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Abstract: Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially 

toxic protein, and the second, an antitoxin to repress its function or expression. The 

antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are 

RNAs; however, they have very different modes of action. Type I antitoxins repress toxin 

protein expression through interacting with the toxin mRNA, thereby targeting the mRNA 

for degradation or preventing its translation or both; type III antitoxins directly bind to the 

toxin protein, sequestering it. Along with these two very different modes of action for the 

antitoxin, there are differences in the functions of the toxin proteins and the mobility of 

these loci between species. Within this review, we discuss the major differences as to  

how the RNAs repress toxin activity, the potential consequences for utilizing different 

regulatory strategies, as well as the confirmed and potential biological roles for these loci 

across bacterial species. 
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1. Introduction 

For many years, proteins were considered the master regulators of gene expression, and RNA was 

seen only as the “intermediate” between the genetic code DNA, and proteins, the functional moieties 

of the cell. However, increasing numbers of RNAs serving in regulatory capacities were identified 

over the years. Within the past two decades, we have entered into a new RNA regulatory era where 
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countless examples of RNAs that function to control gene expression across all kingdoms of life have 

been characterized. 

Table 1. Features of described type I and type III toxin-antitoxin loci. 

Locus 
Founding member  

(plasmid or bacterium) a 
Genetic organization b Mode of antitoxin action c 

Type I 

Hok/Sok Plasmid R1 (63)  Inhibit protein synthesis 

RNAI/RNAII pAD1 (48)  Inhibit protein synthesis 

Ldr/Rdl Escherichia coli (34)  Inhibit protein synthesis 

TisB/IstR1 Escherichia coli (39)  
Inhibit protein synthesis 

TxpA/RatA Bacillus subtilis (15)  Stimulate mRNA 

degradation 

SymE/SymR Escherichia coli (55)  Inhibit protein synthesis 

Ibs/Sib Escherichia coli (41)  Inhibit protein synthesis 

ShoB/OhsC Escherichia coli (41)  Inhibit protein synthesis 

BsrG/SR4 Bacillus subtilis (58)  Stimulate degradation and 

inhibit translation 

Zor/Orz Escherichia coli (5, 43)  Inhibit protein synthesis 

RalR/RalA Escherichia coli (56)  Inhibit protein synthesis 

DinQ/AgrB Escherichia coli (42)  Inhibit protein synthesis 

Type 

III 

ToxN/ToxI pECA1039 (59) Protein sequestration 

ABIQ/antiQ pSRQ900 (62) Protein sequestration 

a The founding member (first description) of each toxin-antitoxin locus is indicated. Note that many 

homologs to these systems have been identified and characterized; the text gives details of those. b The blue 

arrow represents the toxin mRNA; the blue box, the toxin coding region. The red arrow indicates the 

antitoxin; note for the type III antitoxins, they consist of repetitive sequences. c The mode of action of the 

antitoxin has not been validated for all; the reader is encouraged to examine the text for those details.  
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Some of the earliest described examples of RNA regulation came from studies examining the control 

of plasmid replication. Later studies identified toxin-antitoxin loci on plasmids. The toxin-antitoxin 

loci consist of two genes: one encodes a protein whose overexpression is toxic to bacterial cells and 

the other encodes an antitoxin that functions to repress toxin gene expression or its activity [1]. These 

gene pairs are often co-transcribed or encoded antisense to each other on the opposite DNA strand. 

The earliest studies of these loci determined that they were responsible for “plasmid addiction” [2–4]. 

Essentially, the toxin gene products were highly stable and the antitoxin gene products were highly 

unstable. Upon cell division, if a daughter cell did not inherit the plasmid, the unstable antitoxin would 

be degraded, while the toxin was not. The toxin was then able to kill the plasmid-less daughter cell. 

However, if the cell inherited the plasmid, the unstable antitoxin could be replenished, and prevent 

killing of the cell by the toxin. Recently, homologs to the different described plasmid systems  

(see below) have been found on the chromosomes of bacteria, and some newly identified loci have 

been found on chromosomes with no apparent homology to mobile genetic elements [5–11]. Thus, the 

biological function of the chromosomal loci may be different than those found on plasmids, and new 

data (discussed below) supports this idea. 

There are several different described classes of toxin-antitoxin systems. These classification 

schemes are based on the type of antitoxin (either RNA or protein) and how the antitoxin functions to 

control toxin expression or activity. A recent review [1] summarizes these classes, and gives a general 

overview of the function of these loci. For the purpose of this review, we will focus solely on the type I 

and type III loci in which the antitoxin is a regulatory RNA. For the type I loci, the antitoxin RNA has 

sequence complementarity to the toxin mRNA, and through base pairing interactions, it either inhibits 

translation and/or stimulates degradation of the mRNA. For the type III loci, the RNA antitoxin binds 

to the toxic protein, sequestering it or blocking its biochemical activity. Table 1 provides a summary of 

the general features of the major type I and type III loci described to date. 

Within this review, we will discuss the nuances as to how the RNA antitoxins regulate toxin 

expression and/or function, as well as the potential benefits for using one repressive method over the 

other. Additionally, we will report on some recent progress made in the attempts to understanding the 

biological function of these loci. 

2. Repression by RNA Antitoxins and Toxin Function 

2.1. Type I Antitoxins: Repression through Base Pairing Interactions 

As stated, type I antitoxins have sequence complementarity to their cognate toxin mRNAs. This 

complementarity can be as little as 18 nt of perfect matching to more than 75 nt of perfect matching, 

though not all of the sequence complementarity may be needed for repression. The majority of type I 

antitoxins are encoded cis to their targets, directly antisense to the toxin gene and not in another 

chromosomal (or plasmid) location. However, other regulatory RNAs in bacteria (referred to as small 

RNAs or sRNAs) that act via base pairing are not encoded directly antisense to their targets and so 

they often have limited complementarity to their targets (6–12 nts). Many of these regulatory RNAs 

found in Escherichia coli require the protein Hfq to stabilize their interactions with their target 

mRNAs, though the requirement for Hfq can vary in other species [12,13]. The well characterized type 
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I antitoxins do not require Hfq for function, and this is likely due to the increased base pairing 

interactions between the antitoxins and the toxin mRNAs. 

As a result of the formation of the RNA duplex between the toxin mRNA and antitoxin RNA, two 

main outcomes typically occur: toxin mRNA degradation can be stimulated or its translation can be 

inhibited. Within this section, we will highlight some key examples of systems that use these mechanisms. 

2.1.1. Repressing Type I Toxins: Controlling mRNA Stability 

Upon the formation of an RNA duplex, the bacterial endoribonuclease, RNase III, encoded by the 

rnc gene, will often cleave the double-stranded RNA (as illustrated by txpA/ratA in Figure 1).  

