Next Article in Journal
Induction of Suicidal Erythrocyte Death by Nelfinavir
Next Article in Special Issue
Clinical and Pathological Findings Associated with Aerosol Exposure of Macaques to Ricin Toxin
Previous Article in Journal
Botulinum Neurotoxin Serotypes Detected by Electrochemical Impedance Spectroscopy
Previous Article in Special Issue
Pokeweed Antiviral Protein: Its Cytotoxicity Mechanism and Applications in Plant Disease Resistance
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Ribosome-Inactivating and Related Proteins

Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany
*
Author to whom correspondence should be addressed.
Submission received: 31 March 2015 / Revised: 23 April 2015 / Accepted: 28 April 2015 / Published: 8 May 2015
(This article belongs to the Special Issue Plant Toxins)

Abstract

:
Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs.

1. Introduction

Because of their N-glycosidase activity, ribosome-inactivating proteins inhibit protein synthesis by cleaving a specific adenine residue (A4324) from the 28S ribosomal RNA of the large 60S subunit of rat ribosomes followed by cell death [1]. In addition, certain RIPs can remove adenine from DNA and other polynucleotides for which reason they are also known as polynucleotide adenosine glycosidases [2]. PAP, an RIP from Phytolacca americana, can cleave not only adenine, but also guanine from the rRNA of Escherichia coli [3].
There are mainly two different types of RIPs: type 1 RIPs (RIP 1) and type 2 RIPs (RIP 2). Type 1 RIPs are single chain proteins, whereas type 2 RIPs consist of two polypeptide chains (A- and B-chain) that are usually linked through a disulfide bridge. The A-chain contains the enzymatic function and the B-chain has lectin properties enabling these proteins to bind to galactose residues on the cell surface. This facilitates the A-chain to enter the cell. Beside these different types of RIPs, there was the proposal to categorize an additional group of RIPs as type 3 RIPs including a protein from maize (b-32) and from barley (JIP60). The protein from maize, b-32, is synthesized as an inactive proenzyme, which is activated after the removal of an internal peptide segment obtaining two segments of 16.5 kDa and 8.5 kDa [4] that seem to act together as N-glycosidase. JIP60 consists of an amino-terminal domain resembling type 1 RIPs linked to a carboxyl-terminal domain, which has a similarity to eukaryotic translation initiation factor 4E [5,6]. Due to their different structures, these two proteins cannot be grouped into the classical type 1 RIPs. However, the necessity of denominating a new group of RIPs for only these two proteins is not realistic. Therefore, the suggestion was made to consider these two proteins as peculiar type 1 RIPs [7,8]. Beside the N-glycosidases, there is a second kind of RIPs belonging to the RNA hydrolase [9,10]. Both kinds of RIPs strongly inhibit the protein synthesis but show different mechanisms of action. The RNA hydrolases, like α-sarcin as the best-known representative, catalytically cleave a phosphodiester bond between G4325 and A4326 of the rat 28S rRNA. With the exception of crotin II, another representative of the RNA hydrolases (see Section 3.5), these kinds of RIPs are not described in detail in this review.
RIPs have mostly been found in plants, but the hypothesis that RIPs are ubiquitous should be discarded, because a gene encoding for an RIP has not been detected in the genome of Arabidopsis thaliana [11]. On the other hand, there are plants in which several RIPs occur simultaneously, and recently, it was shown that there are 31 genes in the rice genome encoding for type 1 RIPs [12]. Beside the plant RIPs, a type 1 RIP was also found from the species algae Saccharina japonica, which were denominated as lamjapin [13]. In addition, researchers are also aware of some type 1 RIPs from fungi, such as pleuturegin from Pleurotus tuberregium [14], lyophyllin from Lyophyllum shimeji [15], flammutin and velutin from Flammulina velutipes [16], hypsin and marmorin from Hypsizygus marmoreus [17,18], and volvarin from Volvariella volvaceae [19]. There are also two type 1 RIPs from bacteria: shiga toxin from Shigella dysenteria [20], and verotoxin 1 (shiga-like toxin) from Escherichia coli [21]. At last, adenine glycosylase activity was even found in some mammalian tissues [2].
RIPs show several enzymatic activities, such as chitinase activity [22], superoxide dismutase activity [23], DNase activity [24], and lipase activity [25]. Due to the N-glycosidase activity on viral RNA, RIPs have an antiviral effect, which is considered as a physiological function. But the enzymatic activity could also be related to a role in the defense of plants against predators and fungi [7,8,26]. Because of the N-glycosidase activity on genomic plant DNA, it is also believed that RIPs could play an undefined role in plant senescence [27]. RIPs might also give the plants evolutionary advantages as a kind of protection under unfavorable situations [28]. Anyway, no precise biological role has yet been assigned to RIPs [29], but most of the authors favor the antiviral role. Thus, in agriculture, research was performed to increase the resistance against viruses by using DNA recombinant technology (reviewed in [11]). In medicine, research for treatment of HIV diseases was performed leading to phase II study [30]. But most research of the use of RIPs is aimed at anti-cancer therapy in leading RIPs selectively to malignant tumor cells to be eliminated. Therefore, type 1 RIPs and the A-chains of type 2 RIPs are coupled to antibodies or other targeting moieties like growth factors, other hormones or smaller peptides generating targeted toxins [31,32,33]. These conjugates, however, contain highly potent toxins with a high potential of side effects, because they are partly taken up non-specifically by macrophages or other somatic cells. Another issue regarding the application of these conjugates in an anti-cancer therapy is the response of the immune system, because they are antigens. To reduce at least the high potential of side effects, it is necessary to begin the dosage of these conjugates as low as possible. That seemed to be possible since a synergistic effect of saponins and type 1 RIPs increasing the toxic effect of type 1 RIPs drastically [34,35,36] has been discovered. For that, the saponins must consist of certain molecule units [37], and it has been found that the synergistic effect is not based on stimulating phagocytosis [38], but increasing the endosomal escape in a certain way [39,40]; thus, the type 1 RIPs enter the cytosol.
In the last decade, several reviews about RIPs were published setting the focus on the chemical and biological properties and activities, distribution in nature or possible use of the RIPs (e.g., [8,11,41,42,43,44]). There is one review that contains a table of all hitherto known RIPs [7]. During our investigations, we found that this table needs to be added with several more RIPs and RIP related proteins. Moreover, we found that some proteins were designated with different terms, e.g., nigrin b from Sambucus nigra or sieboldin-b from Sambucus sieboldiana were also designated as SNA-V or SSA-b-2, respectively. In addition, in some cases, the same term was used to designate different proteins, e.g., the term momordin II was used for a protein from Momordica balsamina as well as for a protein from Momordica charantia or the term MAP was used for a protein (MAP 30) from Momorica charantia and for a protein from Mirabilis jalapa (MAP = Mirabilis antiviral protein). These examples are intended to illustrate that there is still no unambiguous nomenclature for the RIPs. There are also ambiguities about the classification of some proteins, whether they are type 2 RIPs or just lectins, because no assay concerning the toxicity was performed or there was no information given about the structure: SGSL from Trichosanthes anguina, TCSL from Trichosanthes cucumerina, TKL-1 from Trichosanthes kirilowii, TDSL from Tichosanthes dioica, and BDA from Bryonia dioica. At least since the knowledge that RIPs and lectins evolved from common ancestral genes [29], it is very likely that there are a number of other RIPs not detected to date. This assumption is corroborated by the investigation of several Adenia species, in which some new lectins were found, some of which may be referred to as type 2 RIP [45]. Therefore, with this review we created a summary table (Table 1) with all known RIPs and those proteins, which probably can be classified as RIPs, and we listed all terms that were used for the designation of these proteins. Since there is a phylogenetic relationship between RIPs and lectins, as mentioned above, we also listed the lectins from those plants, which are members of families that are known to include plants that synthesize one or more RIPs. For this, we focused on RIPs from plants, whereas other RIPs from algae, bacteria, and fungi are not considered further.

