subspecific dimension as the basis on which biological processes 

operate and shape cyanobacterial populations. Current research in this direction is focused on the 

identification of the selective forces governing the dynamics of chemotypes in nature, to disentangle 

the biological role of oligopeptides and to interpret cyanotoxin occurrence in an ecological context. 

Recent findings stemming from chemotyping approaches strongly suggest that cyanobacterial peptides 

are involved in defense mechanisms against fungal parasites and, most likely, other pathogens. 

Cyanobacterial highly diversified oligopeptide repertoires and population subdivision into distinct 

chemotypes have been proposed as adaptive strategies of cyanobacteria to resist rapidly evolving 

parasites. Whereas this novel hypothesis on their biological role remains to be experimentally 

confirmed and will likely shape future research directions, the use of oligopeptides as biomarkers 

exemplifies how much we can learn by leaving behind traditional notions considering the species as 

the ecologically relevant unit. 
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