While most type I antitoxins examined to date may stimulate RNA degradation, their primary mode of 

action appears to be through inhibition of mRNA translation. However, the txpA/ratA locus of  

Bacillus subtilis appears to function primarily through mRNA degradation [14,15]. 

Figure 1. Repression of txpA expression by stimulation of mRNA degradation. The txpA 

toxin mRNA (blue) can be translated by the ribosome (purple) to produce the toxic protein. 

However, if the antitoxin RatA (red) is present and interacts with the toxin, RNase III  

can cleave the double-stranded complex, thereby initiating mRNA degradation which 

eventually prevents toxin translation. 

 

The txpA/ratA locus was first identified in B. subtilis through microarray analysis during a search 

for novel genes within intergenic regions [15,16]. The locus is located within the skin element,  

a genetic element that is excised from the chromosome upon sporulation. Northern analysis confirmed 

the presence of two converging transcripts that overlapped each other by approximately 75 nt within 

this locus [15]. The one gene, txpA, encoded a 59 amino acid peptide; the other, ratA, did not contain a 

potential open reading frame. Given this and other hallmarks of the locus, the authors proposed it 

functioned similar to a type I toxin-antitoxin locus. Indeed, overproduction of the toxin-encoding gene, 

txpA, from an inducible promoter was highly toxic to B. subtilis, but co-expression of the RatA RNA 

could prevent the toxicity [15]. Additionally, a strain deleted for ratA exhibited a lysis phenotype on 

agar plates after several days of growth [15], indicating the importance of the antitoxin to prevent 

aberrant expression. 

Repression of txpA by RatA was likely not due to translation inhibition as there was no sequence 

overlap or complementarity between the antitoxin and the toxin coding region or translation initiation 
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region. Thus, it was hypothesized that the interactions with their 3' ends could stimulate degradation of 

the toxin mRNA. This was supported by deletion of either ratA [15] or rnc (encodes RNase III) [14]: 

deletions of either gene led to elevated levels of the txpA mRNA in comparison to the wild type strain. 

Further support of this model came from in vitro interaction studies. Upon interaction with RatA, the 

txpA mRNA undergoes several structural changes that lead to the formation of new RNase III sites. 

Thus, the current data supports that the major effect of RatA is to destabilize txpA mRNA, and not to 

impact its translation [14]. 

2.1.2. Repressing Type I Toxins: Controlling Protein Synthesis 

The majority of type I antitoxins function through inhibition of toxin mRNA translation. However, 

not all antitoxins simply base pair over the toxin ribosome binding site or start codon. Toxin mRNA 

translation is often tightly regulated, even without the presence of the antitoxin. For many, the toxin’s 

ribosome binding site is sequestered within a tight secondary structure, and translation requires either 

processing events or other elements in order for it to occur. In fact, many type I antitoxins directly 

interfere with those other translational elements to control toxin expression. 

The first type I toxin-antitoxin locus to be identified and thoroughly characterized is the hok/sok 

locus of plasmid R1 found within E. coli and related Gram-negative species. Initially,  

a region within the plasmid deemed the par locus was determined to be responsible for plasmid 

maintenance; later it was shown that the locus encoded a toxic protein (Hok) and an RNA antitoxin, 

Sok. The hok mRNA has an exceptionally long 5' untranslated region (UTR), and the region of 

complementarity to Sok is within the long 5' UTR. The long 5' UTR folds into a highly structured 

RNA that neither the antitoxin nor ribosome can access [17–19]. Upon cleavage of the hok mRNA at 

its 3' end, the mRNA refolds and Sok can access the region of complementarity [18–20]. Yet,  

how could Sok regulate expression if the region of base pairing is far from the hok translation initiation 

codon and the ribosome binding site? Within the hok long 5' UTR is another open reading frame 

termed mok. Translation of mok is absolutely required for translation of hok; the ribosome translates 

mok, and then can translate hok [21]. The region of complementarity to Sok overlaps mok, thus binding 

of Sok blocks translation of both mok and hok (Figure 2). The RNA duplex is then subject to 

degradation by RNase III. However, hok could still function in plasmid maintenance in an rnc-strain, 

providing additional support that a block in translation is the major mechanism of Sok repression [22]. 

RNase III activity though is critical to prevent future translation of hok mRNA; upon cleavage by the 

ribonuclease, the hok mRNA is untranslatable. 

The hok/sok locus was shown to have homologs in a variety of plasmids. These homologs include 

the flm and srnB-srnC loci of the F plasmid, and the pndA-pndB locus of the plasmid R483. Gene 

arrangement, cell killing, and some of the regulatory features examined in these systems are consistent 

with the hok/sok findings [23–30]. Along with the homologs in other plasmids, copies of the hok/sok 

locus have been discovered on bacterial chromosomes [5,6,31], but debate lingers regarding  

their functions. 

Control of the Ldr toxins by the Rdl antitoxins is thought to act in a similar fashion to hok/sok [32]. 

The LDR repeat is a large sequence found four times within the E. coli MG1655 chromosome [33–35]. 

Three of the repeats are in tandem to each other, and the fourth is found directly opposite on the 
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chromosome. Within each repeat are two genes: one encodes Ldr, a small 35 amino acid protein, and 

the second, a small antisense RNA, Rdl, of about 60 nt [34]. Overproduction of LdrD was toxic to  

E. coli, yet co-expression of its cognate antisense RNA RdlD, inhibited the toxicity. 

The mechanism used by RdlD to regulate ldrD was not immediately clear. Like hok, the ldrD 

mRNA possesses a long 5' UTR, and the antitoxin is encoded so that it overlaps the 5' UTR and not  

the ribosome binding site or the start codon [34]. Gerdes and Wagner proposed that RdlD regulates  

in a manner similar to Sok; they identified a small open reading frame, ldrX, within the 5' UTR of  

ldrD [36]. They proposed that translation of ldrD is dependent upon translation of ldrX, and that base 

pairing by RdlD would block translation of both ldrX and ldrD. Further work, though, is needed to 

confirm this hypothesis. 

Figure 2. Repression of hok translation by Sok. The hok mRNA (blue) must first be 

processed at its 3' end prior to interaction with either the ribosome (purple) or Sok (red). 

Translation of the hok mRNA is dependent upon translation of an upstream open reading 

frame mok (grey) by the ribosome. Binding of the Sok antitoxin RNA (red) blocks 

translation of the leader peptide, thus preventing toxin expression. 