2. Table of RIPs from plants

Table 1. Summary table of ribosome-inactivating proteins (RIPs) and RIP related proteins from plants.
Table 1. Summary table of ribosome-inactivating proteins (RIPs) and RIP related proteins from plants.
FamilySpecies 1ProteinClassific.Mw 2IC50 3SourceReferences
AdoxaceaeSambucus ebulus L.Ebulitin αRIP 132 kDa10 ng/mLleaves[46]
Ebulitin βRIP 129 kDa10 ng/mLleaves[46]
Ebulitin γRIP 129 kDa10 ng/mLleaves[46]
Ebulin fRIP 256 kDa96 ng/mL; 0.3 nM (A) 5green fruits[29,47]
Ebulin lRIP 256 kDa8.5 ng/mL; 0.15 nM (A) 5leaves[29,48,49]
Ebulin r1RIP 256 kDa2.3 ng/mLrhizomes[49]
Ebulin r2RIP 256 kDa2.3 ng/mLrhizomes[49]
SEARIP 2135,630 Da1 nMbark[50]
SEAIIlectin33.5 kDa-rhizomes[49]
SELfdlectin68 kDa820 ng/mLgreen fruits[47]
SELldlectin67,906 Da-leaves[51,52]
SELlmlectin34,239 Da-young shoots[53]
Sambucus nigra L.α-NigritinRIP 129 kDa2.44–34 ng/mLleaves[54]
β-NigritinRIP 140 kDa2.44–34 ng/mLleaves[54]
γ-NigritinRIP 127.5 kDa2.44–34 ng/mLleaves[54]
Nigritin f1RIP 124,095 Da100 ng/mLgreen and mature fruits[55]
Nigritin f2RIP 123,565 Da100 ng/mLmature fruits[55]
basic Nigrin bRIP 263,469 Da18 pg/mL; 0.3 pM (A) 5bark[56]
Nigrin b = SNA-VRIP 2120 kDa261 pM; 0.03 nM (A) 5bark[29,57,58,59]
Nigrin f = SNA-VfRIP 2120 kDa1.9 ng/mL; 1.8 ng/mL; 0.03 nM (A) 5fruits[29,60,61,62]
Nigrin l1RIP 2n.a. 4n.a. 4leaves[63]
Nigrin l2RIP 2n.a. 4n.a. 4leaves[63]
Nigrin sRIP 257 kDa~1 µg/mLseeds[64]
SNA-IRIP 2240 kDa150 ng/mL; 600 pMbark[58,65,66,67,68]
SNA-I’RIP 2120 kDa150 ng/mLbark[67,69]
SNA-IfRIP 2240 kDan.a. 4fruits[69,70]
SNAflu-IRIP 2subunits of 30–33 kDan.a. 4inflorescen-ces[71,72]
AdoxaceaeSambucus nigra L.SNLRP1RIP 262 kDa0.5 µg/mL; 5.74 nM (A) 5bark[29,73,74]
SNLRP2RIP 260–62 kDan.a. 4bark[74]
SNA-ldlectinn.a. 4-leaves[63]
SNA-lmlectinn.a. 4-leaves[63]
SNA-IIlectin60 kDa-bark[58,68,75]
SNA-IIIlectin50 kDa-seeds[58,76]
SNA-IV = SNA-IVflectin60 kDa-fruits[58,62,77,78]
SNA-IVllectinn.a. 4-leaves[63]
SNApol-Ilectinsubunits of 26 kDa-pollen[71]
SNApol-IIlectinsubunits of 20 kDa-pollen[71]
TrSNA-Ilectin22 kDa-bark[70]
TrSNA-Iflectin22 kDa-fruits[70]
Sambucus racemosa L.basic racemosin bRIP 2n.a. 4n.a. 4bark[72]
SRARIP 2120 kDan.a. 4bark[72,79]
SRLbm = SRAbmlectin30 kDa-bark[72,80]
Sambucus sieboldiana (Miq.) Blume ex Graebn.SSA = SSA-b-1RIP 2160 kDa985 ng/mL; 16.4 nM (A) 5bark[81,82,83]
Sieboldin-b = SSA-b-2RIP 259.4 kDa0.9 ng/mL; 0.015 nM (A) 5bark[29,83,84]
SSA-b-3lectin34,262 Da20–30 µg/mLbark[83]
SSA-b-4lectin32,333 Da20–30 µg/mLbark[83]
AizoaceaeMesembryanthe-mum crystallinum L.RIP1RIP 131.6 kDan.a. 4leaves[85]
AmaranthaceaeAmaranthus caudatus L.Amaranthin = ACAlectin63.5 kDa-seeds[86,87,88]
Amaranthus cruentus L.ACLlectin66 kDa-seeds[89]
Amaranthus hypochondriacus L. [Syn.: Amaranthus leucocarpus S. Watson]A. leucocarpus lectinlectin45 kDa-seeds[90]
Amaranthus mangostanus L.AmaramanginRIP 129 kDan.a. 4seeds[91]
Amaranthus tricolor L.AAP-27RIP 127 kDan.a. 4leaves[92]
AmaranthaceaeAmaranthus viridis L.AmaranthinRIP 130 kDa25 pMleaves[93,94]
Beta vulgaris L.Beetin-27 = BE27RIP 127,592 Da1.15 ng/mLleaves[95,96,97]
Beetin-29 = BE29RIP 129 kDan.a. 4leaves[95,96,97]
BetavulginRIP 130 kDan.a. 4seedlings[98]
Celosia argentea L. [Syn.: Celosia cristata L.]CCP-25RIP 125 kDan.a. 4leaves[99,100]
CCP-27RIP 127 kDa25 ng/mLleaves[99,100,101]
Chenopodium album L.CAP30RIP 130 kDa2.26 pMleaves[102,103]
Spinacia oleracea L.SoRIP1 = BP31RIP 131 kDan.a. 4cell cultures[104,105,106,107]
SoRIP2RIP 1 candidate36 kDan.a. 4cell cultures[106,107]
AraliaceaeAralia elata (Miq.) Seem.AralinRIP 262 kDan.a. 4shoots[108,109]
Panax ginseng C.A.MeyPanaxaginpeculiar RIP 1 candidate/RNase52 kDa0.28 nMroots[110]
Panax quinquefolius L.Quinqueginsinpeculiar RIP 1 candidate/RNase53 kDa0.26 nMroots[111]
AsparagaceaeAsparagus officinalis L.Asparin 1RIP 130.5 kDa0.27 nMseeds[112,113]
Asparin 2RIP 129.8 kDa0.15 nMseeds[112,113]
Drimia maritima (L.) Stearn [Syn.: Charybdis maritima (L.) Speta]CharybdinRIP 129 kDa27.2 nMbulbs[114]
Muscari armeniacum Leichtlin ex BakerMusarmin 1RIP 128,708 Da7 ng/mLbulbs[115]
Musarmin 2RIP 130,003 Da9.5 ng/mLbulbs[115]
Musarmin 3RIP 127,626 Da4 ng/mLbulbs[115]
Musarmin 4RIP 128 kDa1.4–8.2 ng/mL; 50–280 nMrecomb. 6[116]
Polygonatum multiflorum (L.) All.PMRIPmRIP 260 kDan.a. 4leaves[117]
PMRIPtRIP 2240 kDan.a. 4leaves[117]
Yucca gloriosa var. tristis Carrière [Syn.: Yucca recurvifolia Salisb.]Yucca leaf protein = YLPRIP 123 kDan.a. 4leaves[118,119]
BasellaceaeBasella rubra L.Basella RIP 2aRIP 130.6 kDa1.70 ng/mLseeds[120]
Basella RIP 2bRIP 131.2 kDa1.70 ng/mLseeds[120]
Basella RIP 3RIP 131.2 kDa1.66 ng/mLseeds[120]
CaryophyllaceaeAgrostemma githago L.Agrostin 2RIP 130.6 kDa0.6 nMseeds[121,122]
Agrostin 5RIP 129.5 kDa0.47 nMseeds[121,122]
Agrostin 6RIP 129.6 kDa0.57 nMseeds[121,122]
AgrostinRIP 127 kDan.a. 4seeds[123]
Dianthus barbatus L.Dianthin 29RIP 129 kDa1.5 nMleaves[124]
Dianthus caryophyllus L.Dianthin 30RIP 129.5 kDa9.15 ng/mL; 0.3 nMleaves[122,125,126]
Dianthin 32RIP 131.7 kDa3.6 ng/mL; 0.12 nMleaves[125,126]
Dianthus chinensis L. [Syn.: Dianthus sinensis Link]D. sinensis RIPRIP 1n.a. 4n.a. 4recomb. 6[127]
Gypsophila elegans M.Bieb.GypsophilinRIP 128 kDan.a. 4leaves[128]
Silene chalcedonica (L.) E.H.L.Krause [Syn.: Lychnis chalcedonica L.]LychninRIP 126,131 Da0.17 nMseeds[113,129,130]
Silene glaucifolia Lag. [Syn.: Petrocoptis glaucifolia (Lag.) Boiss.]Petroglaucin 1RIP 126.7 kDa6 ng/mLwhole plants[131]
Petroglaucin 2RIP 127.5 kDa0.7 ng/mLwhole plants[132]
Silene laxipruinosa Mayol & Rosselló [Syn.: Petrocoptis grandiflora Rothm.]PetrograndinRIP 128.6 kDa6.6 ng/mLwhole plants[131]
Saponaria ocymoides L.OcymoidinRIP 130.2 kDa46 pM; 4.8 ng/mLseeds[133,134]
Saponaria officinalis L.Saporin-L1 = SO-L1RIP 131.6 kDa0.25 nMleaves[135,136,137,138]
Saporin-L2 = SO-L2RIP 131.6 kDa0.54 nMleaves[135]
Saporin-L3 = SO-L3RIP 1n.a. 4n.a. 4leaves[135]
Saporin-l = SO-l = SO-4RIP 1n.a. 4n.a. 4leaves[139]
Saporin-R1 = SO-R1RIP 130.2 kDa0.86 nMroots[135]
Saporin-R2 = SO-R2RIP 130.9 kDa0.47 nMroots[135]
CaryophyllaceaeSaponaria officinalis L.Saporin-R3 = SO-R3RIP 130.9 kDa0.48 nMroots[135]
SO3aRIP 122.5 kDan.a. 4seeds[140]
SO3bRIP 119.4 kDan.a. 4seeds[140]
Saporin-S5 = Saporin 5 = SO-S5RIP 130.5 kDa0.05 nM; 10.3 ng/mLseeds[112,135,141]
Saporin-S6 = Saporin 6 = SO-6 = SO-S6RIP 128,577 Da0.06 nM; 0.6 ng/mLseeds[112,135,139,141,142,143,144,145]
Saporin-S8 = SO-S8RIP 1n.a. 4n.a. 4seeds[135]
Saporin-S9 = Saporin 9 = SO-S9RIP 128,495 Da0.037 nMseeds[112,122,135,146]
SAP-CRIP 128.5 kDa125 pMrecomb. 6[147]
SAP-SRIP 128,560 Da12 pMseeds[147]
Myosoton aquaticum (L.) Moench [Syn.: Stellaria aquatica (L.) Scop.]StellarinRIP 125 kDa0.04 nMleaves[148]
Stellaria media (L.) Vill.RIP Q3RIP 128.2 kDan.a. 4recomb. 6[149]
Vaccaria hispanica (Mill.) Rauschert [Syn.: Vaccaria pyramidata Medik.]PyramidatinRIP 128.0 kDa89 pM; 3.6 ng/mLseeds[133]
CucurbitaceaeBenincasa hispida (Thunb.) Cogn.HispinRIP 121 kDa165 pMseeds[150]
α-benincasinsRIP 112 kDa20 pM; 0.22 ng/mLseeds[151]
β-benincasinsRIP 112 kDa320 pM; 3.4 ng/mLseeds[151]
Bryonia cretica subsp. dioica (Jacq.) Tutin. [Syn.: Bryonia dioica L.]Bryodin 1 = BD1RIP 129 kDa0.12 nM; 3.6 ng/mL; 7 pMroots[152,153]
Bryodin 2RIP 127 kDa9 pMroots[153]
Bryodin-LRIP 128.8 kDa0.09 nMleaves[113]
Bryodin-RRIP 1n.a. 4n.a. 4seeds[154,155]
BDAlectin/RIP 2 like61 kDa>1500 nmroots[73,156]
CucurbitaceaeCitrullus colocynthis (L.) Schrad.Colocin 1RIP 126.3 kDa0.04 nMseeds[113]
Colocin 2RIP 126.3 kDa0.13 nMseeds[113]
Cucurbita foetidissima KunthFoetidissiminpeculiar RIP 263 kDa25.9 nMroots[157]
Foetidissimin IIRIP 261 kDa251.6 nMroots[158]
Cucumis ficifolius A.Rich. [Syn.: Cucumis figarei Delile ex Naudin]Cucumis figarei RIP = CF-RIPRIP 1 candidaten.a. 4n.a. 4recomb. 6[159]
Cucurbita maxima DuchesneCucurmoschinsRIP 1 candidate9 kDa1.2 µMseeds[160]
Cucurbita moschata Duchesne [Syn.: Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.]CucurmosinRIP 127–28 kDan.a. 4sarcocarp[161,162,163]
Cucurmosin 2RIP 127,183 Dan.a. 4sarcocarp[164,165]
C. moschata RIPRIP 130,665 Da0.035 nM; 1.08 ng/mLskinned fruit[155]
MoschatinRIP 129 kDa0.26 nMseeds[166]
PRIP 1RIP 131 kDa0.82 nMleaves[167]
PRIP 2RIP 130.5 kDa0.79 nMleaves[167]
α-moschinsRIP 1 candidate12 kDa17 µMseeds[168]
β-moschinsRIP 1 candidate12 kDa300 nMseeds[168]
Cucurbita pepo L.PepocinRIP 126 kDa15.4 pMsarcocarp[169]
Cucurbita pepo var. texana (Scheele) D.S.Decker [Syn.: Cucurbita texana (Scheele) A. Gray]TexaninRIP 129.7 kDan.a. 4fruits[158]
Gynostemma pentaphyllum (Thunb.) MakinoGynostemminRIP 127 kDan.a. 4leaves and stems[170]
Lagenaria siceraria (Molina) Standl.LageninRIP 1 candidate20 kDa0.21 nMseeds[171]
Luffa acutangula (L.) Roxb.Luffaculin-1RIP 128 kDa3.6 ng/mL; 124 pMseeds[172,173]
Luffaculin-2RIP 128 kDan.a. 4seeds[173]
LuffangulinsRIP 15.6 kDa3.5 nMseeds[174]
Luffa acutangula fruit lectinlectin48 kDa-fruits[175]
CucurbitaceaeLuffa cylindrica (L.) M.Roem [Syn.: Luffa aegyptiaca Mill.]LuffinRIP 126 kDa0.42 ng/mLseeds[176]
Luffin-aRIP 127,021 Da1.64 ng/mLseeds[177,178]
Luffin-bRIP 127,275 Da0.84 ng/mLseeds[177,178]
α-luffinRIP 128 kDa10 ng/mL; 34.1 pM (recomb. 6)seeds[179,180,181]
β-luffinRIP 129 kDa50 ng/mLseeds[180,182]
LRIPRIP 130 kDa8 pMseeds[183]
LuffacylinsRIP 17.8 kDa0.14 nMseeds[184]
Luffin P1sRIP 15226.1 Da0.88 nMseeds[185]
Luffin-SsRIP 1 candidate10 kDa0.34 nMseeds[186]
LuffinS(1)sRIP 1 candidate8 kDa130 nMseeds[187]
LuffinS(2) = luffin S2sRIP 1 candidate7.8 kDa10 nMseeds[187,188]
LuffinS(3)sRIP 1 candidate8 kDa630 nMseeds[187]
Marah oreganus (Torr. & A. Gray) HowellMOR-IRIP 127,989 Da0.063 nMseeds[189]
MOR-IIRIP 127,632 Da0.071 nMseeds[189]
Momordica balsamina L.BalsaminRIP 128.6 kDa90.6 ng/mLseeds[190]
MbRIP-1RIP 130 kDan.a. 4seeds[191,192]
Momordin IIRIP 1n.a. 4n.a. 4recomb. 6[193]
Momordica charantia L.MAP 30RIP 130 kDa3.3 nMseeds and fruits[194,195]
α-momorcharin = α-MC = α-MMCRIP 128,625–28,795 Da0.23 nMseeds[196,197,198,199,200,201,202,203,204]
β-momorcharin = β-MC = β-MMCRIP 129,074–29,076 Da0.19 nMseeds[196,197,198,200,201,202,203]
γ-momorcharin = γ-MMCsRIP 111.5 kDa55 nMseeds[205]
δ-momorcharin = δ-MMCRIP 130 kDa0.15 nMseeds[203]
ε-momorcharinRIP 1 candidate24 kDa170 nMfruits[203]
MomordinRIP 131 kDan.a. 4seeds[206]
Momordin = Momordica charantia inhibitorRIP 123–24 kDa1.8 ng/mLseeds[207,208,209,210,211,212]
Momordin IIRIP 1n.a. 4n.a. 4seeds[213]
CucurbitaceaeMomordica charantia L.Momordin-aRIP 129.4 kDan.a. 4seeds[214,215]
Momordin-bRIP 129.4 kDan.a. 4seeds[214]
CharantinsRIP 19.7 kDa400 nMseeds[216]
MCL = M. charantia lectinlectin12.4 kDa-seeds[217]
MCL = Momordica charantia seed lectin = Momordica charantia lectinRIP 2115–124 kDa1.74 µg/mL; 5 µg/mLseeds[207,218,219,220]
MCL1RIP 260,993 Da1.9 nMseeds[221]
anti-H Lectinlectin150 kDa-seeds[222]
Momordica agglutininlectin30 kDa-seeds[223]
Momordinlectin22–23 kDa-seeds[223]
protein fraction 1lectin49 kDa-seeds[224]
protein fraction 2lectin49 kDa-seeds[224]
Momordica cochinchinensis Spreng.Cochinin BRIP 128 kDa0.36 nMseeds[225]
MomorcochinRIP 132 kDan.a. 4tubers[200,226]
Momorcochin-SRIP 130 kDa0.12 nMseeds[225,227]
Siraitia grosvenorii (Swingle) C.Jeffrey ex A.M.Lu & Zhi Y.Zhang [Syn.: Momordica grosvenorii Swingle]MomorgrosvinRIP 127.7 kDa0.3 nMseeds[228]
Sechium edule (Jacq.) Sw.SechiuminRIP 127 kDa0.7 nMseeds[229]
Sechium edule fruit lectinlectin44 kDa-fruits[230]
Trichosanthes anguina L.TrichoanguinRIP 135 kDa0.08 nMseeds[231]
SGSLlectin/RIP 2 like62 kDan.a. 4seeds[232,233,234]
Trichosanthes cordata Roxb.TCA-Ilectin59 kDan.a. 4seeds[235]
TCA-IIlectin52 kDan.a. 4seeds[235]
CucurbitaceaeTrichosanthes cucumerina L.TCSLlectin/RIP 2 candidate69 kDan.a. 4seeds[236]
Trichosanthes cucumeroides (Ser.) Maxim.β-trichosanthin = β-TCSRIP 128 kDa2.8 ng/mL; 0.1 nMroot tubers[200,237,238]
Trichosanthes kirilowii Maxim.α-kirilowinRIP 128.8 kDa1.2-1.8 ng/mL; 0.044–0.066 mMseeds[239]
β-kirilowinRIP 127.5 kDa1.8 ng/mLseeds[240]
TAP 29RIP 129 kDa3.7 nMroot tubers[241,242]
TK-35RIP 135,117 Da2.45 nMcell cultures[243]
TrichobitacinRIP 127,228 Dan.a. 4root tubers[244,245,246]
TrichokirinRIP 127 kDa0.06–0.13 nMseeds[247]
Trichomislin = TCMRIP 127,211 Da2.26 nMrecomb. 6[248]
Trichosanthin = Trichosanthes antiviral protein = TAP = TCS = α-trichosanthin = α-TCS = GLQ223RIP 126–28 kDa6.1 ng/mL; 0.23 nM; 0.36 ng/mL; 1.31 nMroot tubers[198,200,238,248,249,250,251,252,253,254,255,256]
TrichosanthinRIP 125 kDan.a. 4root tubers[257]
β-trichosanthin = β-TCSRIP 126 kDa7 ng/mLroot tubers[255]
γ-trichosanthin = γ-TCSRIP 126 kDa12 ng/mLroot tubers[255]
Trichokirin S1sRIP 111,426 Da0.7 nMseeds[258]
S-TrichokirinsRIP 18 kDa115 pMseeds[259]
TrichosanthripsRIP 110,964 Da1.6 ng/mLseeds[256]
TKL-1 = Trichosanthes kirilowii lectin-1lectin/RIP 2 candidate60 kDan.a. 4root tubers[260,261]
