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Abstract: Survival among hemodialysis patients is disturbingly low, partly because vascular 

calcification (VC) and cardiovascular disease are highly prevalent. Elevated serum 

phosphorus (P) and calcium (Ca) levels play an essential role in the formation of VC events. 

The purpose of the current study was to reveal optical monitoring possibilities of serum P 

and Ca values during dialysis. Twenty-eight patients from Tallinn (Estonia) and Linköping 

(Sweden) were included in the study. The serum levels of Ca and P on the basis of optical 

information, i.e., absorbance and fluorescence of the spent dialysate (optical method) were 

assessed. Obtained levels were compared in means and SD. The mean serum level of Ca  

was 2.54 ± 0.21 and 2.53 ± 0.19 mmol/L; P levels varied between 1.08 ± 0.51 and  

1.08 ± 0.48 mmol/L, measured in the laboratory and estimated by the optical method 

respectively. The levels achieved were not significantly different (p = 0.5). The Bland-Altman 

95% limits of agreement between the two methods varied from −0.19 to 0.19 for Ca and 

from −0.37 to 0.37 in the case of P. In conclusion, optical monitoring of the spent dialysate 
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for assessing the serum levels of Ca and P during dialysis seems to be feasible and could 

offer valuable and continuous information to medical staff. 

Keywords: dialysis; vascular calcification; calcium; phosphorus; optical monitoring; 

ultraviolet absorbance; fluorescence 

 

1. Introduction 

Mortality among end-stage renal disease (ESRD) patients is continuously very high. Only 52% of 

hemodialysis (HD) and 61% of peritoneal dialysis patients live for at least three years after the beginning 

of renal replacement therapy. One leading cause of death is cardiovascular disease (CVD) [1]. Vascular 

calcification is common in chronic kidney disease (CKD) patients, and one of the reasons is abnormal 

bone metabolism, resulting in high serum levels of calcium (Ca) and phosphorus (P) [2]. It has been 

shown that elevated phosphorus levels are independently associated with mortality in dialysis  

patients [3]. The Dialysis Outcomes and Practice Patterns Study (DOPPS) indicated that increased levels 

of serum Ca, Pa and PTH are related to increased all-cause and cardiovascular mortality [4].  

Kidney Disease Improving Global Outcomes (KDIGO) and Chronic Kidney Disease–Mineral and 

Bone Disorder (CKD-MBD) guidelines [5], endorsed by European Renal Best Practice (ERBP) work 

group [6], suggest that elevated phosphorus levels in ERSD patients should be lowered towards normal 

range, and serum calcium should be maintained in the normal range. In healthy subjects, serum calcium 

is usually in the range of 8.5–10.5 mg/dL (2.1–2.6 mmol/L) and serum level of phosphorus between  

2.5 and 4.5 mg/dL (0.81–1.45 mmol/L) [5]. 

Calcium-phosphorus product (Ca × P) can be used for estimation of arterial calcification and 

cardiovascular event risk in ERSD patients [7,8]. However, use of Ca × P in clinical practice is under 

debate and a combined evaluation of individual values of serum calcium and phosphorus in favor of 

estimation of Ca × P is suggested [5]. 

Efficient control of Ca and P levels in dialysis patients may help to prevent vascular calcification. 

Further, it has been shown that removal profile of phosphorus during dialysis is different from urea [9]. 

It is possible to observe effectiveness of removal by analyzing the blood (pre- and post-dialysis) samples, 

but an alternative option is optical monitoring of the spent dialysate. Methods for optical estimation of 

dialysis quality [10] and small [11,12], protein bound [13] and middle [14] molecular weight uremic 

retention solutes removal during dialysis has been proposed. Possibility for optical determination of 

phosphate elimination during dialysis has been also demonstrated [15].  

The aim of this study was to explore whether multi-wavelength algorithms based on optical 

properties, ultraviolet-absorbance (UV) and fluorescence (F) of the spent dialysate are an appropriate 

technique for estimating serum levels of Ca and P in CKD patients. 

2. Results 

Fluorescence analysis was performed over an excitation (EX) wavelength range of 220–500 nm 

(excitation increment 10 nm); emission (EM) spectra over a wavelength range of 220–500 nm were 
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recorded at each excitation and the resulting 3D fluorescence maps are presented in Figure 1.  

The amplitude of the spectra is proportional to the content of eliminated uremic retention solutes in the  

spent dialysate. 