 

Type I antitoxins can also block toxin mRNA translation through other mechanisms. One example 

is repression of tisB expression by IstR-1. These genes are encoded divergent from each other in the  

E. coli chromosome and were identified in searches for small RNA genes and for LexA binding sites 

within the E. coli chromosome [37–39]. LexA is a transcriptional repressor of genes involved in the 

DNA damage response (known as the SOS response). DNA damage induced transcription of tisB, but 

not istR-1 [39]. Deletion of either tisB or istR-1 had no obvious effects on E. coli; however, the istR-1 

deletion could not be moved into a LexA deficient strain. In this strain, tisB expression is higher than 

in a wild type strain as there is no longer transcriptional repression. The group identified that tisB 

encoded a 29 amino acid long hydrophobic protein whose overproduction was highly toxic [39]. 

Examination of the istR-1 sequence revealed that it possessed 21 nt of complementarity to the 5' UTR 

of the tisB mRNA, and overexpression of IstR-1 could block TisB-induced toxicity, explaining the 

inability to delete istR-1 in a LexA deficient strain. Similar to other described toxin-antitoxin pairs, 
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tisB mRNA levels were elevated in strains deleted either for rnc or istR-1 [39]. This strongly suggested 

that formation of the tisB-IstR-1 RNA duplex triggered degradation of tisB by RNase III. 

Given that IstR-1 bound far from the ribosome binding site and start of tisB translation, could it 

block tisB expression? In vitro studies elucidated a unique regulatory system, distinct from what was 

described for the hok/sok locus [40]. The full-length tisB mRNA must be cleaved at its 5' end in order 

for it to be translated or interact with IstR-1. This shorter form of tisB has an altered structure from  

the full-length mRNA: the shorter form possesses a stretch of single-stranded nucleotides where 

complementarity to IstR-1 is found. Toeprints identified that ribosomes bind to this unstructured 

region known as a standby site. After binding to the standby site, the ribosome can move to the true 

tisB ribosome binding site and begin translation of the toxin (Figure 3). Yet, the ribosome is in 

competition with IstR-1 to bind at the standby site [40]. Thus, translation of tisB requires cleavage of 

the full-length mRNA, structural rearrangements, and the positioning of the ribosome, and not IstR-1, 

at the standby site. 

Figure 3. Repression of tisB translation by IstR-1. Translation of tisB mRNA is dependent 

on both a processing event and binding of the ribosome (purple) to a standby site (pink) as 

the real toxin ribosome binding site (yellow) is sequestered in a secondary structure. First, 

the full-length tisB mRNA (blue) must be processed at its 5' end in order for IstR-1 (red)  

or the ribosome to bind. Following processing, the standby site (pink) is accessible to  

the ribosome and the antitoxin (red; IstR-1). Binding by the antitoxin will block binding of 

the ribosome to the standby site. In the absence of the antitoxin, the ribosome can bind to 

the standby site and then onto the true ribosome binding site (yellow). 

 

While repression of tisB by IstR-1 is distinct from the repression of hok by Sok, the tisB model may 

be common for other “non-traditional” Type I chromosomal systems where the toxin and antitoxin 

genes are not encoded directly opposite each other on the chromosome. The tisB and istR-1 genes are 

encoded divergent from each other; three additional genetic loci identified within E. coli match this 

gene arrangement: shoB-ohsC, zor-orz and dinQ-agrB [5,41–43]. These loci are similar in that the 
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divergently transcribed antitoxins are complementarity to a region within the long 5' UTR of their 

corresponding toxin mRNAs. These antitoxins do not overlap the translation initiation site or coding 

sequence. It is possible that these antitoxins repress their toxins by binding to a standby site like  

IstR-1 or by binding over another translational element, like Sok. Like hok/Sok and tisB-IstR-I,  

the zorO-OrzO complex is cleaved by RNase III and RNase III is also required for suppression of 

ZorO-induced toxicity [43]; further analysis of the other systems is needed to confirm if they are also 

subjected to RNase III processing. 

Translational repression is also exemplified in the par locus of the pAD1 plasmid of  

Enterococcus faecalis. This was the first type I locus to be identified and described in a Gram-positive 

bacterium. Initially, a locus deemed par was found to be required for stability of the pAD1  

plasmid [44,45]. Two converging RNA transcripts referred to as RNA I and RNA II were identified in 

the locus; work later demonstrated that RNA I encodes a small, hydrophobic toxic protein,  

Fst [44,46,47]. Expression of RNA II was needed to repress Fst toxicity. The converging RNAs 

overlap at their 3' ends and share a terminator; however, this overlap would not extend into the coding 

region [44,45,48]. 

Although RNA I and RNA II are arranged genetically like txpA-ratA with extensive overlap in their 

3' ends, repression of RNA I by RNA II occurs through translational inhibition. Within RNA I and 

RNA II are direct repeats known as DRa and DRb. Through careful in vitro analysis, it was shown that 

these repeats interact via base pairing and successfully block binding of the ribosome to RNA I, thus 

preventing its translation [48,49]. In vitro, this RNA duplex is incredibly stable [50]; however, in vivo 

analysis shows that the half life of the RNA II antitoxin is shorter than that of RNA I [48]. Thus, 

additional unknown in vivo factors are needed to disrupt the RNA duplex to cause degradation of RNA II. 

Homologs of the RNA I/RNA II locus have been found within many bacterial chromosomes [7,51–53], 

and analysis of some of those systems implies that they are regulated in the same fashion as was 

originally described for the pAD1 locus. 

Other type I antitoxins also effectively block ribosome binding to the toxin mRNA or translation 

initiation of the toxin mRNA as their major means to prevent protein expression. One example is the 

Ibs-Sib locus initially described in E. coli MG1655 [41]. This locus is found in five copies in the 

genome of MG1655 and was initially noted as a 140 nt long repeat sequence [35]. The Sib antitoxins 

overlap the entire coding region and the ribosome binding site of the toxic ibs mRNA (Figure 4). An  

in vitro study showed that the formation of such a complete and extensive duplex was not needed for 

repression. Two recognition domains, TRD1 and TRD2, were identified as critical for RNA-RNA 

interactions [54]. TRD1 overlaps the ibs coding sequence and TRD2 overlaps the translation initiation 

site of ibs; interactions with the toxin mRNA occurred through both domains and extended into the 

surrounding sequences. This likely prevents ribosome binding and translation. In vivo analysis 

suggests that this duplex is likely subject to processing by RNase III; deletion of the rnc gene led to 

increased expression of the toxin ibs mRNA ([41], and Fozo, unpublished), implying that degradation 

is triggered upon duplex formation. Along with this, there are two forms of the Sib antitoxin and 

deletion of the rnc gene impacts accumulation of each form differently. Both forms are complementary 

to the entire ibs coding region and the ribosome binding site; however, the region of complementarity 

of only the longer form of the Sib sRNA extends into the ibs 5' UTR. Deletion of the rnc gene leads to 

accumulation of the longer Sib sRNA and decreased levels of the shorter Sib sRNA [Fozo unpublished]. 
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This indicates that the shorter Sib form may be the result of processing following duplex formation 

with the ibs mRNA. Further work is needed to validate these observations. 