TK-Ilectinn.a. 4-root tubers[262,263]
TK-IIlectinn.a. 4-root tubers[262,263]
TK-IIIlectinn.a. 4-root tubers[262,263]
Trichosanthes kirilowii lectinlectin57 kDa-seeds[264]
CucurbitaceaeTrichosanthes kirilowii Maximoviczvar. japonica (Miquel) KitamuraKarasurin-ARIP 127,215 Da0.1–0.3 ng/mLroot tubers[265,266,267,268]
Karasurin-BRIP 127,214 Da0.1–0.3 ng/mLroot tubers[267]
Karasurin-CRIP 127,401 Da0.1–0.3 ng/mLroot tubers[267]
Trichosanthes lepiniateTrichomaglinRIP 124,673 Da10.1 nMroot tuber[269]
Trichosanthes dioica Roxb.TDSLlectin/RIP 2 candidate55 kDan.a. 4seeds[270]
Trichosanthes sp. Bac Kan 8-98TrichobakinRIP 127 kDa3.5 pMleaves[271]
CupressaceaeThuja occidentalis L.Arborvitae RIPRIP candidaten.a. 4n.a. 4seeds[272]
EuphorbiaceaeCroton tiglium L.Crotin IRIP 1 candidate40 kDan.a. 4seeds[273,274,275]
Crotin 2RIP 1n.a. 4n.a. 4seeds[276,277,278]
Euphorbia characias L.E. characias lectinlectin80 kDa-latex[279]
Suregada multiflora (A.Juss.) Baill. [Syn.: Gelonium multiflorum A.Juss.]Gelonin = GAP 31RIP 130–31 kDa0.406 ng/mL; 0.32 nMseeds[126,280,281,282,283]
Hura Crepitans L.Hura crepitans RIPRIP 128 kDan.a. 4latex, leaves[27,112]
Hura crepitans RIP-5RIP 1n.a. 4n.a. 4latex[284]
Hura crepitans latex lectinRIP 2112 kDa-latex[279]
Crepitinlectinn.a. 4n.a. 4latex[285,286]
Hurinlectin70 kDa-seeds[287,288]
Hura crepitans seed lectinlectin120 kDa-seeds[286]
Jatropha curcas L.CurcinRIP 128.2 kDa0.42 nMseeds[273,289]
Curcin 2RIP 130.1 kDan.a. 4recomb. 6[290,291]
Curcin-LRIP 132 kDa4 µg/mLleaves[292,293]
Jc-SCRIPRIP 138,938 Dan.a. 4seed coat[294]
Manihot palmata Müll. Arg.MapalminRIP 132.3 kDa0.05 nMseeds[113]
EuphorbiaceaeManihot esculenta Crantz. [Syn.: Manihot utilissima Pohl]Manutin 1RIP 1n.a. 40.05 nMseeds[284,295]
Manutin 2RIP 1n.a. 40.12 nMseeds[295]
Ricinus communis L.Ricin = crystalline Ricin = Ricin DRIP 262.8 kDa0.14 nM (A) 5; 814 pM; 5.5 ng/mLseeds[59,281,296,297,298,299,300,301,302,303,304,305,306,307,308,309]
Ricin ERIP 264 kDan.a. 4seeds[310,311,312]
RCA = Ricinus communis agglutinin = RCAI = RCA120 = R. communis hemagglutinin = RCB-PHA IRIP 2118–130 kDan.a. 4seeds[303,313,314,315,316,317,318,319,320,321]
RCAII = RCA60 = RCB-PHA IIRIP 260 kDan.a. 4seeds[313,314,316,317]
Ricinus communis, USARicin 1RIP 266 kDan.a. 4seeds[303,322]
Ricin 2RIP 266 kDan.a. 4seeds[303,322]
Ricin 3RIP 266 kDan.a. 4seeds[303,322]
Ricinus communis, IndiaRicin IRIP 264 kDan.a. 4seeds[322,323]
Ricin IIRIP 264 kDan.a. 4seeds[322,323]
Ricin IIIRIP 264 kDan.a. 4seeds[322,323]
Ricinus sanguienus, FranceRicin11RIP 257,805 Dan.a. 4seeds[322,324]
Ricin12RIP 262,163 Dan.a. 4seeds[322,324]
Ricin2RIP 263,116 Dan.a. 4seeds[322,324]
FabaceaeAbrus precatorius L.AbrinRIP 2260 kDa0.5 nM (A) 5seeds[29,307,315,323,325,326,327,328,329,330]
Abrin-a = Abrin C = Abrin-IIIRIP 263–65.5 kDa60 pM (A) 5seeds[331,332,333,334,335,336,337,338,339,340]
Abrin-bRIP 267 kDan.a. 4seeds[333,334,335,338]
Abrin-c = Abrin A = Abrin-IRIP 260.1–62.5 kDan.a. 4seeds[331,332,334,335,336,337]
Abrin-dRIP 267 kDan.a. 4seeds[334,335,338]
Abrin-IIRIP 263 kDan.a. 4seeds[337]
FabaceaeAbrus precatorius L.APA = Abrus precatorius agglutinin = Abrus lectin = AAGRIP 2126–134 kDa3.5 nMseeds[315,334,341,342,343,344,345]
APA-IRIP 2130 kDan.a. 4seeds[337,346]
APA-IIRIP 2128 kDan.a. 4seeds[337]
Abrus pulchellus ThwaitesPulchellinRIP 262 kDan.a. 4seeds[347,348,349]
Pulchellin PIRIP 261.5–63 kDan.a. 4seeds[350]
Pulchellin PIIRIP 261.5–63 kDan.a. 4seeds[350]
Pulchellin PIIIRIP 261.5–63 kDan.a. 4seeds[350]
Pisum sativum subsp. sativum L. [Syn.: Pisum sativum var. arvense (L.) Poir.]α-pisavinRIP 120.5 kDa0.5 nMseeds[351]
β-pisavinRIP 118.7 kDa0.5 nMseeds[351]
Pisum sativum var. macrocarponSativinRIP 1 candidate38 kDa14 µMlegumes[352]
IridaceaeIris hollandica var. Professor BlaauwIrisRIP = IRIPRIP 128 kDa0.1–0.16 nMbulbs[353,354]
IrisRIP.A1RIP 129 kDa0.16 nMbulbs[353]
IrisRIP.A2RIP 129 kDa0.12 nMbulbs[353]
IrisRIP.A3RIP 129 kDa0.10 nMbulbs[353]
IRARIP 260.4 kDan.a. 4bulbs[355]
IRAbRIP 265 kDan.a. 4bulbs[356,357]
IRArRIP 265 kDan.a. 4bulbs[356]
LamiaceaeClerodendrum aculeatum (L.) Schltdl.CA-SRIRIP 1 candidate34 kDa<0.01 nMleaves[358,359]
Clerodendrum inerme (L.) Gaertn.CIP-29RIP 129 kDa0.548 nM; 16 ng/mLleaves[360,361]
CIP-34RIP 1 candidate34 kDa87.4 nM; 3 µg/mLleaves[360,361]
Leonurus japonicus Houtt.LeonurinRIP candidaten.a. 4n.a. 4seeds[362]
LauraceaeCinnamomum bodinieri H. Lév.BodinierinRIP 265 kDa1.2 nM (A) 5kernel[363]
LauraceaeCinnamomum camphora (L.) J.PreslCamphorinRIP 123 kDa0.098 nMseeds[364,365]
CinnamominRIP 261 kDa9.7 nM (A) 5seeds[364,365,366,367]
Cinnamomin 1RIP 261 kDan.a. 4seeds[364]
Cinnamomin 2RIP 2n.a. 4n.a. 4seeds[364]
Cinnamomin 3RIP 2n.a. 4n.a. 4seeds[364]
CinphorinsRIP 246 kDa1.2 nMseeds[367,368]
Cinnamomum parthenoxylon (Jack) Meisn. [Syn.: Cinnamomum porrectum (Roxb.) Kosterm.]PorrectinRIP 264.5 kDa0.11 µMseeds[369]
MalvaceaeAbelmoschus esculentus (L.) MoenchAbelesculinRIP 130 kDan.a. 4seeds[370]
NyctaginaceaeBoerhaavia diffusa L.Boerhaavia inhibitorRIP 1 candidate16–20 kDan.a. 4roots[371,372,373]
Bougainvillea spectabilis Willd.BAP IRIP 128 kDan.a. 4roots[374]
Bouganin = Bougainvillea RIP IRIP 126.2 kDa10.5 ng/mLleaves[120,375]
Bougainvillea × buttiana cv. Enid LancesterBBP-24RIP 124 kDan.a. 4leaves[376,377]
BBP-28RIP 128 kDan.a. 4leaves[376,377]
Bougainvillea × buttiana cv. MaharaBBAP1RIP 135.49 kDan.a. 4leaves[378,379]
Mirabilis expansa (Ruiz & Pav.) Standl.ME1RIP 129,208 Dan.a. 4roots[380,381]
ME2RIP 127 kDan.a. 4roots[380]
Mirabilis jalapa L.MAPRIP 127,788 Da5.4 ng/mLroots/seeds[373,382,383]
MAP-2RIP 130,412 Da41.4 ng/mLseeds[383]
MAP-3RIP 129,771 Da13.3 ng/mLseeds[383]
MAP-4RIP 129,339 Da15.3 ng/mLseeds and leaves[383]
MAP-SRIP 127,789 Dan.a. 4seeds[146]
OlacaceaeMalania oleifera Chun & S. K. LeeMalaninlectin/RIP 2 candidate61875 Dan.a. 4seeds[384]
OlacaceaeXimenia americana L.Riproximin = RpxRIP 256 kDan.a. 4fruit kernels[385,386]
Rpx-IRIP 250 kDan.a. 4fruit kernels[386]
Rpx-IIRIP 253 kDan.a. 4fruit kernels[386]
PassifloraceaeAdenia digitata (Harv.) Engl.Modeccin = Modeccin 4BRIP 257–63 kDa4 µg/mL; 2.52 µg/mL; 66 ng/mL (A) 5roots[387,388,389,390]
Modeccin 6BRIP 257 kDa0.31 µg/mLroots[390]
Adenia ellenbeckii HarmsA. ellenbeckii lectinRIP 2 candidate60 kDa10.1 µg/mL; 1.2 µg/mL (A) 5caudex[45]
Adenia fruticosa Burtt DavyA. fruticosa lectinlectin30 kDa>100 µg/mLcaudex[45]
Adenia glauca SchinzA. glauca lectinRIP 2 candidaten.a. 4>10 µg/mL; >5 µg/mL (A) 5caudex[45]
Adenia goetzei Harms (unresolved name)A. goetzei lectinRIP 260 kDa55.1 µg/mL; 0.7 µg/mL (A) 5caudex[45]
Adenia keramanthus HarmsA. keramanthus lectinRIP 2 candidate60–65 kDa10.0 µg/mL; 1.1 µg/mL (A) 5caudex[45]
Adenia lanceolata Engl.LanceolinRIP 260 kDa5.2 µg/mL; 1.1 µg/mL (A) 5caudex[45,391,392]
Adenia racemosa W. J. de WildeA. racemosa lectinlectin30 kDa>400 µg/mLcaudex[45]
Adenia spinosa Burtt DavyA. spinosa lectinRIP 2 candidaten.a. 44.7 µg/mL; 0.8 µg/mL (A) 5caudex[45]
Adenia stenodactyla HarmsStenodactylinRIP 260 kDa5.6 µg/mL; 0.5 µg/mL (A) 5caudex[45,391,392]
Adenia venenata Forssk.A. venenata lectinRIP 2 candidate60 kDa2.4 µg/mL; 0.4 µg/mL (A) 5caudex[45]
Adenia volkensii HarmsVolkensinRIP 262 kDa5 µg/mL; 84 nM; 0.37 nM (A) 5 22 ng/mL (A) 5; 7.5 µg/mL; 0.66 µg/mL (A) 5roots[45,393,394,395]
PhytolaccaceaePhytolacca americana L.α-PAPRIP 133,068 kDan.a. 4recomb. 6[396,397]
PAP = Phytolacca americana protein = pokeweed antiviral proteinRIP 129–30 kDa0.29 nMleaves[29,398,399,400,401,402,403]
PAP-IRIP 130 kDa2 pMspring leaves[404]
PAP-IIRIP 130–31 kDa4 pMearly summer leaves[399,400,404,405]
PAP-IIIRIP 130 kDa3 pMlate summer leaves[404]
PAP-CRIP 129 kDa0.062 nM; 2 ng/mLcell cultures[406]
PAP-HRIP 129.5 kDan.a. 4hairy roots[407]
PAP-RRIP 129.8 kDa0.05 nMroots[113]
PAP-SRIP 130 kDa36-83 nM; 1.09–2.5 ng/mLseeds[399,408]
PAP-S1RIP 1n.a. 4n.a. 4recomb. 6[397]
PAP-S2RIP 1n.a. 4n.a. 4recomb. 6[397]
Phytolacca dioica L.Diocin 1RIP 130,047 Da19.74 ng/mL; 0.658 nMleaves of young plants[409]
Diocin 2RIP 129,910 Da6.85 ng/mL; 0.229 nMleaves of young plants[409]
PD-L1RIP 132,715 Da102 pM; 3.32 ng/mL; 8.5 pMleaves[410,411]
PD-L2RIP 131,542 Da110 pM; 3.46 ng/mLleaves[410,412]
PD-L3RIP 130,356 Da228 pM; 6.93 ng/mLleaves[410,412]
PD-L4RIP 129185 Da134 pM; 3.92 ng/mLleaves[410,413]
PD-S1RIP 130.9 kDa0.12 nMseeds[414]
PD-S2RIP 129,586 Da0.06 nMseeds[414,415]
PD-S3RIP 132 kDa0.08 nMseeds[414]
PhytolaccaceaePhytolacca dodecandra L’Hér.DodecandrinRIP 129 kDan.a. 4leaves[416,417]
Dodecandrin CRIP 131–32 kDan.a. 4cell cultures[417]
Phytolacca heterotepala H. WalterHeterotepalin 4RIP 129,326 Da82 pMleaves[418]
Heterotepalin 5bRIP 130,477 Da52 pMleaves[418]
Phytolacca insularis NakaiInsularin = PIP = Phytolacca insularis antiviral proteinRIP 131 kDan.a. 4recomb. 6[7,419]
PIP2 = P. insularis antiviral protein 2RIP 129.6 kDa0.04 nMrecomb. 6[420]
PoaceaeHordeum vulgare L.Barley toxin = Barley translation inhibitor = Barley Protein Synthesis Inhibitor = BPSI = RIP 30RIP 130 kDa0.47 nMseeds[281,421,422,423,424]
Barley toxin I = Barley translation inhibitor IRIP 130 kDa25 ng/mLseeds[422]
Barley toxin II = Barley translation inhibitor II = Barley Protein Synthesis Inhibitor II = BPSI IIRIP 129,836 Da25 ng/mLseeds[281,421,422,425]
Barley toxin III = Barley translation inhibitor IIIRIP 130 kDa15 ng/mLseeds[281,422]
JIP60RIP 3/peculiar RIP 160 kDan.a. 4recomb. 6[5,426]
PoaceaeOryza sativa L.Oryza sativa RIPRIP 127 kDan.a. 4recomb. 6[427]
Secale cereale L.RPSIRIP 130,171 Da0.42 µg/mLseeds[421,428]
Triticum aestivum L.TritinRIP 130 kDan.a. 4germ[421,429,430,431]
Tritin 1RIP 130 kDa250 ng/mLwhole wheat[432]
Tritin 2RIP 130 kDa250 ng/mLwhole wheat[432]
Tritin 3RIP 130 kDa250 ng/mLwhole wheat[432]
Tritin-SRIP 132.1–32.8 kDan.a. 4seeds[433]
Tritin-LRIP 137.0–37.9 kDan.a. 4leaves[433]
Zea mays L.b-32 = maize RIP = maize proRIP1RIP 3/peculiar RIP 134 kDa28–60 pM; 0.7–1.5 ng/mL; 0.065 nMseeds[4,434,435,436,437,438]
Maize proRIP2RIP 3/peculiar RIP 131.1 kDan.a. 4recomb. 6[436,437]
RanunculaceaeEranthis hyemalis (L.) Salisb.EHLRIP 262 kDan.a. 4root tubers[439,440]
SantalaceaePhoradendron californicum Nutt.PCLRIP 269 kDan.a. 4n.n[441]
Viscum album L. (Himalayan mistletoe)HmRipRIP 265 kDan.a. 4leaves[442,443,444]
HmRip 1RIP 265 kDan.a. 4leaves[442,443,444]
HmRip 2RIP 265 kDan.a. 4leaves[442,443,444]
HmRip 3RIP 265 kDan.a. 4leaves[442,443,444]
HmRip 4RIP 265 kDan.a. 4leaves[442,443,444]
Viscum album L. (European mistletoe)ML-I = Mistletoe lectin I = Viscumin = Eu-ML = EML-1 = VAA-IRIP 2115–125 kDa2.6 µg/mL; 0.21 µg/mL (A) 5; 3.7 pM (A) 5leaves[234,445,446,447,448,449,450,451,452,453,454]
ML-II = Mistletoe lectin II = VAA-IIRIP 260–64 kDan.a. 4leaves[448,450,451,452]
ML-III = Mistletoe lectin III = VAA-IIIRIP 250–61 kDan.a. 4leaves[448,450,451,452]
SantalaceaeViscum articulatum Burm. f.Articulatin-DRIP 266 kDan.a. 4whole plant[455]
Viscum coloratum (Kom.) Nakai [Syn.: Viscum album subsp. coloratum Kom.]KMLRIP 2n.a. 4n.a. 4leaves[456]
KML-CRIP 259.5 kDan.a. 4leaves[454,457]
KML-IILRIP 260 kDan.a. 4leaves[457]
KML-IIURIP 264 kDan.a. 4leaves[457]
VCARIP 260 kDan.a. 4leaves[458,459]
SolanaceaeNicotiana tabacum L.CIP31RIP-like protein31 kDan.a. 4leaves[460]
TRIPRIP 1 candidate26 kDa100 ng/mLleaves[461]
ThymelaeaceaePhaleria macrocarpa (Scheff.) Boerl.P. macrocarpa RIPRIP candidaten.a. 4n.a. 4seeds[462]
1 For the botanical name of the plant species we chose the current accepted name from www.theplantlist.org. In some cases, there is also given a synonym, because the protein/RIP is derived from that synonym that is given in the corresponding reference; 2 For the values of molecular weight (Mw) we listed the latest values from the native unreduced proteins obtained from gel filtration or from SDS-PAGE. If there were too many different values from different authors, we listed a range. We listed the exact value obtained from MALDI-TOF, ESI-TOF or Q-TOF, if this was available; 3 IC50 is the half minimal inhibitory concentration (50%) of the protein, which inhibits translation from a cell free system using rabbit reticulocyte lysate. For the IC50 values, we listed the values of the molar mass or concentration in mg/mL. In some cases, there were many different values from different laboratories that led us to list a range; 4 n.a. = not available; in the case of IC50 values there are several reasons for n.a.: 1. The translation-inhibitory assay was not performed; 2. The translation-inhibitory assay was performed by using another system than the cell free system with rabbit reticulocyte lysate, e.g., cancer cells; 3. The IC50 values were specified with another unit, e.g., mg/kg; 5 (A) = A-chain; the IC50 value followed by (A) is for the reduced type 2 RIP; 6 recomb. = recombinant; Proteins obtained through biotechnological procedures.