 

Figure 1. Examples of fluorescence spectra of spent dialysate taken at the start (10 min) and 

at the end (240 min) of the dialysis procedure. Excitation (EX) = 220–500 nm, Emission 

(EM) = 220–500 nm.  

Ultraviolet (UV)-absorbance measurements of the spent dialysate samples were performed over a 

wavelength range of 190–380 nm (Figure 2).  

 

Figure 2. Examples of absorbance spectra of spent dialysate samples taken at the start and 

at the end of the dialysis over a wavelength range 190–380 nm.  

Table 1. Serum total calcium and phosphorous concentration values estimated by different methods. 

 Min Max Mean SD N R R2 St. Error of Estimate 

Ca_Lab (mmol/L) 2.15 2.95 2.54 0.21 83    

Ca_Opt (mmol/L) 2.22 2.95 2.53 0.19 83 0.90 0.81 0.093 

P_Lab (mmol/L) 0.42 2.85 1.08 0.51 142    

P_Opt (mmol/L) 0.38 2.76 1.08 0.48 142 0.93 0.87 0.182 

Values from the laboratory and estimated by the optical method were compared using paired Student t-test;  

the values are not statistically different (p = 0.5). 

Obtained models used 6–8 independent variables (UV-absorbance and fluorescence values at certain 

wavelengths) to estimate the substance level. The values of Ca and P concentrations in serum measured 

in the laboratory (Ca_Lab, P_Lab) and estimated by the models (Ca_Opt, P_Opt) are presented in  
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Table 1. Serum Ca level was above the standard range in the case of two patients. Serum P level exceeded 

normal value at the beginning of at least one studied session in the case of 15 patients.  

Measured and calculated values of Ca and P in serum samples taken before and after the dialysis 

procedure were compared and the goodness of fit is shown in Figure 3. 

 

(a) (b) 

Figure 3. Goodness of fit of the multiple linear regression models for estimating the serum 

concentration of (a) Ca and (b) P. 

 

(a) 

 

(b) 

Figure 4. Bland-Altman plots. The individual differences between the levels of (a) Ca and 

(b) P concentrations from the laboratory and those estimated by the optical method plotted 

against the mean value of levels from the lab and the optical method. 
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The differences in the individual values of a substance level from the laboratory and those calculated 

by the models are presented in Figure 4. The Bland-Altman analysis shows that the 95% limits of 

agreement between the two methods varied from −0.19 to 0.19 for Ca and from −0.37 to 0.37 for P. 

3. Discussion 

The primary aim was to develop multi-wavelength algorithms based on the optical information of the 

spent dialysate for optical estimation of serum level trends of Ca and P.  

It has been suggested that the efficiency of phosphate removal should be monitored in addition to 

traditional dialysis dose assessment techniques [16] and during HDF procedures phosphate elimination 

is often more efficient compared to HD procedures [17]. In order to maintain patients’ Ca levels within 

the desired limits, dialysate concentration of Ca should be individually adjusted according to plasma  

Ca levels [18]. Further, it has been suggested to use a dialysate consisting Ca between 1.25 and  

1.50 mmol/L [4]. Content of Ca in the dialysate solution is the reason for the mean Ca concentration 

change in spent dialysate samples collected during dialysis sessions is ~5%. At the same time, the P 

content in the spent dialysate changes 50% on an average. Management of serum P levels in patients 

with chronic kidney disease is extremely critical to prevent vascular calcification and CVD [19].  

Table 1 shows the variability of levels of Ca and P estimated in the course of the study.  

Optical monitoring of hemodialysis has been considered as a beneficial and cost-effective alternative 

to traditional methods to assess the effectiveness of the dialysis procedure without the need of frequent 

blood sampling [20]. The optical monitoring possibility of the phosphate removal during dialysis has 

been suggested by Enberg et al. [15]. This study included 11 patients and 33 dialysis sessions,  

while absorbance at a single wavelength was used.  

Our study involved 28 patients from Tallinn and Linköping. Several of fluorescence and absorbance 

maxima/minimum of the spent dialysate are shown in Figures 1 and 2. The amplitude of the spectra is 

proportional to the content of eliminated uremic retention solutes in the spent dialysate, being 

higher/lower at the beginning of the dialysis treatment (10 min) and lower/higher at the end of the 

dialysis in particular wavelength regions. Good correlations between the serum levels of Ca and P and 

the optical parameters of the spent dialysate transformed to serum values (Figure 3) indicate that the 

serum levels and removal of these substances can be observed optically. 