Repression of the production of the SymE toxin by the SymR antitoxin also likely includes a 

translational block [55]. The SymE/SymR toxin-antitoxin pair is not a typical type I toxin-antitoxin 

locus. Here, the toxic protein SymE is actually quite large at 113 amino acids in length and it is not 

particularly hydrophobic. It functions similarly to endonucleases, though it has some unusual sequence 

homology (for more thorough details see [32,55]). SymE overproduction leads to increased mRNA 

degradation, but the SymR antitoxin can block this toxicity [55]. 

Figure 4. Repression of ibs by the Sib antitoxin. The ibs mRNA (blue) is translated by the 

ribosome (purple) when the Sib antitoxin (red) is not present. Binding of the antitoxin 

RNA (red) blocks translation as it overlaps the ribosome binding site (yellow) and the 

translation initiation codon and then can potentially extend over the entire coding region. 

 

The SymR RNA is encoded opposite of the symE gene, such that the antitoxin RNA would  

overlap the start codon and ribosome binding site of the symE mRNA, suggestive that SymR blocks 

translation [55]. Mutation of the symR promoter increased the levels of the SymE protein by  

seven-fold, and led to a more modest increase in symE mRNA levels. This supports the model that 

SymR affects symE translation and not mRNA stability. Further confirmation came from the 

comparison of SymE protein levels in a wild type strain and a strain deleted for the rnc gene: there 

were no significant differences in protein levels between the two strains [55]. This data again supports 

that SymR acts to block translation as opposed to stimulating degradation of symE. 

A new study recently proposed that the ralR-ralA locus of E. coli is another type I toxin-antitoxin 

system [56]. This locus is unusual in that the reported region of complementarity between the toxin 

and antitoxin lies within the coding region of the toxin mRNA and that the regulation is dependent on Hfq; 

such features are not found within the previously characterized loci. Initial analysis implies that levels 

of RalR protein, but not mRNA, are sensitive to the presence of RalA [56]. Although the genetic 

organization suggests that perhaps the RNAs could interact through overlapping 3' ends, end mapping has 

not yet been reported. Further work will be needed examining this locus and regulatory control of RalR. 

2.2. Repressing Type I Toxins: Controlling Degradation and Translation 

To date, most type I antitoxins act primarily through a block in translation or increased degradation 

of the toxin mRNA. There has been limited evidence suggesting that both mechanisms are necessary 
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for an antitoxin to function. However, recent work with the SR4 antitoxin of B. subtilis has shown that 

this RNA is capable of using both approaches [57,58]. 

The bsrG/SR4 locus is found within the SPβ phage element. Like all type I toxin-antitoxins 

described to date in Gram-positive bacteria, the toxin mRNA and antitoxin overlap at their 3' ends, and 

have approximately 120 nt overlap [58]. Analysis by two groups showed that deletion of rnc led to 

elevated levels of bsrG, yet it did not seem to be required for repression of the toxin [14,58]. This  

was suggestive that perhaps the major repressive mechanism by SR4 was not through increasing 

mRNA degradation. 

To better decipher how SR4 controlled expression of bsrG, careful structural analysis was 

performed both on the toxin and the antitoxin individually as well as the two complexed together. 

Unexpectedly, upon pairing with SR4, the bsrG mRNA underwent significant structural changes  

quite far from the overlapping 3' ends of the RNAs [57]. Most importantly, there was increased 

sequestration of the ribosome binding site; analysis of the structure of bsrG alone showed that the RBS 

was in a 4 nt stem, and upon pairing with SR4, the stem was increased to 8 nt (Figure 5). Studies to 

determine how this altered structure would impact translation proved difficult, but the authors designed 

a clever assay. They modified the bsrG sequence such that it would produce either an 8 nt stem 

sequestering the ribosome binding site or an 4 nt stem. Only the 8 nt stem construct could be moved 

into B. subtilis; the 4 nt construct was never successfully transformed into the organism [57].  

This provided evidence that although SR4 binds far from the translational start of bsrG, it can still 

block translation. 

Figure 5. Repression of toxin BsrG production by SR4. The ribosome binding site of the 

toxin is normally in a 4 nt stem (yellow). Binding by the antitoxin (red) causes structural 

changes that sequester the ribosome binding site in a longer stem. This interaction with the 

antitoxin can also trigger toxin mRNA degradation. 

 

2.2.1. Controlling Protein Expression: mRNA Degradation versus Translation Inhibition  

While the type I loci examined to date imply that regulation occurs either through toxin mRNA 

degradation or inhibition of its translation, antitoxins may employ both mechanisms. Regulation by 

SR4 was carefully examined through a combination of in vivo and in vitro experiments, which was 

how the authors could show that a translational inhibition was possible, along with increased mRNA 

degradation by RNase III [14,57,58]. It may be that other type I antitoxins also can do both, but 

sufficient data is not yet available. 
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2.3. Type III Antitoxins: Repression through Protein Sequestration 

Unlike the antitoxins of type I loci, the type III antitoxins bind directly to their toxin protein and 

inhibit the toxin protein’s activity. The first type III toxin-antitoxin system identified was the ToxIN 

pair in a cryptic plasmid from the Gram-negative bacterium Pectobacterium atrosepticum subspecies 

atroseptica [59] (note the species was referred to in the original publication as Erwinia carotovora 

subspecies atroseptica). The bicistronic toxIN locus contains two genes: toxI and toxN. The toxI gene 

is composed of 5.5 direct repeats of 36 nt, followed by the toxN gene that encodes a 171 amino acid 

protein, with a Rho-independent transcriptional terminator located in between (Figure 6). The genes 

are cotranscribed; only a small percentage of transcripts read through the terminator that separates  

toxI and toxN. Consequently, toxI transcripts are much more abundant compared to toxN. When 

overexpressed in E. coli, the ToxN protein caused cell growth stasis. However, this toxicity could be 

neutralized by co-expression of toxI, indicating that the ToxI RNA acts as an antitoxin. Despite the 

full-length ToxI RNA consisting of 5.5 repeats and being almost 200 nt in length, researchers found 

that 1–1.5 repeats was sufficient to repress ToxN toxicity [59,60]. Analysis of ToxN revealed that it 

has ribonuclease activity and processes RNAs including the cognate ToxI antitoxin RNA. Processing 

of the full-length ToxI repetitive precursor can generate four monomers and crystallographic analysis 

confirmed that the ToxI monomers physically interact with the ToxN protein. Specifically, a ToxI 

RNA monomer folds into a pseudoknot structure. Three ToxI monomers bind three ToxN proteins 

through extensive RNA-protein interactions. This forms a trimeric ToxI-ToxN complex, which leads 

to inhibition of the ToxN function [60]. 