3. Exceptions Prove the Rule

To be classified as “classical” type 1 or type 2 RIP, a protein needs both the structure and the N-glycosidase activity including the conserved amino acid residues, which are believed to be present in all RIPs, of the putative active site region [94,101,463]. This active site region is also known as shiga/ricin toxic domain [106]. Beside the peculiar type 1 RIPs, b-32 and JIP60, there is a certain amount of other proteins that cannot be grouped into the classical type 1 or type 2 RIPs, because of structural and functional differences.

3.1. Small RIPs

First of all, there are “small type 1 RIPs” (sRIP 1; Table 2), which are single chain proteins exhibiting N-glycosidase activity with a smaller molecular weight than the classical type 1 RIPs. Interestingly, all known small type 1 RIPs are synthesized by plants belonging to the family Cucurbitaceae. α-luffin and β-luffin from Luffa cylindrica indeed have the same size as the other small type 1 RIPs, but because of their lower toxicity of 17 µM and 300 nM, respectively, and due to the unknown mechanism of action, they are classified as “small type 1 RIP candidates” (Table 3). Also luffin-S, luffinS(1), luffinS(2), and luffinS(3) have similar sizes as the other small type 1 RIPs and all of them inhibit protein synthesis in a cell-free system, but it was not analyzed, whether the translation-inhibitory is due to the N-glycosidase activity or not. In addition, a different mechanism of action was found for luffin-S [186]. For this reason, the luffinSs are considered as small type 1 RIP candidates (Table 3). Another small type 1 RIP candidate is cucurmoschin that was designated as an antifungal protein by the authors [160]. Cucurmoschin indeed inhibits protein synthesis in a cell-free system, but there was no homology with other type 1 RIPs or small type 1 RIPs concerning the amino acid sequence specified, but the fact that the N-glycosidase activity was neither verified nor excluded led us to the decision to classify cucurmoschin as a small type 1 RIP candidate. Lagenin, α-pisavin and β-pisavin have molecular weights of 20 kDa, 20.5 kDa and 18.7 kDa, respectively; thus, they differ from the classical type 1 RIPs as well as from the small type 1 RIPs. Lagenin inhibits cell-free translation in a rabbit reticulocyte system, but it was not clarified whether this is due to the N-glycosidase activity [171]. Because the size of lagenin is closer to the classical type 1 RIPs than to the biggest known small type 1 RIPs (α-benincasin and β-benincasin, both of them 12 kDa), lagenin should be classified as a type 1 RIP candidate. α-pisavin and β-pisavin have molecular weights that are also closer to the classical type 1 RIPs than to the small type 1 RIPs, but compared with lagenin, they both have the N-glycosidase activity and, in addition, show amino acid similarity with other type 1 RIPs. For that reason, α-pisavin and β-pisavin are considered type 1 RIPs.
Cinphorin is a type 2 RIP from the seeds of Cinnamomum camphora with a molecular weight of 46 kDa, which is due to the smaller A-chain than the other classical type 2 RIPs [368]. It is proposed that cinphorin is a cleaving product of cinnamomin, another type 2 RIP from Cinnamomum camphora, or its mRNA [367]. Cleaving processes during the evolution of RIPs are not unusual [29], but cinphorin is the only type 2 RIP with a smaller A-chain known to date, and, therefore, it is questionable whether it is necessary to denominate an extra classification for cinphorin. Considering that there might be more RIPs that are not detected to date, of which one could be another type 2 RIP with a smaller A-chain, however, we propose to classify cinphorin as a “small type 2 RIP” (sRIP 2).
Table 2. Small RIPs.
Table 2. Small RIPs.
ProteinSourceMwClassificationReferences
α-benincasinBenincasa hispida (Cucurbitaceae)12 kDasRIP 1[151]
β-benincasinBenincasa hispida (Cucurbitaceae)12 kDasRIP 1[151]
CharantinMomordica charantia (Cucurbitaceae)9.7 kDasRIP 1[216]
CinphorinCinnamomum camphora (Lauraceae)46 kDasRIP 2[367,368]
LuffacylinLuffa cylindrica (Cucurbitaceae)7.8 kDasRIP 1[184]
LuffangulinLuffa acutangula (Cucurbitaceae)5.6 kDasRIP 1[174]
Luffin P1Luffa cylindrica (Cucurbitaceae)5226.1 DasRIP 1[185]
γ-momorcharinMomordica charantia (Cucurbitaceae)11.5 kDasRIP 1[205]
S-trichokirinTrichosanthes kirilowii (Cucurbitaceae)8 kDasRIP 1[259]
Trichokirin S1Trichosanthes kirilowii (Cucurbitaceae)11426 DasRIP 1[258]
TrichosanthripTrichosanthes kirilowii (Cucurbitaceae)10964 DasRIP 1[256]
Table 3. RIP candidates and RIP-like proteins.
Table 3. RIP candidates and RIP-like proteins.
ProteinSourceMwIC50ClassificationReferences
A. ellenbeckii lectinAdenia ellenbeckii (Passifloraceae)60 kDa10.1 µg/mL; 1.2 µg/mLRIP 2 candidate[45]
A. glauca lectinAdenia glauca (Passifloraceae)n.a.>10 µg/mL; >5 µg/mLRIP 2 candidate[45]
A. keramanthus lectinAdenia keramanthus (Passifloraceae)60–65 kDa10.0 µg/mL; 1.1 µg/mLRIP 2 candidate[45]
A. spinosa lectinAdenia spinosa (Passifloraceae)n.a.4.7 µg/mL; 0.8 µg/mLRIP 2 candidate[45]
A. venenata lectinAdenia venenata (Passifloraceae)60 kDa2.4 µg/mL; 0.4 µg/mLRIP 2 candidate[45]
Arborvitae RIPThuja occidentalis (Cupressaceae)n.a.n.a.RIP candidate[272]
BDABryonia cretica subsp. dioica (Cucurbitaceae)61 kDa>1500 nmRIP 2-like lectin[73,156]
Boerhaavia inhibitorBoerhaavia diffusa (Nyctaginaceae)16–20 kDan.a.RIP 1 candidate[371,372,373]
CA-SRIClerodendrum aculeatum (Lamiaceae)34 kDa<0.01 nMRIP 1 candidate[358,359]
CF-RIPCucumis ficifolius (Cucurbitaceae)n.a.n.a.RIP 1 candidate[159]
CIP-34Clerodendrum inerme (Lamiaceae)34 kDa87.4 nM; 3 µg/mLRIP 1 candidate[360,361]
CIP31Nicotiana tabacum (Solanaceae)31 kDan.a.RIP 1-like protein[460]
Crotin ICroton tiglium (Euphorbiaceae)40 kDan.a.RIP 1 candidate[273,275]
CucurmoschinCucurbita maxima (Cucurbitaceae)9 kDa1.2 µMsmall RIP 1 candidate[160]
FoetidissiminCucurbita foetidissima (Cucurbitaceae)63 kDa25.9 nMpeculiar RIP 2[157]
LageninLagenaria siceraria (Cucurbitaceae)20 kDa0.21 nMRIP 1 candidate[171]
LeonurinLeonurus japonicus (Laminariaceae)n.a.n.a.RIP candidate[362]
Luffin-SLuffa cylindrica (Cucurbitaceae)10 kDa0.34 nMsmall RIP 1 candidate[186]
LuffinS(1)Luffa cylindrica (Cucurbitaceae)8 kDa130 nMsmall RIP 1 candidate[187]
LuffinS(2) = luffin S2Luffa cylindrica (Cucurbitaceae)7.8 kDa10 nMsmall RIP 1 candidate[187,188]
LuffinS(3)Luffa cylindrica (Cucurbitaceae)8 kDa630 nMsmall RIP 1 candidate[187]
MalaninMalania oleifera (Olacaceae)61,875 Dan.a.lectin/RIP 2 candidate[384]
ε-momorcharinMomordica charantia (Cucurbitaceae)24 kDa170 nMRIP 1 candidate[203]
α-moschinCucurbita moschata (Cucurbitaceae)12 kDa17 µMsmall RIP 1 candidate[168]
β-moschinCucurbita moschata (Cucurbitaceae)12 kDa300 nMsmall RIP 1 candidate[168]
PanaxaginPanax ginseng (Araliaceae)52 kDa0.28 nMpeculiar RIP 1 candidate/RNase[110]
P. macrocarpa RIPPhaleria macrocarpa (Thymelaceae)n.a.n.a.RIP candidate[462]
QuinqueginsinPanax quinquefolius (Araliaceae)53 kDa0.26 nMpeculiar RIP 1 candidate/RNase[111]
SativinPisum sativum var. macrocarpon (Fabaceae)38 kDa14 µMRIP 1 candidate[352]
SGSLTrichosanthes anguina (Cucurbitaceae)62 kDan.a.RIP 2-like lectin[234]
SoRIP2Spinacia oleraceae (Amaranthaceae)36 kDan.a.RIP 1 candidate[106,107]
TCSLTrichosanthes cucumerina (Cucurbitaceae)69 kDan.a.lectin/RIP 2 candidate[236]
TDSLTrichosanthes dioica (Cucurbitaceae)55 kDan.a.lectin/RIP 2 candidate[270]
TKL-1Trichosanthes kirilowii (Cucurbitaceae)60 kDan.a.lectin/RIP 2 candidate[260]
TRIPNicotiana tabacum (Solanaceae)26 kDa100 ng/mLRIP 1 candidate[461]

3.2. RIP Candidates and RIP-Like Proteins

There are four single chain proteins with a bigger molecular weight than the other type 1 RIPs: Jc-SCRIP from Jatropha curcas (38 kDa), β-nigritin from Sambucus nigra (40 kDa), sativin from Pisum sativum (38 kDa), and CIP-34 from Clerodendrum inerme (34 kDa). β-nigritin exhibits N-glycosidase activity and, therefore, it is classified as a classic type 1 RIP, because there are no further structural peculiarities [54]. Jc-SCRIP differs not only on the basis of the molecular weight from the other type 1 RIPs, but also with regard to its N-terminal amino acid sequence, acidic isoelectric point, high temperature stability, and high sugar content giving this protein additional lectin properties [294]. Because of those unique molecular characteristics, it might be classified as peculiar type 1 RIP as well as b-32 and JIP60. But that would make this issue unnecessarily complicated, because Jc-SCRIP does not have such structural differences compared to other type 1 RIPs like as b-32 and JIP60. Therefore, and because of its N-glycosidase activity, Jc-SCRIP is classified as a classical type 1 RIP. Compared with that, sativin and CIP-34 cannot be classified as classical type 1 RIPs, because, among other things, the N-glycosidase activity was not found, and, therefore, together with other proteins, they are referred to as “RIP candidates” or “RIP-like proteins” (Table 3). Sativin is considered to be a type 1 RIP candidate, because of its amino acid sequence similarity of 48% to α-pisavin and β-pisavin [352], which are classified as type 1 RIPs as mentioned above. CIP-34 is the major protein of a 100 kDa protein complex with an unknown structure [360]. In Girbés et al. [7], it is indeed classified as a classical type 1 RIP, but it might be better to assign CIP-34 to the peculiar type 1 RIPs, because it is larger than other type 1 RIPs and it consists of protein domains with an unknown structure and function. To be grouped into the RIPs, however, the N-glycosidase activity of CIP-34 has to be detected. Thus, it is classified as type 1 RIP candidate until further notice.
Panaxagin from Panax ginseng and quinqueginsin from Panax quinquefolius are two other proteins that differ from the classical type 1 RIPs with regard to molecular weight, structure, and functionality. Both panaxagin and quinqueginsin are homodimeric proteins with molecular weights of 52 kDa and 53 kDa, respectively [110,111]. The amino acid sequence of panaxagin and quinqueginsin show similarities with both RNases and type 1 RIPs, and on the basis of their high translation-inhibitory activities of 0.26 nM and 0.28 nM, respectively, they are classified as RIPs, where the authors proposed the denomination “dimeric type 1 RIP”. Due to their unusual dimeric structure, they can also be considered as peculiar type 1 RIPs. As mentioned above, the N-glycosidase activity of a protein needs to be detected in order to be classified as an RIP, but this was not possible for either panaxagin or quinqueginsin, because they both show strong RNase activity destroying the ribosomes. Therefore, both panaxagin and quinqueginsin are considered as peculiar type 1 RIP candidates until the whole amino acid sequence is analyzed, which will or will not show the conserved amino acids of the active site region.
SoRIP2 from Spinacia oleraceae is a type 1 RIP candidate, because the N-glycosidase activity assay was not performed, but the amino acid sequence shows similarities to the shiga/ricin toxic domain [106]. Interestingly, SoRIP2 only shows low sequence similarity with SoRIP1, another protein from Spinacia oleraceae that is classified as type 1 RIP.
Boerhaavia inhibitor from Boerhaavia diffusa was described as a virus inhibitor without mentioning any more details about the inhibitory activity of rabbit reticulocyte lysate or N-glycosidase activity [371,372]. But the size of 16–20 kDa and the fact that antiserum against the type 1 RIP MAP from Mirabilis jalapa giving positive reaction with Boerhaavia diffusa extract [373], led us to the conclusion to denote Boerhaavia inhibitor as a RIP 1 candidate.
CA-SRI from Clerodendrum aculeatum is like Boerhaavia inhibitor an antiviral protein that induces systemic resistance [358]. Neither the inhibition of translation of rabbit reticulocyte lysate nor the N-glycosidase was demonstrated, but the size of 34 kDa and the amino acid sequence homology of 54% [359] to the type 1 RIP PAP from Phytolacca americana make CA-SRI a RIP 1 candidate.
CF-RIP is a type 1 RIP candidate from Cucumis ficifolius that was obtained by cloning and sequencing the cDNA [159]. To be classified as type 1 RIP, native CF-RIP has to be isolated as well as the N-glycosidase activity has to be detected. Compared with that, the enzymatic activity of ε-momorcharin from Momordica charantia indeed was detected, but it was not denominated as a classical type 1 RIP, because its IC50 of 170 nM is too low. Thus, the authors supposed significant structural dissimilarities of ε-momorcharin from the classical type 1 RIPs [203]. Another protein showing N-glycosidase activity, but is not classified as type 1 RIP, is TRIP from Nicotiana tabacum, because TRIP releases less adenine compared to type 1 RIPs [461]. It shows almost all the characteristics of type 1 RIPs instead of sequence similarity with other type 1 RIPs, wherein it should be mentioned that only 15 internal amino acids were analyzed. The authors classified TRIP as a RIP-like protein, but the fact that it shows superoxide dismutase activity, that is well known for RIPs [23], led us to the proposal to classify TRIP as a type 1 RIP candidate until the whole amino acid sequence is analyzed, which will or will not show the conserved amino acids of type 1 RIPs. Another protein from Nicotiana tabacum is CIP31 that shows a distinct mechanism of action as RIPs. In addition, not only is its N-terminal amino acid sequence different from the RIPs, but it is also only expressed with the presence of Cinchonaglykoside C (1) [460]. Thus, it is denominated as an RIP-like protein.
Because of cleaving supercoiled DNA by a crude extract of seeds from Phaleria macrocarpa, it was assumed that at least one RIP is included in this extract [462], but there were no more details given about this assumed RIP. The same applies to arborvitae RIP, where it is only known that there is probably a RIP synthesized by arborvitae [272], but we could only find the abstract of this paper during our investigation and in the abstract it is not clarified whether it is a RIP or just an RNase. Due to a lack of any further details, we propose to denominate these assumed RIPs as RIP candidates without mentioning the more detailed denomination RIP 1 or RIP 2 candidate. The same applies to leonurin from Leonurus japonicus, for which we did not find any further information as well [362].
As mentioned in the introduction, some lectins were found from several Adenia species [45], of which the lectins from Adenia lanceolata and from Adenia stenodactyla were classified later as type 2 RIPs and were denominated as lanceolin and stenodactylin [391], respectively. The lectin from Adenia goetzei is a type 2 RIP as well, because it was found that it is active as glycosylase, which releases adenine from herring sperm DNA [464]. On the other hand, the lectins from Adenia ellenbeckii, Adenia glauca, Adenia keramanthus, Adenia spinosa, and Adenia venenata indeed consist of two protein chains and inhibit translation in a cell free system, but the N-glycosidase activity was not analyzed. Thus, they should be considered as type 2 RIP candidates.
BDA from Bryonia cretica subsp. Dioica, malanin from Malania oleifera, TCSL from Trichosanthes cucumerina, TDSL from Trichosanthes dioica, and TKL-1 from Trichosanthes kirilowii are also two-chain lectins that cannot be clearly classified as type 2 RIPs. All of them have the typical molecular weight of type 2 RIPs and consist of two protein chains resembling the structure of type 2 RIPs that was even shown by X-ray crystallography [260], but the N-glycosidase activity assay was not performed excluding BDA. BDA, however, was not inhibitory in the highest tested concentration (IC50 > 1500 nM; [73]). These samples show that proteins having both a similar molecular weight and molecular structure, but lacking N-glycosidase activity, cannot be classified as classical type 2 RIPs. Therefore, we propose to classify BDA as a type 2 RIP-like protein and malanin, TCSL, and TDSL as type 2 RIP candidates, because the N-glycosidase activity of these proteins could neither be confirmed nor excluded to date.
At this point two other proteins should be mentioned differing from the classical type 2 RIPs or two-chain lectins with regard to the molecular structure: Foetidissimin from Cucurbita foetidissima and SGSL from Trichosanthes anguina. Foetidissimin indeed inhibits translation by acting as N-glycosidase and it consists of two protein chains, but these chains are not held together through a disulphide bridge [157]. This is hitherto unique for type 2 RIPs and, therefore, we propose to classify foetidissimin as a peculiar type 2 RIP on the basis of the denomination for the peculiar type 1 RIP b-32. The A-chain of SGSL is cleaved obtaining two non-covalently linked components Aα and Aβ-s-s-B. Thus, the nucleotide and carbohydrate-binding sites of SGSL are changed and compared to cinphorin, SGSL does not show N-glycosidase activity, which is due to the cleaved A-chain, but, as X-ray crystallography shows a very similar molecular structure compared to type 2 RIPs, SGSL is classified as a type 2 RIP-like protein. As mentioned above, cleaving processes are not unusual for RIPs, so it was shown that TrSNA-I and TrSNA-If, both lectins from Sambucus nigra, are cleaving products of the type 2 RIPs SNA-I and SNA-If, respectively. This supports the hypothesis that certain lectins and type 2 RIPs must be evolutionarily related.