Since Ca and P do not absorb light in the wavelength region measured, it is most likely that the 

obtained good correlation is induced by surrogate marker. 

However, these surrogate markers seem to well express the serum concentration changes of Ca  

and P. Additionally, the long-term effect on the correlation should be investigated in future research. 

Obtained levels were not statistically different from the values measured in clinical chemistry 

laboratories (p < 0.05). Although the use of the calcium-phosphorus product (Ca × P) in clinical practice 

is under debate, it would be possible to perform such (or similar) combined measurements optically.  

Figure 4 illustrates the differences between individual values of the levels of Ca and P. The  

Bland-Altman analysis shows that the 95% limits of agreement between the two methods varied from 

−0.19 to 0.19 for Ca and from −0.37 to 0.37 in the case of P. The agreement achieved could be  

considered adequate for Ca while in the case of P, the limit of agreement is rather wide. An explanation 

for this may be the large magnitude of the measurement results. However, the method is probably 
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suitable for long-term monitoring of P trends or removal. Performed study demonstrates that it is possible 

to assess serum levels of Ca and P using optical information of the spent dialysate. In this way, a patient’s 

serum level of calcification markers can be followed continuously, which may have a beneficial effect 

on prevention and treatment.  

4. Materials and Methods  

The study included 28 chronic hemodialysis patients, 19 males and nine females, mean age  

64 ± 13 years. Twenty patients were observed in Tallinn, Estonia and eight patients in Linköping, 

Sweden. Clinical data of the studied patients is presented in Table 2. The patients were followed in  

52 hemodiafiltration (HDF) and 36 hemodialysis (HD) procedures. The studies were performed after 

authorization of the protocol by the Tallinn Medical Research Ethics Committee, Estonia and Regional 

Ethical Review Board, Linköping, Sweden. All participating patients gave an informed consent.  

Table 2. Data of the studied patients. 

Patient Kidney Disease Age Gender BMI 
Time on HD 

(months) 

Dialyzer Type and 

Membrane Area 
Dialysis Access 

Procedure Type 

(HD/HDF) 