Figure 6. Inhibition of type III toxin activity by antitoxin binding. As exemplified by 

ToxIN, the antitoxin toxI (red) and the toxin toxN (mRNA, blue; protein, black) are in a 

bicistronic operon with a Rho-independent terminator that separates them. The antitoxin 

(red) RNA ToxI is processed by ToxN, and upon processing, it can bind to preformed 

ToxN protein. 

 

Through the use of protein homology searches, as well as the features of type III loci, other 

homologs to ToxIN and new type III families were identified on plasmids and chromosomes of many 

bacterial phyla including Firmicutes, Fusobacteria and Proteobacteria [61]. For all cases, the gene pair 
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possesses a putative antitoxin RNA gene consisting of tandem short repeats, followed by a terminator 

hairpin, and lastly a putative toxin-encoding gene. Moreover, the toxins are predicted to be RNases 

that cleave their cognate antitoxin RNA precursors. Through these analyses, it was shown that  

one single bacterium can harbor multiple type III families or multiple copies of the same type III  

locus [61,62]. These loci, including the AbiQ, the cptIN, and tenpIN families all share the same genetic 

organization as the ToxIN module. Thus, these loci are wide spread throughout bacteria. 

2.4. Function of Type I and Type III Gene Pairs 

To date, numerous examples of type I and type III loci have been described in bacterial chromosomes. 

However, whether these chromosomal copies have a true biological function is still questioned. Given 

that the first loci were described on plasmids and serve to function in plasmid stabilization, many 

assumed that these loci are just to maintain “selfish” DNA elements. However, bioinformatic analyses 

indicate that many chromosomally encoded toxin-antitoxin pairs have no clear homology to mobile 

genetic elements nor is there evidence for horizontal gene transfer [5]. Also, many toxin gene 

sequences are highly conserved with strong predicted ribosome binding sites and little evidence of 

sequence degeneration, suggesting that bacteria are maintaining these genes. This would support  

the argument that, at least for some chromosomally encoded loci, they do indeed possess a true  

biological function. 

2.4.1. Plasmid Remnants? 

The hok/sok locus of plasmid R1 was the first type I toxin-antitoxin gene pair to be described.  

Upon cell division, if a daughter cell does not inherit a copy of the plasmid, the unstable Sok antitoxin 

will be degraded, allowing the stable hok mRNA to be translated, and kill the plasmid-less cell. 

Specifically, the Hok toxin oligomerizes in the inner membrane, causing pore formation, and loss of 

viability [63]. This is particularly evident with the appearance of “ghost” cells upon Hok overproduction. 

Hok though appears to act internally as application of exogenous Hok to cells could not induce cell 

killing; in fact, synthetic Hok could only kill cells if electroporated into the cells [64]. Combined, these 

data supported that the function of the plasmid encoded hok/sok locus is to maintain the plasmid within 

the bacterial population. 

With the advent of genomic sequencing, hok/sok loci were found within the genomes of numerous 

E. coli strains and other Gram-negative bacteria; for some E. coli strains examined, there are as many 

as 12 copies of the locus [5,6]. In some instances, there is evidence of sequence insertions or sequence 

degeneration, and it is likely that these loci no longer produce the toxin or antitoxin. However, a large 

number appear to be intact and are potentially expressed [6]. So, what are these chromosomal copies 

doing? Are they simple remnants of past plasmids? Do they serve to maintain plasmids within the 

population or maintain chromosomal stability in the population? Given that there are numerous copies 

within a single species and some loci appear degenerate, these questions are not trivial to address. 

Future work will hopefully resolve whether or not chromosomally encoded hok/sok gene pairs have a 

true biological function. 
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2.4.2. Impairment of Chromosomal Structure 

As described above, the RNA I/RNA II locus of the pAD1 plasmid of E. faecalis confers plasmid 

addiction through post-segregational killing [65]. Like Hok and many other type I toxins, the Fst toxin, 

encoded by RNA I, also contains a putative transmembrane domain. When overexpressed, it can cause 

cell membrane permeabilization and cessation of macromolecular synthesis [46]. However, unlike 

Hok, overproduction of Fst does not result in the formation of ghost cells (reviewed in [66]). A recent 

study revealed that the Fst-resistant E. faecalis M7 strain harbors a mutation in the rpoC gene 

encoding the β subunit of RNA polymerase [67]. Normally, an Fst-sensitive E. faecalis strain will 

induce the expression of a variety of membrane transporters upon exposure to Fst; however, the M7 

strain did not. This suggested that Fst induces membrane transporters and that induction may deplete 

the cell of energy. To validate this, the authors treated wild type E. faecalis with reserpine, an inhibitor 

of transporters, and then exposed the treated strain to Fst. Upon treatment with reserpine, wild  

E. faecalis survived Fst exposure far better than without [67]. Thus, the induction of membrane 

transporters is a major cause of Fst-induced toxicity. 

Intriguingly, Fst induced membrane damage occurs late upon Fst overproduction [68]. This 

indicated that the loss of membrane integrity may not be the primary effect of Fst toxin. Studies have 

revealed that the primary effect of Fst overexpression is condensation of the nucleoid. The effects on 

nucleoid structure have been observed not only in E. faecalis, but also in Staphylococcus aureus,  

B. subtilis, and E. coli; although how Fst disrupts nucleoid structure remains unclear [7,46,68]. 

Interestingly, bioinformatic analysis concluded that the Fst and Ldr proteins are within the same toxin 

superfamily [5]. Overexpression of LdrD led to a similar nucleoid condensation in E. coli, suggesting 

that this is a conserved feature for this family [34]. 

Like the hok/sok locus, numerous homologs to RNA I/RNA II have been identified in many 

bacterial chromosomes [5,7]. Given the above effects on membrane transportation upon Fst 

overproduction, it is interesting to note that several chromosomal RNA I/RNA II loci are flanked by 

transporters, specifically, carbohydrate transporters [7]. Also, for those examined, both the toxin and 

antitoxin are transcribed, indicative that they are likely functional. What their biological role may be is 

not clear. For a homolog identified in Streptococcus mutans, described below, there are links to 

persister cell formation [51]. For a homolog found on the chromosome of E. faecalis V583, deletion of 

the antitoxin component (RNA II) led to increased virulence in a mouse model, though how RNA I 

could contribute to virulence is not known [69]. It is important to note that even very low levels of Fst 

production can lead to the formation of suppressors, so further examination of this RNA II deletion 

strain is needed. Interestingly, a homolog of RNA I/RNA II in S. aureus indicates that expression of 

the toxic peptide is induced upon cellular stress, suggesting that it may have a role in responding to 

changing environments [53]. 