3.3. Dimeric, Tetrameric, and Octameric Type 2 RIPs and Dimeric Lectins

Most of the dimeric, tetrameric, and octameric type 2 RIPs or dimeric lectins are synthesized by plant species belonging to the Sambucus genus, which are reviewed in Ferreras et al. [29] and Ferreras et al. [72]. In these reviews, the proteins are grouped in “heterodimeric type 2 RIPs”, “tetrameric type 2 RIPs”, “monomeric lectins”, and “homodimeric lectins”. The heterodimeric type 2 RIPs represent the classical type 2 RIPs consisting of one A-chain and one B-chain linked together through a disulphide bridge [A-s-s-B]. Tetrameric type 2 RIPs consist of four protein chains and, therefore, the proposal was made to denominate these proteins as type 4 RIPs [306]. But that would mean that there are type 1, type 2, and type 4 RIPs, but no type 3 RIPs, because they were renamed peculiar type 1 RIPs, which may lead to confusion. Thus, we agree with the term “tetrameric type 2 RIPs”. These RIPs are subdivided into two groups. One of those consist of two [A-s-s-B]-units linked together non-covalently, which can also be considered dimeric classical type 2 RIPs ([A-s-s-B]2). It should be mentioned that the [A-s-s-B]-units can be different, e.g., in RCA from Ricinus communis ([A-s-s-B]α[A-s-s-B]β; [316,323]). The other group of tetrameric type 2 RIPs includes proteins with an extra disulphide bond between the two B-chains [A-s-s-B-s-s-B-s-s-A]. In Ferreras et al. [72], SNA-I and SNA-If were grouped herein, but it was shown that both native SNA-I and native SNA-If occur as a 240 kDa protein having the structure [A-s-s-B-s-s-B-s-s-A]2 [69]. Thus, these proteins can also be considered as dimeric tetrameric type 2 RIPs linked non-covalently, but we propose the denomination octameric type 2 RIPs. PMRIPt from Polygonatum multiflorum and abrin from Abrus precatorius are also octameric type 2 RIPs consisting of four [A-s-s-B]-units, which are linked non-covalently as well ([A-s-s-B]4; [117,328]). They can also be considered as tetrameric classical type 2 RIPs.
Dimerization or oligomerization is a common behavior of purified and concentrated proteins. To avoid any confusion, the denomination of tetrameric type 2 RIPs with the structure [A-s-s-B]2 and octameric type 2 RIPs is not meant as a real classification, because this would separate closely related type 2 proteins such as SNAI and SSA or abrin and pulchellin. We grouped those proteins in Table 4 as an addition to Table 1 to explain the bigger molecular weights and to show their native form in which they have been detected.
Table 4. Dimeric, tetrameric, and octameric type 2 RIPs and dimeric lectins.
Table 4. Dimeric, tetrameric, and octameric type 2 RIPs and dimeric lectins.
StructureProteinSourceMwReferences
Octameric [A-s-s-B-s-s-B-s-s-A]2SNA-ISambucus nigra (Adoxaceae)240 kDa[66,69]
SNA-IfSambucus nigra (Adoxaceae)240 kDa[69]
Octameric [A-s-s-B]4AbrinAbrus precatorius (Fabaceae)260 kDa[328]
PMRIPtPolygonatum multiflorum (Asparagaceae)240 kDa[117]
Tetrameric [A-s-s-B-s-s-B-s-s-A]SEASambucus ebulus (Adoxaceae)135,630 Da[50]
SNAflu-ISambucus nigra (Adoxaceae)subunits of 30–33 kDa[71,72]
SRASambucus sieboldiana (Adoxaceae)120 kDa[79]
SSASambucus sieboldiana (Adoxaceae)160 kDa[81]
Tetrameric [A-s-s-B]2APAAbrus precatorius (Fabaceae)126–134 kDa[315,341,342,345]
Hura crepitans latex lectinHura crepitans (Euphorbiaceae)112 kDa[279]
MCLMomordica charantia (Cucurbitaceae)115–124 kDa[207,218,219,220]
ML-IViscum album (Santalaceae)115–125 kDa[445,447,450,451,452]
Nigrin bSambucus nigra (Adoxaceae)120 kDa[58]
Nigrin fSambucus nigra (Adoxaceae)120 kDa[62]
SNA-I’Sambucus nigra (Adoxaceae)120 kDa[67]
Tetrameric [A-s-s-B]α[A-s-s-B]βRCARicinus communis (Euphorbiaceae)118–130 kDa[316,323]
Homodimeric lectins [B]2E. characias lectinEuphorbia characias (Euphorbiaceae)80 kDa[279]
Luffa acutangula fruit lectinLuffa acutangula (Cucurbitaceae)48 kDa[175]
Protein fraction 1Momordica charantia (Cucurbitaceae)49 kDa[224]
Protein fraction 2Momordica charantia (Cucurbitaceae)49 kDa[224]
Sechium edule fruit lectinSechium edule (Cucurbitaceae)44 kDa[230]
SELldSambucus ebulus (Adoxaceae)67,906 Da[52]
SELfdSambucus ebulus (Adoxaceae)68 kDa[47]
SNAldSambucus nigra (Adoxaceae)n.a.[63]

3.4. Non-Toxic Type 2 RIPs

For a long time, all type 2 RIPs were considered to be highly potent toxins, but, to date, there are also known type 2 RIPs, which are not or only less toxic in vivo, and therefore they are denominated as non-toxic type 2 RIPs (reviewed in [7,8], not listed in this review). Nearly all of them have lectin properties and show N-glycosidase activity in a cell-free system, so that these characteristics cannot be the reason for the missing in vivo-toxicity. SNLRP1 from Sambucus nigra for instance is a non-toxic type 2 RIP without lectin properties. On the other hand, nigrin b from Sambucus nigra has lectin properties but is non-toxic as well, because it is degraded rapidly and excreted by cells [8]. Articulatin D from Viscum articulatum is another type 2 RIP without lectin properties, but compared to SNLRP1, articulatin D is very toxic [455]. Thus, these examples show that the reasons for the vast differences in toxicity are not clearly understood. Nevertheless, non-toxic type 2 RIPs are quite interesting for anti-cancer therapy, because they may have a lower potential of side effects.

3.5. Demotion of Some RIPs

At last, it should be mentioned that there are some proteins, which were first classified as RIPs, but it was later shown that they act with a different mechanism of action for inhibiting translation than N-glycosidase. Melonin from Cucumis melo was first classified as type 1 RIP [465], but a few years later, it was found that it is a ribonuclease (RNase) that specifically degrades poly(C)- and cytidine-containing bonds [466]. Crotin I and crotin II, two proteins from Croton tiglium, were classified as type 1 RIPs as well [7], but for crotin II, it was found that it belongs to RNA hydrolases, which cleave a phosphodiester bond between G4325 and A4326 of 28S rRNA [10]. That is why crotin II is not listed in Table 1. Crotin I is a 40 kDa protein that does not fit into the type 1 RIP classification with regard to the molecular weight and in addition, its N-glycosidase activity was also not detected, because the corresponding assay was not performed [273,274]. Thus, the N-glycosidase activity cannot be excluded and, therefore, crotin I should be classified as a type 1 RIP candidate. At this point, it should be mentioned that there is a type 1 RIP with N-glycosidase activity against bacterial rRNA [277], which was denominated as crotin 2. The denomination of crotin II and crotin 2 may lead to confusion particularly in Girbés et al. [7], as crotin I and crotin II are also denominated as crotin 2 and crotin 3, respectively. For that reference, however, we could not find any proof and, therefore, in Table 1, we listed crotin I and crotin 2 separately, but we did not list crotin II on the basis of the reasons mentioned above and also excluded crotin 3, because too little information exists. The question remains as to whether there are more RIPs which should be demoted.

4. Conclusions

Hitherto, several approaches concerning the nomenclature of RIPs were proposed. Most of the proteins were denominated by using a part of the genus or species name followed with the ending “-in”, e.g., agrostin from Agrostemma githago or ocymoidin from Saponaria ocymoides. If there is more than one RIP synthesized by the same plant, the denominations are followed by an Arabic or Roman numeral, e.g., asparin 1 and asparin 2 from Asparagus officinalis or pulchellin PI, pulchellin PII, and pulchellin PIII from Abrus pulchellus. The numerals, however, can also represent the peak number, in which the proteins were eluted, e.g., agrostin 2, agrostin 5, and agrostin 6 [112]. Some proteins are denominated with additional information about their molecular weight, e.g., dianthin29 from Dianthus barbatus with a size of 29 kDa, or the tissue they are obtained from, e.g., nigrin b from the bark of Sambucus nigra. There are also many proteins, which are denominated with abbreviations, mostly using the initials of the genus and species name, e.g., SEA (= Sambucus ebulus agglutinin) from Sambucus ebulus. At last, modeccin 4B and modeccin 6B from Adenia digitata were denominated by using the material for their isolation. Modeccin 4B was isolated by affinity chromatography on Sepharose 4B and modeccin 6B was isolated by affinity chromatography on acid-treated Sepharose 6B [390].
In 1996, an unambiguous nomenclature was already demanded [58], but today there is still not a uniform classification existing for RIPs. This may be due to the fact that there are several exceptions of RIPs and RIP related proteins, which cannot be grouped into the classical type 1 or type 2 RIPs concerning the structure and/or function of these proteins. Besides the small RIPs, which were already designated in 1996 [205], we propose the term “RIP candidate” for those proteins, which are structurally related to the classical type 1 and type 2 RIPs and/or inhibit translation, but were not analyzed with regard to their N-glyosidase activity. On the other hand, ε-momorcharin is also a RIP candidate [203], which is indeed active as N-glycosidase but shows significant structural dissimilarities from the classical RIPs. These “RIP candidates” can be subdivided into small type 1 RIP (e.g., cucurmoschin), type 1 RIP (e.g., sativin) or type 2 RIP candidates (e.g., malanin) concerning the molecular weight and structure.
For the denomination of those proteins which cannot be grouped into the classic small RIPs, type 1 RIPs or type 2 RIPs due to their unusual structure, but act as N-glycosidase (b-32 and JIP60), we agree with the term “peculiar RIP” [7,8], and, therefore, we add the peculiar type 2 RIP foetidissimin, which lacks the disulphide bridge between the A-chain and B-chain. Because of the dimeric structure of panaxagin and quinqueginsin, they should be considered as peculiar type 1 RIPs, or, more precisely, as peculiar type 1 RIP candidates, because the N-glycosidase activity could not be analyzed, but they show amino acid sequence similarities with other type 1 RIPs.
All other proteins, which are structurally related to RIPs but lack N-glycosidase activity, should be referred to as RIP 1-like or RIP 2-like proteins/lectins.