1 Polycystic kidney disease 83 M 23.5 109 FX80-1.8 m2 a/v fistula HD and HDF 

2 Atherosclerosis 57 M 22.5 32 FX80-1.8 m2 a/v fistula HD and HDF 

3 Diabetic nephropathy 85 M 18.7 36 FX80-1.8 m2 a/v fistula HD and HDF 

4 Hypertensive renal disease 81 F 34.6 12 FX80-1.8 m2 graft HD and HDF 

5 Diabetic nephropathy 84 M 24.4 29 FX80-1.8 m2 a/v fistula HD and HDF 

6 Polycystic kidney disease 49 M 16.7 45 FX80-1.8 m2 a/v fistula HD and HDF 

7 Diabetic nephropathy 76 M 29.0 32 FX80-1.8 m2 a/v fistula HD and HDF 

8 Atherosclerosis 73 M 33.2 24 FX80-1.8 m2 a/v fistula HD and HDF 

9 Glomerulo-nephritis 69 F 27.1 47 FX10-1.8 m2 a/v fistula HD 

10 Tubulointerstitial nephritis 62 F 20.3 7 FX10-1.8 m2 a/v fistula HD 

11 Diabetic nephropathy 60 F 26.4 24 FX80-1.8 m2 graft HDF 

12 Polycystic kidney disease 68 M 27.8 96 FX80-1.8 m2 graft HDF 

13 Polycystic kidney disease 43 M 23.9 16 FX80-1.8 m2 graft HDF 

14 Tubulointerstitial nephritis 60 M 27.1 26 FX80-1.8 m2 a/v fistula HDF 

15 Hypertensive renal disease 48 M 27.8 8 FX10-1.8 m2 a/v fistula HD 

16 Hypertensive renal disease 59 M 26.9 28 FX80-1.8 m2 a/v fistula HDF 

17 Myeloma 56 F 30.5 28 FX80-1.8 m2 graft HDF 

18 Myeloma 58 M 25.6 29 FX80-1.8 m2 a/v fistula HDF 

19 Diabetic nephropathy 74 F 27.0 37 FX10-1.8 m2 a/v fistula HD 

20 Polycystic kidney disease 46 M 22.6 42 FX80-1.8 m2 graft HDF 

21 Myeloma 58 F 30.5 53 FX100-1.8 m2 graft HDF 

22 Tubulointerstitial nephritis 43 F 19.0 23 FX80-1.8 m2 a/v fistula HDF 

23 Hypertensive renal disease 73 M 27.1 44 FX80-1.8 m2 
permanent 

dialysis catheter 
HDF 

24 Tubulointerstitial nephritis 56 M 23.9 52 FX80-1.8 m2 a/v fistula HDF 

25 Diabetic nephropathy 58 M 37.6 36 FX100-1.8 m2 a/v fistula HDF 

26 Hypertensive renal disease 80 M 20.3 81 FX10-1.8 m2 a/v fistula HD 

27 Myeloma 60 M 25.3 55 FX100-1.8 m2 a/v fistula HDF 

28 Tubulointerstitial nephritis 64 F 23.0 28 FX80-1.8 m2 a/v fistula HD 

Fresenius 5008 (Fresenius Medical Care, Bad Homburg, Germany) dialysis machine was used.  

The dialyzers used were FX10, FX80, FX100 and FX800 (Fresenius Medical Care, Bad Homburg, 

Germany). Conventional acetic acid acidified solution was used. The treatment durations varied  
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between 180 and 270 min; the dialysate flow was 500 mL/min and the blood flow varied between  

250 and 350 mL/min. 

The concentrations of total Ca and P in serum samples taken before and after the dialysis procedure 

were determined in the Clinical Chemistry Laboratories using standardized methods. The Ca method is 

based on the research of Michaylova and Illkova who discovered that Arsenazo III and Ca could form a 

stable complex at low pH [21]. The P method originates from the work of Daly and Ertinghausen who 

described a UV-absorbing complex formation between P and molybdate [22]. Ca concentration was not 

determined in all procedures. Therefore, the number of Ca results is markedly lower than the number of 

P results. Serum Ca and P levels at the beginning of dialysis sessions were compared with normal ranges. 

Spent dialysate samples were collected from the drain tube of the dialysis machine 10 min after the start 

of the session and at the end of the session.  

Fluorescence analysis was performed over an excitation (EX) wavelength range of 220–500 nm, 

excitation increment 10 nm was chosen. Emission (EM) spectra over a wavelength range of 220–500 nm 

were recorded at each excitation. Spectrofluorophotometer (SHIMADZU RF-5301, Kyoto, Japan) was 

used for the measurements. 

UV-absorbance measurements of the spent dialysate samples were performed over a wavelength 

range of 190–380 nm (Figure 2). UV-VIS-NIR spectrophotometer (V-570, JASCO Corp., Tokyo, Japan) 

was used in Sweden and UV-3600, SHIMADZU, Japan was used in Tallinn. The wavelengths were 

chosen on the basis of earlier spent dialysate measurements [23,24]. 

Measurements were performed at the room temperature (ca. 22 °C). The obtained spectral values 

were processed and presented by software Panorama fluorescence and UV Probe (SHIMADZU, Kyoto, 

Japan), the final data processing was performed in Excel (Microsoft Office Excel 2007).  

Some of the measured values (concentration/absorbance/fluorescence) were excluded from the data. 

The criteria for exclusion were incorrect or illogical values of measured concentration or 

absorption/fluorescence if, for example, sampling was performed simultaneously with self-tests of the 

dialysis machine when the concentration and the absorbance dropped close to zero. 

Models for serum levels of Ca and P calculation were created utilizing information from the measured 

fluorescence and UV-absorbance. Analysis was performed with Statistica 9.0 (Statsoft Inc., Tulsa, OK, 

USA) and multiple linear regression (forward stepwise regression method) was employed. The serum 

level of a substance was set as a dependent parameter, and optical characteristics (UV- absorbance and 

fluorescence) of the spent dialysate were set as independent parameters.  

The algorithms obtained for the levels (Y) calculation are in the form 

 (1) 

where a is the intercept, b is the slope and x is the independent variable (the value of UV-absorbance (A) 

or fluorescence (F) at a particular wavelength). 

 (2) 

 (3) 

To determine differences between level values from the clinical laboratory and the optical method, 

the paired two sample for means Student t-test (p < 0.05 was considered significant) was used. To reveal 

the level of agreement between the two methods, a Bland-Altman analysis was performed. 

ii xbxbxbaY  ...2211

363524231211 AbFbFbAbAbFbaCa 

4837261544332211 AbAbAbAbFbFbFbFbaP 
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