2.4.3. Persister Formation 

Although a bacterial population maybe genetically identical, cellular growth and gene expression 

are not equivalent across the population of cells. A small portion of cells within a population are  

non-growing or slow-growers; these “dormant” cells are termed persisters [70,71]. Given that most 
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antibiotics target actively growing cells, persisters are often highly antibiotic resistant [72]. The 

antibiotic ciprofloxacin targets bacterial DNA gyrase, leading to DNA damage and induction of  

the SOS response by relieving repression of genes controlled by the transcription factor LexA [73]. 

The type I toxin gene tisB is induced by SOS damage [39]. Deletion of the entire tisB/istR-1 locus in  

E. coli led to a decrease in persisters tolerant to ciprofloxacin. Yet a strain deleted for only the 

antitoxin IstR-1 exhibited a 10- to 100-fold increase in the level of persisters [74,75]. This indicated 

that TisB, even expressed at its endogenous level, plays an essential role in persister formation. 

How then could a small hydrophobic protein led to persister formation? A previous study 

demonstrated that an epitope tagged version of TisB localized to the inner membrane of E. coli [76]. 

Work with synthetic TisB and vesicles showed that TisB monomers can rapidly and spontaneously 

bind to membranes [77]. It is thought that these monomers within the membrane may form dimers that 

would allow protons to pass. Analysis by another group suggested that TisB monomers aggregate to 

form pores that are selective for anions [78]. Regardless, production of TisB and its insertion in the 

membrane would cause a loss of proton motive force and a decline of intracellular ATP; indeed 

overproduction of TisB for only five minutes led to a dramatic loss of ATP within E. coli [76]. 

Ciprofloxacin requires ATP, thus expression of TisB would cause a decrease in ATP levels leading to 

both an inhibition of macromolecule synthesis and an inhibition of the antibiotic’s activity. So by 

inserting into the inner membrane and causing a loss in proton motive force, leading to subsequent 

depletion of ATP for ciprofloxacin activity and macromolecule synthesis, TisB production can 

increase the number of persisters within the population [74,75,79]. 

This consequential decrease in cellular metabolism caused by TisB is similar to what has been 

reported for type II toxins. Type II toxin proteins are often “larger” (~100 amino acids) than type I 

toxins and are not particularly hydrophobic. They have defined biochemical activities with most 

examples functioning as either ribonucleases or inhibitors of DNA gyrase [1]. Deletion of multiple 

type II toxin-antitoxin loci in E. coli decreased persister formation [80]. It was hypothesized that by 

induction of type II toxin activity (specifically ribonuclease activity), cellular translation would  

be halted, giving rise to the “dormant” persister cell phenotype. A recent study utilizing chemical 

inhibitors of macromolecular synthesis supports this: by decreasing macromolecular synthesis 

chemically, the frequency of persister cell formation was far higher over control populations that were 

not treated [81]. Thus, type II toxins and TisB appear to induce persister formation by reducing cellular 

metabolism through the inhibition of macromolecular synthesis. It is critical to note, however, that 

most identified type I toxins have not been examined to conclude whether or not they participate in 

persister formation, but such analysis would be of great interest. 

The studies with TisB illustrate another important point: the critical balance of toxin levels within a 

cell. Overproduction of TisB clearly causes cell death [39,41,76], yet in some instances, it can lead  

to persister formation [74]. In particular, analysis suggests that the expression of tisB is induced  

1000-fold under SOS conditions yet this does not induce cell killing [74,76]. Thus, the fine-tuning of 

toxin and antitoxin levels is critical for persister formation. When the toxin level is below that of the 

antitoxin, the antitoxin successfully represses toxin expression, and the cell is unharmed. If the toxin 

level is higher than that of the antitoxin, the toxin escapes repression and impairs cell growth. 

Depending upon how excessive toxin levels are to the levels of the antitoxin will determine whether 

the cell becomes dormant (i.e., persister) or is killed. When the levels of the toxin and the antitoxin are 
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close, some cells will have an imbalance in the ratio of toxin: antitoxin. Owing to the stochastic nature 

of bacterial populations, this small portion of the population will become persisters [82]. The exact 

amounts of TisB needed to form ciprofloxacin-induced persisters is currently not known but will be of 

great interest in understanding the balance between the benefits and costs of possessing this toxic gene. 

In the Gram-positive bacterium S. mutans, a homolog to the RNA I/RNA II locus of pAD1 has been 

linked to persister cell formation [51]. Deletion of this locus, known as Fst-Sm/srSm, did not impact 

persister formation. However, the number of persisters was greatly reduced upon treatment with  

cell-wall damaging antibiotics in a strain harboring the entire locus on a multicopy plasmid [51]. 

Unlike tisB, this observation appears to be due to increasing the number of Fst-Sm/srSm copies within 

the cell; analysis has not revealed whether or not this observation can be attributed either to the toxin, 

the antitoxin, or just increased copies of the entire locus. How then, would increasing the number of 

copies of this locus lead to decreased persister cell formation? This could be due again to levels of the 

toxin versus the antitoxin; by increasing the number of loci within the cell, there could be an imbalance 

in the ratio of toxin: antitoxin, leading to heighten cell killing and decrease in persister formation. A 

detailed analysis of toxin and antitoxin RNA and toxin protein levels across the cellular population 

will be needed to further conclude how this gene pair impacts persister cell formation. 

2.4.4. Chromosomal Stabilization and Recombination  

In B. subtilis, many of its predicted chromosomally encoded type I loci are located within integrated 

mobile elements. For instance, the txpA/ratA and bsrH/as-bsrH loci are located within the skin  

element [15,83,84], while bsrG/sr4 and yonT/as-yonT are within the SPβ prophage [5,58]. 

Overexpression of these toxin genes slows cell growth or causes cell lysis, while deletion of these 

genes does not lead to noticeable consequences. 

The presence of these gene pairs on mobile genetic elements suggests that they may maintain  

these elements within the chromosome. This maintenance may then provide the cell with a selective 

advantage under specific environmental conditions. For example, studies of the SPβ prophage suggest 

that it contains genes that are beneficial to B. subtilis. The gene sspC encodes a small acid-soluble 

protein that provides high UV light resistance to spores and is found on the SPβ prophage [85]. The 

gene nonA, examined in the SPβ prophage region of the B. subtilis Marburg strain, encodes a protein 

that protects cells against infection from the bacteriophage SP10 [86]. Perhaps the two toxin-antitoxin 

loci then contribute to maintaining this element within the population. Interestingly, the BsrG type I 

toxic protein that is encoded on the SPβ prophage is temperature-sensitive. Rapid degradation of  

bsrG mRNA was observed at 48 °C, indicating a potential role of this toxin in response to changing 

temperatures [58]. 