Author Contributions

J.S. designed and wrote the review. A.W. and M.F.M. designed and proofread the review.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 1987, 262, 5908–5912. [Google Scholar] [PubMed]
  2. Barbieri, L.; Valbonesi, P.; Bondioli, M.; Alvarez, M.L.; dal Monte, P.; Landini, M.P.; Stirpe, F. Adenine glycosylase activity in mammalian tissues: An equivalent of ribosome-inactivating proteins. FEBS Lett. 2001, 505, 196–197. [Google Scholar] [CrossRef] [PubMed]
  3. Kurinov, I.V.; Rajamohan, F.; Venkatachalam, T.K.; Uckun, F.M. X-ray crystallographic analysis of the structural basis for the interaction of pokeweed antiviral protein with guanine residues of ribosomal RNA. Protein Sci. 1999, 8, 2399–2405. [Google Scholar] [CrossRef] [PubMed]
  4. Walsh, T.A.; Morgan, A.E.; Hey, T.D. Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize. Novel mechanism of proenzyme activation by proteolytic removal of a 2.8-kilodalton internal peptide segment. J. Biol. Chem. 1991, 266, 23422–23427. [Google Scholar] [PubMed]
  5. Reinbothe, S.; Reinbothe, C.; Lehmann, J.; Becker, W.; Apel, K.; Parthier, B. Jip60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc. Natl. Acad. Sci. USA 1994, 91, 7012–7016. [Google Scholar] [CrossRef] [PubMed]
  6. Rustgi, S.; Pollmann, S.; Buhr, F.; Springer, A.; Reinbothe, C.; von Wettstein, D.; Reinbothe, S. Jip60-Mediated, jasmonate- and senescence-induced molecular switch in translation toward stress and defense protein synthesis. Proc. Natl. Acad. Sci. USA 2014, 111, 14181–14186. [Google Scholar] [CrossRef] [PubMed]
  7. Girbés, J.T.; Ferreras, J.M.; Arias, F.J.; Stirpe, F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev. Med. Chem. 2004, 4, 461–476. [Google Scholar] [CrossRef] [PubMed]
  8. Stirpe, F. Ribosome-inactivating proteins. Toxicon 2004, 44, 371–383. [Google Scholar] [CrossRef] [PubMed]
  9. Zhang, J.-S.; Liu, W.-Y. Progress in topography of ribosomal RNA and RNA N-glycosidase research (ii). Prog. Biochem. Biophys. 1994, 21, 113–117. [Google Scholar]
  10. Zhou, K.-J.; Fu, Z.-J.; Chen, M.-H.; Qiu, W.; Pan, K.-Z. Crystal structure of crotin ii at 2.5 å resolution. Chin. J. Struct. Chem. 1997, 21, 23–27. [Google Scholar]
  11. Stirpe, F. Ribosome-inactivating proteins: From toxins to useful proteins. Toxicon 2013, 67, 12–16. [Google Scholar] [CrossRef] [PubMed]
  12. Jiang, S.-Y.; Ramamoorthy, R.; Bhalla, R.; Luan, H.-F.; Venkatesh, P.N.; Cai, M.; Ramachandran, S. Genome-wide survey of the rip domain family in oryza sativa and their expression profiles under various abiotic and biotic stresses. Plant Mol. Biol. 2008, 67, 603–614. [Google Scholar] [CrossRef] [PubMed]
  13. Liu, R.S.; Yang, J.H.; Liu, W.Y. Isolation and enzymatic characterization of lamjapin, the first ribosome-inactivating protein from cryptogamic algal plant (Laminaria japonica a). Eur. J. Biochem. 2002, 269, 4746–4752. [Google Scholar] [CrossRef] [PubMed]
  14. Wang, H.X.; Ng, T.B. Isolation of pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom pleurotus tuber-regium. Biochem. Biophys. Res. Commun. 2001, 288, 718–721. [Google Scholar] [CrossRef] [PubMed]
  15. Lam, S.K.; Ng, T.B. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophys. 2001, 393, 271–280. [Google Scholar] [CrossRef] [PubMed]
  16. Lam, S.K.; Ng, T.B. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom hypsizigus marmoreus. Biochem. Biophys. Res. Commun. 2001, 285, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
  17. Wang, H.X.; Ng, T.B. Flammulin: A novel ribosome-inactivating protein from fruiting bodies of the winter mushroom flammulina velutipes. Biochem. Cell Biol. 2000, 78, 699–702. [Google Scholar] [CrossRef] [PubMed]
  18. Wong, J.H.; Wang, H.X.; Ng, T.B. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl. Microbiol. Biotechnol. 2008, 81, 669–674. [Google Scholar] [CrossRef] [PubMed]
  19. Yao, Q.Z.; Yu, M.M.; Ooi, L.S.; Ng, T.B.; Chang, S.T.; Sun, S.S.; Ooi, V.E. Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (Volvariella volvacea). J. Agric. Food Chem. 1998, 46, 788–792. [Google Scholar] [CrossRef] [PubMed]
  20. Brown, J.E.; Ussery, M.A.; Leppla, S.H.; Rothman, S.W. Inhibition of protein synthesis by shiga toxin: Activation of the toxin and inhibition of peptide elongation. FEBS Lett. 1980, 117, 84–88. [Google Scholar] [CrossRef] [PubMed]
  21. Hauf, N.; Chakraborty, T. Suppression of nf-kappa b activation and proinflammatory cytokine expression by shiga toxin-producing Escherichia coli. J. Immunol. 2003, 170, 2074–2082. [Google Scholar] [CrossRef] [PubMed]
  22. Shih, N.R.; McDonald, K.A.; Jackman, A.P.; Girbés, T.; Iglesias, R. Bifunctional plant defence enzymes with chitinase and ribosome inactivating activities from Trichosanthes kirilowii cell cultures. Plant Sci. 1997, 130, 145–150. [Google Scholar] [CrossRef]
  23. Li, X.D.; Chen, W.F.; Liu, W.Y.; Wang, G.H. Large-scale preparation of two new ribosome-inactivating proteins—Cinnamomin and camphorin from the seeds of Cinnamomum camphora. Protein Expr. Purif. 1997, 10, 27–31. [Google Scholar] [CrossRef] [PubMed]
  24. Ruggiero, A.; Chambery, A.; di Maro, A.; Mastroianni, A.; Parente, A.; Berisio, R. Crystallization and preliminary X-ray diffraction analysis of pd-l1, a highly glycosylated ribosome inactivating protein with dnase activity. Protein Pept. Lett. 2007, 14, 407–409. [Google Scholar] [CrossRef] [PubMed]
  25. Lombard, S.; Helmy, M.E.; Pieroni, G. Lipolytic activity of ricin from ricinus sanguineus and ricinus communis on neutral lipids. Biochem. J. 2001, 358, 773–781. [Google Scholar] [CrossRef] [PubMed]
  26. Barbieri, L.; Battelli, M.G.; Stirpe, F. Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta 1993, 1154, 237–282. [Google Scholar] [CrossRef] [PubMed]
  27. Stirpe, F.; Barbieri, L.; Gorini, P.; Valbonesi, P.; Bolognesi, A.; Polito, L. Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett. 1996, 382, 309–312. [Google Scholar] [CrossRef] [PubMed]
  28. Jiang, S.Y.; Bhalla, R.; Ramamoorthy, R.; Luan, H.F.; Venkatesh, P.N.; Cai, M.; Ramachandran, S. Over-expression of osrip18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res. 2012, 21, 785–795. [Google Scholar] [CrossRef] [PubMed]
  29. Ferreras, J.M.; Citores, L.; Iglesias, R.; Jiménez, P.; Girbés, T. Sambucus ribosome-inactivating proteins and lectins. In Toxic Plant Proteins; Lord, J.M., Hartley, M.R., Eds.; Springer: Berlin, Heidelberg, Germany, 2010; Volume 18, pp. 107–131. [Google Scholar]
  30. Byers, V.S.; Levin, A.S.; Waites, L.A.; Starrett, B.A.; Mayer, R.A.; Clegg, J.A.; Price, M.R.; Robins, R.A.; Delaney, M.; Baldwin, R.W.; et al. A phase i/ii study of trichosanthin treatment of HIV disease. Aids 1990, 4, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
  31. Fracasso, G.; Bellisola, G.; Castelletti, D.; Tridente, G.; Colombatti, M. Immunotoxins and other conjugates: Preparation and general characteristics. Mini Rev. Med. Chem. 2004, 4, 545–562. [Google Scholar] [CrossRef] [PubMed]
  32. Kreitman, R.J. Immunotoxins for targeted cancer therapy. AAPS J. 2006, 8, E532–E551. [Google Scholar] [CrossRef] [PubMed]
  33. Gilabert-Oriol, R.; Weng, A.; von Mallinckrodt, B.; Melzig, M.F.; Fuchs, H.; Thakur, M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: A lethal cocktail with tumor specific efficacy. Curr. Pharm. Des. 2014, 20, 6584–6643. [Google Scholar] [CrossRef] [PubMed]
  34. Hebestreit, P.; Weng, A.; Bachran, C.; Fuchs, H.; Melzig, M.F. Enhancement of cytotoxicity of lectins by saponinum album. Toxicon 2006, 47, 330–335. [Google Scholar] [CrossRef] [PubMed]
  35. Heisler, I.; Sutherland, M.; Bachran, C.; Hebestreit, P.; Schnitger, A.; Melzig, M.F.; Fuchs, H. Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. J. Control. Release 2005, 106, 123–137. [Google Scholar] [CrossRef] [PubMed]
  36. Bachran, C.; Durkop, H.; Sutherland, M.; Bachran, D.; Muller, C.; Weng, A.; Melzig, M.F.; Fuchs, H. Inhibition of tumor growth by targeted toxins in mice is dramatically improved by saponinum album in a synergistic way. J. Immunother. 2009, 32, 713–725. [Google Scholar] [CrossRef] [PubMed]
  37. Bottger, S.; Westhof, E.; Siems, K.; Melzig, M.F. Structure-activity relationships of saponins enhancing the cytotoxicity of ribosome-inactivating proteins type i (rip-i). Toxicon 2013, 73, 144–150. [Google Scholar] [CrossRef] [PubMed]
  38. Weng, A.; Jenett-Siems, K.; Gorick, C.; Melzig, M.F. Enhancement of cytotoxicity of ribosome-inactivating-protein type i by saponinum album is not based on stimulation of phagocytosis. J. Pharm. Pharmacol. 2008, 60, 925–930. [Google Scholar] [CrossRef] [PubMed]
  39. Weng, A.; Bachran, C.; Fuchs, H.; Melzig, M.F. Soapwort saponins trigger clathrin-mediated endocytosis of saporin, a type I ribosome-inactivating protein. Chem. Biol. Interact. 2008, 176, 204–211. [Google Scholar] [CrossRef] [PubMed]
  40. Weng, A.; Thakur, M.; von Mallinckrodt, B.; Beceren-Braun, F.; Gilabert-Oriol, R.; Wiesner, B.; Eichhorst, J.; Bottger, S.; Melzig, M.F.; Fuchs, H.; et al. Saponins modulate the intracellular trafficking of protein toxins. J. Control. Release 2012, 164, 74–86. [Google Scholar] [CrossRef] [PubMed]
  41. Nielsen, K.; Boston, R.S. Ribosome-inactivating proteins: A plant perspective. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 785–816. [Google Scholar] [CrossRef] [PubMed]
  42. Peumans, W.J.; Hao, Q.; van Damme, E.J. Ribosome-inactivating proteins from plants: More than RNA N-glycosidases? FASEB J. 2001, 15, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
  43. Stirpe, F.; Battelli, M.G. Ribosome-inactivating proteins: Progress and problems. Cell. Mol. Life Sci. 2006, 63, 1850–1866. [Google Scholar] [CrossRef] [PubMed]
  44. Puri, M.; Kaur, I.; Perugini, M.A.; Gupta, R.C. Ribosome-inactivating proteins: Current status and biomedical applications. Drug Discov. Today 2012, 17, 774–783. [Google Scholar] [CrossRef] [PubMed]
  45. Pelosi, E.; Lubelli, C.; Polito, L.; Barbieri, L.; Bolognesi, A.; Stirpe, F. Ribosome-inactivating proteins and other lectins from Adenia (passifloraceae). Toxicon 2005, 46, 658–663. [Google Scholar] [CrossRef] [PubMed]
  46. De Benito, F.M.; Citores, L.; Iglesias, R.; Ferreras, J.M.; Soriano, F.; Arias, J.; Mendez, E.; Girbes, T. Ebulitins: A new family of type 1 ribosome-inactivating proteins (rRNA N-glycosidases) from leaves of Sambucus ebulus L. That coexist with the type 2 ribosome-inactivating protein ebulin 1. FEBS Lett. 1995, 360, 299–302. [Google Scholar] [CrossRef] [PubMed]
  47. Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Argueso, P.; Jimenez, P.; Mendez, E.; Girbes, T. Presence of polymerized and free forms of the non-toxic type 2 ribosome-inactivating protein ebulin and a structurally related new homodimeric lectin in fruits of Sambucus ebulus L. Planta 1998, 204, 310–319. [Google Scholar] [CrossRef] [PubMed]
  48. Pascal, J.M.; Day, P.J.; Monzingo, A.F.; Ernst, S.R.; Robertus, J.D.; Iglesias, R.; Perez, Y.; Ferreras, J.M.; Citores, L.; Girbes, T.; et al. 2.8-a crystal structure of a nontoxic type-ii ribosome-inactivating protein, ebulin l. Proteins 2001, 43, 319–326. [Google Scholar] [CrossRef] [PubMed]
  49. Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Argueso, P.; Jimenez, P.; Testera, A.; Camafeita, E.; Mendez, E.; Girbes, T.; et al. Characterization of a new non-toxic two-chain ribosome-inactivating protein and a structurally-related lectin from rhizomes of dwarf elder (Sambucus ebulus L.). Cell. Mol. Biol. 1997, 43, 485–499. [Google Scholar] [PubMed]
  50. Iglesias, R.; Citores, L.; Ferreras, J.M.; Perez, Y.; Jimenez, P.; Gayoso, M.J.; Olsnes, S.; Tamburino, R.; di Maro, A.; Parente, A.; et al. Sialic acid-binding dwarf elder four-chain lectin displays nucleic acid N-glycosidase activity. Biochimie 2010, 92, 71–80. [Google Scholar] [CrossRef] [PubMed]
  51. Benitez, J.; Rojo, M.A.; Munoz, R.; Ferreras, J.M.; Jiménez, P.; Girbés, T. Design and cytotoxicity analysis of a conjugate containing the new dgalactose-binding lectin selld and the non-toxic type 2 ribosome-inactivating protein nigrin b. Lett. Drug Des. Discov. 2004, 1, 361–367. [Google Scholar] [CrossRef]
  52. Rojo, M.A.; Citores, L.; Arias, F.J.; Ferreras, J.M.; Jimenez, P.; Girbes, T. Cdna molecular cloning and seasonal accumulation of an ebulin l-related dimeric lectin of dwarf elder (Sambucus ebulus L.) leaves. Int. J. Biochem. Cell Biol. 2003, 35, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
  53. Citores, L.; Rojo, M.A.; Jimenez, P.; Ferreras, J.M.; Iglesias, R.; Aranguez, I.; Girbes, T. Transient occurrence of an ebulin-related D-galactose-lectin in shoots of Sambucus ebulus L. Phytochemistry 2008, 69, 857–864. [Google Scholar] [CrossRef] [PubMed]
  54. Girbés, J.T.; de Benito, F.M.; Citores, L.; Iglesias, R.; Ferreras, J.M. Alpha-, Beta- and Gamma-Nigritins, Their Purification from sambucus nigra, and Their Use for Inhibition of Ribosomes. Patent No. Es 2095190 a1, 1 February 1997. [Google Scholar]
  55. De Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Citores, L.; Camafeita, E.; Mendez, E.; Girbes, T. Constitutive and inducible type 1 ribosome-inactivating proteins (rips) in elderberry (Sambucus nigra L.). FEBS Lett. 1998, 428, 75–79. [Google Scholar] [CrossRef] [PubMed]