However, some prophage regions may simply act as selfish elements in the chromosome. One 

possible example for this theory is the skin element of B. subtilis. This large element (48 kb) is located 

within the sigK gene encoding the RNA polymerase sigma factor σK [87]. During sporulation, skin is 

excised from the chromosome, creating an intact sigK gene. This excision only occurs from the 

chromosome of the mother cell, and not from the chromosome of the forespore. An engineered strain 

with the skin element deleted was able to grow and sporulate normally, suggesting that this region does 

not play an essential role in viability or sporulation [87]. Thus, is skin simply a piece of selfish DNA? 
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Within the skin are two different type I toxin-antitoxin loci: txpA/ratA and bsrH/as-bsrH. Thus, if the 

skin is lost, expression of those toxins could be lethal for the cell, helping to maintain the element 

within the population. However, a study did identify genes conferring arsenate and arsenite resistance 

within the skin element [88], implying that there are genes of value to B. subtilis within this region. 

Perhaps a more detailed analysis of the genes encoded with the skin element could determine if the 

function for txpA/ratA and bsrH/as-bsrH is to maintain a “useful” piece of mobile DNA. 

It is also possible that these type I modules of B. subtilis have functions other than stabilizing the 

chromosomal regions. It has been shown that several type I toxin encoding genes, such as brsG, brsE 

and brsH, have putative ResD response regulator binding sites upstream, indicating that their toxin 

products may participate in response to oxygen limitation [89]. Durand et al noted that the described 

toxins and antitoxins are all under control of the vegetative sigma factor σA; thus all could be quickly 

induced [89]. Further analysis of the balance between the expression of the toxins and antitoxins will 

provide much-needed evidence for their physiological roles. 

In E. coli, the newly described DinQ/AgrB locus may also play a role in chromosomal stability [42]. 

Transcription of the dinQ toxin, like tisB and symE, is also regulated by LexA, and is induced upon 

DNA damage. Deletion of the antitoxin agrB led to elevated DinQ levels; however, this deletion did 

not directly impact SOS activities. Instead, a strain deleted for agrB, had a 400-fold reduction in 

recombination frequency, suggesting that DinQ interferes with recombination [42]. The small toxin is 

found in the membrane, and its overproduction can lead to decreased ATP levels, like TisB, as well as 

increased nucleoid condensation, like Fst and LdrD. Further work to elucidate how these phenotypes 

are linked to DinQ biochemical activity will be of great interest. 

2.4.5. Protection from Foreign DNA 

In 1996, researchers showed that when the hok/sok locus was cloned onto a high copy plasmid,  

E. coli was better protected from infection by the phage T4, suggesting that toxin-antitoxin loci can 

protect bacterial populations from foreign DNA [90]. In fact, all of the described type III toxin-antitoxin 

loci serve as phage abortive infection (abi) systems and confer phage resistance at the population level. 

Essentially, the type III toxin is active during phage infection and causes death of the infected cell 

prior to the release of phage progeny [91]. The toxin possesses ribonuclease activity and is thought to 

cleave RNA (host and phage) leading to cellular damage and death. Interestingly, it appears that this 

mechanism is a rather “generic” means of protection from numerous different phages. For example, 

the ToxIN locus protected P. atrosepticum from 13 examined phages, and when moved into E. coli,  

it was able to protect the non-native host from 5 coliphages [59]. The AbiQ system also conferred 

resistance to at least 3 lactcoccal phage groups [92]. 

How type III toxin activity is triggered by phage infection is not clear. For ToxIN of  

P. atrosepticum and AbiQ of Lactococcus lactis, it appears that both the toxin and antitoxin are 

constitutively transcribed through cell growth [59,62]. Yet prior to phage infection, the toxin must be 

sequestered by the antitoxin to prevent unnecessary cell death. Upon phage infection, a sufficient 

amount of functional toxic protein needs to accumulate to trigger cell death. For ToxIN, it has been 

suggested that during the course of phage infection, host transcription or translation maybe disrupted, 
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resulting in an imbalance of ToxI and ToxN. These imbalances lead to the accumulation of free ToxN, 

which is then able to degrade RNA, and eventually, lead to cell death [59]. 

For the other well-characterized type III loci, this is likely not the case. The AbiQ locus is found on 

the native plasmid pSRQ900 of L. lactis. Here, the toxin gene is referred to as abiQ (ABIQ for the 

protein) and antitoxin gene is antiQ. Analysis of this locus found that abiQ mRNA levels decrease 

over time during phage infection, which was attributed to cell death triggered by the activity of the 

ABIQ toxin [62]. Yet, no significant change in the abundance of ABIQ toxin was observed, suggesting 

that phage does not play an important role in increasing the amount of ABIQ toxin. Moreover, levels 

of the antiQ RNA remain constant, though whether the RNA is still bound to the ABIQ toxin is not 

clear. These data indicate that the cell-killing effect caused by this type III toxin is likely due to a 

functional switch from “silent” to “active”, rather than a change in levels upon infection. Perhaps then 

the phage may activate the ABIQ protein or sequester the antiQ RNA, leading to accumulation of free 

functional ABIQ inside the cell [62]. Further studies regarding the kinetics of the toxin-antitoxin 

interaction and analysis of their activities are needed to understand how activation of the type III toxin 

occurs during phage infection. 

2.4.6. Inhibition of Competitors 

The txpA/ratA homologous locus, sprG1/sprF1, in S. aureus was recently described [93]. Like the 

original txpA/ratA locus, the locus characterized was found on a mobile genetic element, ΦSa3 PI,  

a phage integrated within the chromosome; however, additional copies were predicted within the core 

genome [14,15,93]. The sprG1 gene encodes two toxic peptides from two in-frame initiation codons, 

and the sprF1 gene encodes an antitoxin sRNA. Interestingly, we note that even the original member 

of this family, txpA of B. subtilis, may produce two peptides (see [15]). For S. aureus, overproduction 

of either the long or short SprG1 peptide inhibited cell growth and caused cell death; however,  

co-expression of the SprF1 antitoxin could repress toxicity induced by either toxic peptide [93].  

Both SprG1 peptides contain a putative transmembrane domain and both proteins were detected in the 

supernatant. Given this, the authors investigated whether or not external addition of either peptide 

could be toxic to cells. Application of synthetic forms of SprG1 inhibited the growth of E. coli, 

Pseudomonas aeruginosa and S. aureus, as well as induced lysis of eukaryotic cells [93]. Interestingly, 

the longer synthetic peptide was more effective against human erythrocytes and the shorter variant 

more active against bacterial isolates. While this is the first type I toxin shown to be able to induce 

toxicity when applied externally to cells, more analysis will be needed to confirm that sufficient SprG1 

is produced and released from cells to cause killing under native, endogenous conditions. 