  56. De Benito, F.M.; Citores, L.; Iglesias, R.; Ferreras, J.M.; Camafeita, E.; Mendez, E.; Girbes, T. Isolation and partial characterization of a novel and uncommon two-chain 64-kda ribosome-inactivating protein from the bark of elder (Sambucus nigra L.). FEBS Lett. 1997, 413, 85–91. [Google Scholar] [CrossRef] [PubMed]
  57. Girbés, J.T.; Citores, L.; Ferreras, J.M.; Rojo, M.A.; Iglesias, R.; Munoz, R.; Arias, F.J.; Calonge, M.; Garcia, J.R.; Mendez, E.; et al. Isolation and partial characterization of nigrin b, a non-toxic novel type 2 ribosome-inactivating protein from the bark of Sambucus nigra L. Plant Mol. Biol. 1993, 22, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
  58. Van Damme, E.J.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. Characterization and molecular cloning of sambucus nigra agglutinin v (nigrin b), a galnac-specific type-2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem. 1996, 237, 505–513. [Google Scholar] [CrossRef] [PubMed]
  59. Battelli, M.G.; Citores, L.; Buonamici, L.; Ferreras, J.M.; de Benito, F.M.; Stirpe, F.; Girbes, T. Toxicity and cytotoxicity of nigrin b, a two-chain ribosome-inactivating protein from Sambucus nigra: Comparison with ricin. Arch. Toxicol. 1997, 71, 360–364. [Google Scholar] [CrossRef] [PubMed]
  60. Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Jiménez, P.; Argüeso, P.; Farias, G.; Méndez, E.; Girbés, T. Isolation and characterization of a new non-toxic two-chain ribosome-inactivating protein from fruits of elder (Sambucus nigra L.). J. Exp. Bot. 1996, 47, 1577–1585. [Google Scholar] [CrossRef]
  61. Girbés, T.; Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M. A non-toxic two-chain ribosome-inactivating protein co-exists with a structure-related monomeric lectin (sna iii) in elder (Sambucus nigra) fruits. Biochem. J. 1996, 315, 343–344. [Google Scholar] [PubMed]
  62. Van Damme, E.J.; Roy, S.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosome-inactivating protein. Plant J. 1997, 12, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
  63. Ferreras, J.M.; Citores, L.; de Benito, F.M.; Arias, F.J.; Rojo, M.A.; Munoz, R.; Iglesias, R. Ribosome-inactivating proteins and lectins from Sambucus. Curr. Top. Phytochem. 2000, 3, 113–128. [Google Scholar]
  64. Citores, L.; Iglesias, R.; Muñoz, R.; Ferreras, J.M.; Jimenez, P.; Girbes, T. Elderberry (Sambucus nigra L.) seed proteins inhibit protein synthesis and display strong immunoreactivity with rabbit polyclonal antibodies raised against the type 2 ribosome-inactivating protein nigrin b. J. Exp. Bot. 1994, 45, 513–516. [Google Scholar] [CrossRef]
  65. Broekaert, W.F.; Nsimba-Lubaki, M.; Peeters, B.; Peumans, W.J. A lectin from elder (Sambucus nigra L.) bark. Biochem. J. 1984, 221, 163–169. [Google Scholar] [PubMed]
  66. Van Damme, E.J.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. The neuac(alpha-2,6)-gal/galnac-binding lectin from elderberry (Sambucus nigra) bark, a type-2 ribosome-inactivating protein with an unusual specificity and structure. Eur. J. Biochem. 1996, 235, 128–137. [Google Scholar] [CrossRef] [PubMed]
  67. Van Damme, E.J.; Roy, S.; Barre, A.; Citores, L.; Mostafapous, K.; Rouge, P.; van Leuven, F.; Girbes, T.; Goldstein, I.J.; Peumans, W.J.; et al. Elderberry (Sambucus nigra) bark contains two structurally different neu5ac(alpha2,6)gal/galnac-binding type 2 ribosome-inactivating proteins. Eur. J. Biochem. 1997, 245, 648–655. [Google Scholar] [CrossRef] [PubMed]
  68. Shahidi-Noghabi, S.; van Damme, E.J.; de Vos, W.H.; Smagghe, G. Internalization of Sambucus nigra agglutinins i and ii in insect midgut cf-203 cells. Arch. Insect Biochem. Physiol. 2011, 76, 211–222. [Google Scholar] [CrossRef] [PubMed]
  69. Chen, Y.; Peumans, W.J.; van Damme, E.J. The sambucus nigra type-2 ribosome-inactivating protein sna-I' exhibits in planta antiviral activity in transgenic tobacco. FEBS Lett. 2002, 516, 27–30. [Google Scholar] [CrossRef] [PubMed]
  70. Peumans, W.J.; Roy, S.; Barre, A.; Rouge, P.; van Leuven, F.; van Damme, E.J. Elderberry (Sambucus nigra) contains truncated neu5ac(alpha-2,6)gal/galnac-binding type 2 ribosome-inactivating proteins. FEBS Lett. 1998, 425, 35–39. [Google Scholar] [CrossRef] [PubMed]
  71. Karpova, I.S.; Korets’ka, N.V.; Pal’chykovs’ka, L.H.; Nehruts’ka, V.V. Lectins from Sambucus nigra L. inflorescences: Isolation and investigation of biological activity using procaryotic test-systems. Ukr. Biokhim. Zh. 2007, 79, 145–152. [Google Scholar]
  72. Ferreras, J.M.; Citores, L.; Iglesias, R.; Jimenez, P.; Girbes, T. Use of ribosome-inactivating proteins from Sambucus for the construction of immunotoxins and conjugates for cancer therapy. Toxins 2011, 3, 420–441. [Google Scholar] [CrossRef] [PubMed]
  73. Battelli, M.G.; Barbieri, L.; Bolognesi, A.; Buonamici, L.; Valbonesi, P.; Polito, L.; van Damme, E.J.; Peumans, W.J.; Stirpe, F. Ribosome-inactivating lectins with polynucleotide: Adenosine glycosidase activity. FEBS Lett. 1997, 408, 355–359. [Google Scholar] [CrossRef] [PubMed]
  74. Van Damme, E.J.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. Isolation and molecular cloning of a novel type 2 ribosome-inactivating protein with an inactive b chain from elderberry (Sambucus nigra) bark. J. Biol. Chem. 1997, 272, 8353–8360. [Google Scholar] [CrossRef] [PubMed]
  75. Kaku, H.; Peumans, W.J.; Goldstein, I.J. Isolation and characterization of a second lectin (sna-ii) present in elderberry (Sambucus nigra L.) bark. Arch. Biochem. Biophys. 1990, 277, 255–262. [Google Scholar] [CrossRef] [PubMed]
  76. Peumans, W.J.; Kellens, J.T.; Allen, A.K.; van Damme, E.J. Isolation and characterization of a seed lectin from elderberry (Sambucus nigra L.) and its relationship to the bark lectins. Carbohydr. Res. 1991, 213, 7–17. [Google Scholar] [CrossRef] [PubMed]
  77. Mach, L.; Scherf, W.; Ammann, M.; Poetsch, J.; Bertsch, W.; Marz, L.; Glossl, J. Purification and partial characterization of a novel lectin from elder (Sambucus nigra L.) fruit. Biochem. J. 1991, 278 Pt 3, 667–671. [Google Scholar] [PubMed]
  78. Mach, L.; Kerschbaumer, R.; Schwihla, H.; Glossl, J. Elder (Sambucus nigra L.)-fruit lectin (sna-iv) occurs in monomeric, dimeric and oligomeric isoforms. Biochem. J. 1996, 315 Pt 3, 1061. [Google Scholar] [PubMed]
  79. Nsimba-Lubaki, M.; Peumans, W.J.; Allen, A.K. Isolation and characterization of glycoprotein lectins from the bark of three species of elder, sambucus ebulus, S. Nigra and S. Racemosa. Planta 1986, 168, 113–118. [Google Scholar] [CrossRef] [PubMed]
  80. Rojo, M.A.; Citores, L.; Jimenez, P.; Ferreras, J.M.; Arias, F.J.; Mendez, E.; Girbes, T. Isolation and characterization of a new D-galactose-binding lectin from Sambucus racemosa L. Protein Pept. Lett. 2003, 10, 287–293. [Google Scholar] [CrossRef] [PubMed]
  81. Tazaki, K.; Shibuya, N. Purification and partial characterization of a lectin from the bark of Japanese elderberry (Sambucus sieboldiana). Plant Cell Physiol. 1989, 30, 899–903. [Google Scholar]
  82. Kaku, H.; Tanaka, Y.; Tazaki, K.; Minami, E.; Mizuno, H.; Shibuya, N. Sialylated oligosaccharide-specific plant lectin from japanese elderberry (Sambucus sieboldiana) bark tissue has a homologous structure to type ii ribosome-inactivating proteins, ricin and abrin. cDNA cloning and molecular modeling study. J. Biol. Chem. 1996, 271, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
  83. Rojo, M.A.; Kaku, H.; Ishii-Minami, N.; Minami, E.; Yato, M.; Hisajima, S.; Yamaguchi, T.; Shibuya, N. Characterization and cDNA cloning of monomeric lectins that correspond to the b-chain of a type 2 ribosome-inactivating protein from the bark of Japanese elderberry (Sambucus sieboldiana). J. Biochem. 2004, 135, 509–516. [Google Scholar] [CrossRef] [PubMed]
  84. Rojo, M.A.; Yato, M.; Ishii-Minami, N.; Minami, E.; Kaku, H.; Citores, L.; Girbes, T.; Shibuya, N. Isolation, cdna cloning, biological properties, and carbohydrate binding specificity of sieboldin-b, a type ii ribosome-inactivating protein from the bark of Japanese elderberry (Sambucus sieboldiana). Arch. Biochem. Biophys. 1997, 340, 185–194. [Google Scholar] [CrossRef] [PubMed]
  85. Rippmann, J.F.; Michalowski, C.B.; Nelson, D.E.; Bohnert, H.J. Induction of a ribosome-inactivating protein upon environmental stress. Plant Mol. Biol. 1997, 35, 701–709. [Google Scholar] [CrossRef] [PubMed]
  86. Rinderle, S.J.; Goldstein, I.J.; Matta, K.L.; Ratcliffe, R.M. Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the t-(or cryptic t)-antigen. J. Biol. Chem. 1989, 264, 16123–16131. [Google Scholar] [PubMed]
  87. Rinderle, S.J.; Goldstein, I.J.; Remsen, E.E. Physicochemical properties of amaranthin, the lectin from Amaranthus caudatus seeds. Biochemistry 1990, 29, 10555–10561. [Google Scholar] [CrossRef] [PubMed]
  88. Boland, C.R.; Chen, Y.F.; Rinderle, S.J.; Resau, J.H.; Luk, G.D.; Lynch, H.T.; Goldstein, I.J. Use of the lectin from Amaranthus caudatus as a histochemical probe of proliferating colonic epithelial cells. Cancer Res. 1991, 51, 657–665. [Google Scholar] [PubMed]
  89. Koeppe, S.J.; Rupnow, J.H. Purification and characterization of a lectin from the seeds of Amaranth (Amaranthus cruentus). J. Food Sci. 1988, 53, 1412–1417. [Google Scholar] [CrossRef]
  90. Zenteno, E.; Ochoa, J.-L. Purification of a lectin from Amaranthus leucocarpus by affinity chromatography. Phytochemistry 1988, 27, 313–317. [Google Scholar] [CrossRef]
  91. Chen, M.-H.; Wang, Y.-Q.; Wang, Z. Amaramangin Isolated from Plant Seed as Ribosome Inactivating Protein and Uses in Therapy. Patent No. Cn 1491961 a, 28 April 2004. [Google Scholar]
  92. Roy, S.; Sadhana, P.; Begum, M.; Kumar, S.; Lodha, M.L.; Kapoor, H.C. Purification, characterization and cloning of antiviral/ribosome inactivating protein from Amaranthus tricolor leaves. Phytochemistry 2006, 67, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
  93. Kwon, S.Y.; An, C.S.; Liu, J.R.; Paek, K.H. A ribosome-inactivating protein from Amaranthus viridis. Biosci. Biotechnol. Biochem. 1997, 61, 1613–1614. [Google Scholar] [CrossRef] [PubMed]
  94. Kwon, S.Y.; An, C.S.; Liu, J.R.; Kwak, S.S.; Lee, H.S.; Kim, J.K.; Paek, K.H. Molecular cloning of a cdna encoding ribosome inactivating protein from Amaranthus viridis and its expression in E. Coli. Mol. Cells 2000, 10, 8–12. [Google Scholar] [CrossRef] [PubMed]
  95. Girbés, T.; de Torre, C.; Iglesias, R.; Ferreras, J.M.; Méndez, E. Rip for viruses. Nature 1996, 379, 777–778. [Google Scholar] [CrossRef] [PubMed]
  96. Girbés, J.T.; Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M. Ribosome-Inactivating Proteins Beetin-27 and Beetin-29 and Their Use as Antivirals in Mammals and Plants. Patent No. Es 2115520 a1, 16 June 1998. [Google Scholar]
  97. Iglesias, R.; Perez, Y.; de Torre, C.; Ferreras, J.M.; Antolin, P.; Jimenez, P.; Rojo, M.A.; Mendez, E.; Girbes, T. Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (rips) in sugar beet (beta vulgaris) leaves. J. Exp. Bot. 2005, 56, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
  98. Hornung, E.; Wajant, H.; Jeske, H.; Mundry, K.W. Cloning of a cdna encoding a new ribosome-inactivating protein from beta Vulgaris vulgaris (mangold). Gene 1996, 170, 233–236. [Google Scholar] [CrossRef] [PubMed]
  99. Balasubrahmanyam, A.; Baranwal, V.K.; Lodha, M.L.; Varma, A.; Kapoor, H.C. Purification and properties of growth stage-dependent antiviral proteins from the leaves of Celosia cristata. Plant Sci. 2000, 154, 13–21. [Google Scholar] [CrossRef] [PubMed]
  100. Gholizadeh, A.; Kapoor, H.C. Modifications in the purification protocol of Celosia cristata antiviral proteins lead to protein that can be N-terminally sequenced. Protein Pept. Lett. 2004, 11, 551–561. [Google Scholar] [CrossRef] [PubMed]
  101. Begam, M.; Kumar, S.; Roy, S.; Campanella, J.J.; Kapoor, H.C. Molecular cloning and functional identification of a ribosome inactivating/antiviral protein from leaves of post-flowering stage of Celosia cristata and its expression in E. Coli. Phytochemistry 2006, 67, 2441–2449. [Google Scholar] [CrossRef] [PubMed]
  102. Cho, K.-J.; Lee, S.-M.; Kim, Y.-T.; Hwang, Y.-S. Purification and characterization of an antiviral ribosome-inactivating protein from Chenopodium album L. Agric. Chem. Biotechnol. 2000, 43, 125–130. [Google Scholar]
  103. Park, J.S.; Hwang, D.J.; Lee, S.M.; Kim, Y.T.; Choi, S.B.; Cho, K.J. Ribosome-inactivating activity and cDNA cloning of antiviral protein isoforms of Chenopodium album. Mol. Cells 2004, 17, 73–80. [Google Scholar] [PubMed]
  104. Prestle, J.; Schonfelder, M.; Adam, G.; Mundry, K.W. Type 1 ribosome-inactivating proteins depurinate plant 25s rRNA without species specificity. Nucleic Acids Res. 1992, 20, 3179–3182. [Google Scholar] [CrossRef] [PubMed]
  105. Ishizaki, T.; Megumi, C.; Komai, F.; Masuda, K.; Oosawa, K. Accumulation of a 31-kDa glycoprotein in association with the expression of embryogenic potential by spinach callus in culture. Physiol. Plant. 2002, 114, 109–115. [Google Scholar] [CrossRef] [PubMed]