2.4.7. Nucleic Acid Cleavage 

Almost all type I toxins described to date have a putative transmembrane domain that is thought to 

contribute to membrane damage upon their production. However, both SymE and RalR do not follow 

this paradigm. Overproduction of both SymE (SymE/SymR) and RalR (RalR/RalA) toxins were  

toxic to E. coli, yet co-expression of their cognate antitoxin (SymR or RalA) could prevent this  

toxicity [55,56]. SymE, is a rather “large” protein for a type I toxin at 113 amino acids in length. SymE 

acts as a ribonuclease and its overproduction triggers mRNA degradation (for a more thorough 
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discussion of the unusual homology of SymE see [32,55]). Interestingly, SymE, like TisB and DinQ,  

is also induced by DNA damage and under the control of the LexA promoter. Thus, three type I toxins 

of E. coli are triggered by the SOS response, signifying the importance of DNA stability and repair for 

cell survival. 

The RalR toxin is encoded on the rac prophage in the genome of E. coli along with its cognate 

antitoxin-encoding gene ralA [56]. RalR was shown to cleave DNA in an in vitro assay, but not RNA, 

suggesting it functions as a DNase. Deletion of either ralR alone or ralR/ralA locus in E. coli resulted 

in greater sensitivity towards fosfomycin, an antibiotic that inhibits peptidoglycan biosynthesis [94,95]. 

It will be interesting to see how the DNase activity of RalR could lead to increased resistance to a cell 

wall synthesis inhibitor. 

3. Regulating the Toxin mRNA versus the Protein 

Although type I and type III toxins are repressed by RNA antitoxins, the mechanisms of repression 

are distinctly different. In the type I system, the antitoxin sRNA targets the mRNA of the toxin and 

impairs the translation and/or the stability of the toxin mRNA, thus decreasing production of the toxic 

protein. In the type III system, the antitoxin RNA directly binds to the toxin protein to inhibit its 

activity. The differences regarding the modes of action of the antitoxin RNAs raise the question—why 

does toxin repression occur at different levels? 

3.1. Type I Antitoxins: Base Pairing to the Toxin mRNA 

Most type I toxins possess a transmembrane domain, suggesting that these small proteins can  

insert into the cell membrane. Indeed, it has been shown that the E. coli TisB toxin can rapidly and 

spontaneously bind to the membrane once translated, and the TxpA homolog of S. aureus (SprG1) is 

found within the membrane and cellular supernatant [76,77,93]. Therefore, if the repression of the 

toxin requires binding of the antitoxin, it may be difficult for the antitoxin to “catch” the small proteins 

before they “hide” inside the membrane. However, by targeting the toxin mRNA, the type I antitoxin 

can completely turn off toxin production, which may be more efficient in blocking possible pore 

formation. Also, the general function of type I toxin-antitoxin gene pairs may be adaptation to different 

stress conditions. For example, the TisB/IstR, SymE/SymR and DinQ/AgrB pairs in E. coli are  

SOS-induced, while the RNA I/RNA II homolog of S. aureus (SprA1/SprA1AS) is induced in response 

to acidic and oxidative stress [39,42,53,55]. Thus, under normal, favorable growth conditions, toxic 

protein production is unnecessary. Consequently, regulating the toxins at the mRNA level via the 

antitoxin RNA could not only save energy from producing a protein that is not needed, but would also 

limit any possible damage from unwarranted toxin translation. 

3.2. Type III Antitoxins: Binding to the Toxic Proteins 

While the function of the chromosomal type I loci remains unresolved (and note that there may be a 

separate function for each unique family), the type III gene pairs described to date act as abortive 

phage infection (abi) systems. Upon phage infection, the type III toxin promotes death of the infected 

bacterial cell, preventing release of mature phage, thereby limiting phage infection within the 
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population. Due to the incredible abundance and population dynamics of phages, bacteria constantly 

face threats of phage predation [96]. Furthermore, some have speculated that each individual bacterial 

species could be susceptible to at least 10 different phage species [97]. Additionally, phage replication 

is much higher than that of bacteria. A filamentous phage can undergo 6 replication cycles per min, 

while lambda can double its DNA every 2–3 min [98,99]. In order to maintain the bacterial population, 

bacterial cells must rapidly respond to phage infection. 

Consequently, by having a pool of pre-made type III toxin proteins within the cell, a bacterial cell is 

poised to quickly handle phage infection. Regulation of type III toxins after translation likely ensures 

rapid activation of the abi response as the toxins could be rapidly released from sequestration and 

cause cell death. As was described above, upon formation of the RNA duplex between a type I  

toxin-antitoxin pair, the toxin mRNA will often be degraded. Thus, repression by type I antitoxins is 

usually irreversible. However, repression by the type III antitoxins is reversible, and does not impact 

the levels of the toxic protein. This again can contribute to the quick response to phage infection.  

One may argue that this reversible regulation is risky, since any “leaky” type III toxins may cause 

detrimental effects to the cell. However, given the bicistronic nature of type III loci, antitoxin RNA 

levels were shown to be remarkably greater than that of the toxin. For example, approximately 90% of 

the transcripts of the toxIN locus terminate at the Rho-independent terminator [59]. The ToxI: ToxN 

ratio would then be about 10:1, which would allow for sufficient repression of the ToxN toxin. 

Additionally, it has been shown that the antiQ RNA antitoxin remains at a similar level throughout 

phage infection, suggesting this RNA is very stable or constitutively produced [62]. These observations 

suggest that type III toxin repression is tight and that the irreversible nature of its repression likely 

does not pose a problem for the cell. 

4. Conclusions 

There are numerous toxin-antitoxin loci found within bacterial chromosomes; the type I and type III 

pairs represent only a fraction of what has been described to date [1]. The type I and type III loci are 

unique in that they utilize RNA as antitoxins, yet they use their RNA antitoxins very differently, 

illustrating the immense versatility of RNA as a regulatory molecule. It is important to note that to date 

these antitoxins have been shown to act either through interaction with toxin mRNA or protein.  

It remains to be seen if an antitoxin RNA can act by interacting with both the toxin mRNA and toxin 

protein. For example, the small RNA McaS of E. coli was shown to act via base pairing to target 

mRNAs and act by binding to the protein CsrA [100,101]. It is intriguing to think an antitoxin RNA 

may be identified that can act on both RNA and protein. It has been also been demonstrated that some 

of the type II antitoxins not only repress their cognate toxins, but also control the expression of several 

other genes [102–106]. As many type I antitoxins are found at much higher levels than their toxin 

counterparts, could some of the type I antitoxins have additional cellular functions? Finally,  

the role of so many type I toxin-antitoxin loci remains elusive; given their broad distribution and 

conservation throughout a variety of species, much more work deciphering the biochemical activity of 

the toxins, the physiology of deletion strains, and thorough analysis of gene expression control will 

provide the answer to the question “what are all of these loci doing?” 
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