  106. Kawade, K.; Ishizaki, T.; Masuda, K. Differential expression of ribosome-inactivating protein genes during somatic embryogenesis in spinach (Spinacia oleracea). Physiol. Plant. 2008, 134, 270–281. [Google Scholar] [CrossRef] [PubMed]
  107. Kawade, K.; Masuda, K. Transcriptional control of two ribosome-inactivating protein genes expressed in spinach (Spinacia oleracea) embryos. Plant Physiol. Biochem. 2009, 47, 327–334. [Google Scholar] [CrossRef] [PubMed]
  108. Tomatsu, M.; Ohnishi-Kameyama, M.; Shibamoto, N. Aralin, a new cytotoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer Lett. 2003, 199, 19–25. [Google Scholar] [CrossRef] [PubMed]
  109. Tomatsu, M.; Kondo, T.; Yoshikawa, T.; Komeno, T.; Adachi, N.; Kawasaki, Y.; Ikuta, A.; Tashiro, F. An apoptotic inducer, aralin, is a novel type ii ribosome-inactivating protein from Aralia elata. Biol. Chem. 2004, 385, 819–827. [Google Scholar] [CrossRef] [PubMed]
  110. Ng, T.B.; Wang, H. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci. 2001, 68, 739–749. [Google Scholar] [CrossRef] [PubMed]
  111. Wang, H.X.; Ng, T.B. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem. Biophys. Res. Commun. 2000, 269, 203–208. [Google Scholar] [CrossRef] [PubMed]
  112. Stirpe, F.; Gasperi-Campani, A.; Barbieri, L.; Falasca, A.; Abbondanza, A.; Stevens, W.A. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem. J. 1983, 216, 617–625. [Google Scholar] [PubMed]
  113. Bolognesi, A.; Barbieri, L.; Abbondanza, A.; Falasca, A.I.; Carnicelli, D.; Battelli, M.G.; Stirpe, F. Purification and properties of new ribosome-inactivating proteins with rna N-glycosidase activity. Biochim. Biophys. Acta 1990, 1087, 293–302. [Google Scholar] [CrossRef] [PubMed]
  114. Touloupakis, E.; Gessmann, R.; Kavelaki, K.; Christofakis, E.; Petratos, K.; Ghanotakis, D.F. Isolation, characterization, sequencing and crystal structure of charybdin, a type 1 ribosome-inactivating protein from charybdis maritima agg. FEBS J. 2006, 273, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
  115. Arias, F.J.; Antolin, P.; de Torre, C.; Barriuso, B.; Iglesias, R.; Rojo, M.A.; Ferreras, J.M.; Benvenuto, E.; Mendez, E.; Girbes, T.; et al. Musarmins: Three single-chain ribosome-inactivating protein isoforms from bulbs of Muscari armeniacum L. And miller. Int. J. Biochem. Cell Biol. 2003, 35, 61–78. [Google Scholar] [CrossRef] [PubMed]
  116. Girbés, J.T.; Barriuso, B.; Antolin, P.; Arias, F.J.; Munoz, R. Muscari Ribosome-Inactivating Protein Musarmin 4,Its Production in Bacterial and Plant Systems, and Its Uses in Therapy. Patent No. Wo 2004106522 a1, 9 December 2004. [Google Scholar]
  117. Van Damme, E.J.; Hao, Q.; Charels, D.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. Characterization and molecular cloning of two different type 2 ribosome-inactivating proteins from the monocotyledonous plant Polygonatum multiflorum. Eur. J. Biochem. 2000, 267, 2746–2759. [Google Scholar] [CrossRef] [PubMed]
  118. Osawa, N.; Hiramatsu, A. Purification and chemical properties of an inhibitor of plant virus infection from leaves of Yucca recurvifolia salisb. Agric. Biol. Chem. 1987, 51, 891–896. [Google Scholar] [CrossRef]
  119. Hayashi, K.; Nishino, H.; Niwayama, S.; Shiraki, K.; Hiramatsu, A. Yucca leaf protein (ylp) stops the protein synthesis in hsv-infected cells and inhibits virus replication. Antivir. Res. 1992, 17, 323–333. [Google Scholar] [CrossRef] [PubMed]
  120. Bolognesi, A.; Polito, L.; Olivieri, F.; Valbonesi, P.; Barbieri, L.; Battelli, M.G.; Carusi, M.V.; Benvenuto, E.; del Vecchio Blanco, F.; di Maro, A.; et al. New ribosome-inactivating proteins with polynucleotide: Adenosine glycosidase and antiviral activities from Basella rubra L. And bougainvillea spectabilis willd. Planta 1997, 203, 422–429. [Google Scholar] [CrossRef] [PubMed]
  121. Takayama, S.; Misawa, M.; Ko, K.; Misato, T. Effect of cullural conditions on the growth of Agrostemma githago cells in suspension culture and the concomitant production of an anti-plant virus substance. Physiol. Plant. 1977, 41, 313–320. [Google Scholar] [CrossRef]
  122. Stirpe, F.; Barbieri, L. Ribosome-inactivating proteins up to date. FEBS Lett. 1986, 195, 1–8. [Google Scholar] [CrossRef] [PubMed]
  123. Hebestreit, P.; Melzig, M.F. Cytotoxic activity of the seeds from Agrostemma githago var. Githago. Planta Med. 2003, 69, 921–925. [Google Scholar] [CrossRef] [PubMed]
  124. Prestle, J.; Hornung, E.; Schonfelder, M.; Mundry, K.W. Mechanism and site of action of a ribosome-inactivating protein type 1 from dianthus barbatus which inactivates Escherichia coli ribosomes. FEBS Lett. 1992, 297, 250–252. [Google Scholar] [CrossRef] [PubMed]
  125. Stirpe, F.; Williams, D.G.; Onyon, L.J.; Legg, R.F.; Stevens, W.A. Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). Biochem. J. 1981, 195, 399–405. [Google Scholar] [PubMed]
  126. Falasca, A.; Gasperi-Campani, A.; Abbondanza, A.; Barbieri, L.; Stirpe, F. Properties of the ribosome-inactivating proteins gelonin, Momordica charantia inhibitor, and dianthins. Biochem. J. 1982, 207, 505–509. [Google Scholar] [PubMed]
  127. Cho, H.J.; Lee, S.J.; Kim, S.; Kim, B.D. Isolation and characterization of cDNAs encoding ribosome inactivating protein from Dianthus sinensis L. Mol. Cells 2000, 10, 135–141. [Google Scholar] [PubMed]
  128. Yoshinari, S.; Koresawa, S.; Yokota, S.; Sawamoto, H.; Tamura, M.; Endo, Y. Gypsophilin, a new type 1 ribosome-inactivating protein from gypsophila elegans: Purification, enzymatic characterization, and subcellular localization. Biosci. Biotechnol. Biochem. 1997, 61, 324–331. [Google Scholar] [CrossRef] [PubMed]
  129. Fermani, S.; Tosi, G.; Farini, V.; Polito, L.; Falini, G.; Ripamonti, A.; Barbieri, L.; Chambery, A.; Bolognesi, A. Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and lychnin. J. Struct. Biol. 2009, 168, 278–287. [Google Scholar] [CrossRef] [PubMed]
  130. Chambery, A.; de Donato, A.; Bolognesi, A.; Polito, L.; Stirpe, F.; Parente, A. Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds. Biol. Chem. 2006, 387, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
  131. Arias, F.J.; Rojo, M.A.; Ferreras, J.M.; Iglesias, R.; Munoz, R.; Soriano, F.; Mendez, E.; Barbieri, L.; Girbes, T. Isolation and characterization of two new N-glycosidase type-1 ribosome-inactivating proteins, unrelated in amino-acid sequence, from petrocoptis species. Planta 1994, 194, 487–491. [Google Scholar] [CrossRef] [PubMed]
  132. Arias, F.J.; Rojo, M.A.; Ferreras, J.M.; Iglesias, R.; Munoz, R.; Rocher, A.; Mendez, E.; Barbieri, L.; Girbes, T. Isolation and partial characterization of a new ribosome-inactivating protein from Petrocoptis glaucifolia (lag.) boiss. Planta 1992, 186, 532–540. [Google Scholar] [CrossRef] [PubMed]
  133. Bolognesi, A.; Olivieri, F.; Battelli, M.G.; Barbieri, L.; Falasca, A.I.; Parente, A.; del Vecchio Blanco, F.; Stirpe, F. Ribosome-inactivating proteins (RNA N-glycosidases) from the seeds of Saponaria ocymoides and Vaccaria pyramidata. Eur. J. Biochem. 1995, 228, 935–940. [Google Scholar] [CrossRef] [PubMed]
  134. Di Massimo, A.M.; di Loreto, M.; Pacilli, A.; Raucci, G.; D’Alatri, L.; Mele, A.; Bolognesi, A.; Polito, L.; Stirpe, F.; de Santis, R.; et al. Immunoconjugates made of an anti-egf receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymoides or Vaccaria pyramidata. Br. J. Cancer 1997, 75, 822–828. [Google Scholar] [CrossRef] [PubMed]
  135. Ferreras, J.M.; Barbieri, L.; Girbes, T.; Battelli, M.G.; Rojo, M.A.; Arias, F.J.; Rocher, M.A.; Soriano, F.; Mendez, E.; Stirpe, F.; et al. Distribution and properties of major ribosome-inactivating proteins (28 s rRNA N-glycosidases) of the plant Saponaria officinalis L. (caryophyllaceae). Biochim. Biophys. Acta 1993, 1216, 31–42. [Google Scholar] [CrossRef] [PubMed]
  136. Barbieri, L.; Gorini, P.; Valbonesi, P.; Castiglioni, P.; Stirpe, F. Unexpected activity of saporins. Nature 1994, 372, 624. [Google Scholar] [CrossRef] [PubMed]
  137. Ho, M.C.; Sturm, M.B.; Almo, S.C.; Schramm, V.L. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc. Natl. Acad. Sci. USA 2009, 106, 20276–20281. [Google Scholar] [CrossRef] [PubMed]
  138. Sturm, M.B.; Tyler, P.C.; Evans, G.B.; Schramm, V.L. Transition state analogues rescue ribosomes from saporin-l1 ribosome inactivating protein. Biochemistry 2009, 48, 9941–9948. [Google Scholar] [PubMed]
  139. Soria, M.R.; Benatti, L.; Nitti, G.; Ceriotti, A.; Solinas, M.; Lappi, D.A.; Lorenzetti, R. Studies on ribosome-inactivating proteins from saponaria officinalis. Target. Diagn. Ther. 1992, 7, 193–212. [Google Scholar]
  140. Yang, Y.-D.; Zhou, K.-J.; Pan, K.-Z.; Zhang, R.-Z.; Chen, R.-M.; Rao, P.-F. Purification and characterization of saporins. Prog. Biochem. Biophys. 2000, 27, 57–61. [Google Scholar]
  141. Ghosh, P.; Batra, J.K. The differential catalytic activity of ribosome-inactivating proteins saporin 5 and 6 is due to a single substitution at position 162. Biochem. J. 2006, 400, 99–104. [Google Scholar] [CrossRef] [PubMed]
  142. Lappi, D.A.; Esch, F.S.; Barbieri, L.; Stirpe, F.; Soria, M. Characterization of a Saponaria officinalis seed ribosome-inactivating protein: Immunoreactivity and sequence homologies. Biochem. Biophys. Res. Commun. 1985, 129, 934–942. [Google Scholar] [CrossRef] [PubMed]
  143. Benatti, L.; Nitti, G.; Solinas, M.; Valsasina, B.; Vitale, A.; Ceriotti, A.; Soria, M.R. A saporin-6 cdna containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Lett. 1991, 291, 285–288. [Google Scholar] [CrossRef] [PubMed]
  144. De Angelis, F.; di Tullio, A.; Spano, L.; Tucci, A. Mass spectrometric study of different isoforms of the plant toxin saporin. J. Mass Spectrom. 2001, 36, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
  145. Lombardi, A.; Marshall, R.S.; Savino, C.; Fabbrini, M.S.; Ceriotti, A. Toxic Plant Proteins, Plant Cell Monographs; Springer Verlag: Heidelberg, Germany, 2010; Volume 18, pp. 55–78. [Google Scholar]
  146. Di Maro, A.; Ferranti, P.; Mastronicola, M.; Polito, L.; Bolognesi, A.; Stirpe, F.; Malorni, A.; Parente, A. Reliable sequence determination of ribosome- inactivating proteins by combining electrospray mass spectrometry and edman degradation. J. Mass Spectrom. 2001, 36, 38–46. [Google Scholar] [CrossRef] [PubMed]
  147. Fabbrini, M.S.; Rappocciolo, E.; Carpani, D.; Solinas, M.; Valsasina, B.; Breme, U.; Cavallaro, U.; Nykjaer, A.; Rovida, E.; Legname, G.; et al. Characterization of a saporin isoform with lower ribosome-inhibiting activity. Biochem. J. 1997, 322 Pt 3, 719–727. [Google Scholar] [PubMed]
  148. Yoshinari, S.; Tamura, M.; Endo, Y. A new type-1 ribosome-inactivating protein from the leaves of Stellaria aquatica: Purification and characterization. Viva Orig. 1996, 24, 225–236. [Google Scholar]
  149. Zheng, Y.-H.; Zhao, H.-G.; Shan, Y.; Zhou, J.-J.; He, S.-I. Cloning and sequence analysis of ribosome inactivating protein gene from Stellaria media. Acta Bot. Boreali-Occident. Sin. 2010, 1, 14–20. [Google Scholar]
  150. Ng, T.B.; Parkash, A. Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expr. Purif. 2002, 26, 211–217. [Google Scholar] [CrossRef] [PubMed]
  151. Ng, T.B.; Parkash, A.; Tso, W.W. Purification and characterization of alpha- and beta-benincasins, arginine/glutamate-rich peptides with translation-inhibiting activity from wax gourd seeds. Peptides 2003, 24, 11–16. [Google Scholar] [CrossRef] [PubMed]
  152. Stirpe, F.; Barbieri, L.; Battelli, M.G.; Falasca, A.I.; Abbondanza, A.; Lorenzoni, E.; Stevens, W.A. Bryodin, a ribosome-inactivating protein from the roots of Bryonia dioica L. (white bryony). Biochem. J. 1986, 240, 659–665. [Google Scholar] [PubMed]
  153. Siegall, C.B.; Gawlak, S.L.; Chace, D.; Wolff, E.A.; Mixan, B.; Marquardt, H. Characterization of ribosome-inactivating proteins isolated from bryonia dioica and their utility as carcinoma-reactive immunoconjugates. Bioconjug. Chem. 1994, 5, 423–429. [Google Scholar] [CrossRef] [PubMed]
  154. Montecucchi, P.C.; Lazzarini, A.M.; Barbieri, L.; Stirpe, F.; Soria, M.; Lappi, D. N-Terminal sequence of some ribosome-inactivating proteins. Int. J. Pept. Protein Res. 1989, 33, 263–267. [Google Scholar] [CrossRef] [PubMed]
  155. Barbieri, L.; Polito, L.; Bolognesi, A.; Ciani, M.; Pelosi, E.; Farini, V.; Jha, A.K.; Sharma, N.; Vivanco, J.M.; Chambery, A.; et al. Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochim. Biophys. Acta 2006, 1760, 783–792. [Google Scholar] [CrossRef] [PubMed]
  156. Peumans, W.J.; Nsimba-Lubaki, M.; Carlier, A.R.; van Driessche, E. A lectin from Bryonia dioica root stocks. Planta 1984, 160, 222–228. [Google Scholar] [CrossRef] [PubMed]
  157. Zhang, D.; Halaweish, F.T. Isolation and identification of foetidissimin: A novel ribosome-inactivating protein from Cucurbita foetidissima. Plant Sci. 2003, 164, 387–393. [Google Scholar] [CrossRef]
  158. Zhang, D.; Halaweish, F.T. Isolation and characterization of ribosome-inactivating proteins from Cucurbitaceae. Chem. Biodivers. 2007, 4, 431–442. [Google Scholar] [CrossRef] [PubMed]
  159. Yamada, T.; Ohki, S.T.; Osaki, T. Cloning and analysis of a cdna coding a putative ribosome-inactivating protein from Cucumis figarei. Plant Biotechnol. 2000, 17, 337–340. [Google Scholar] [CrossRef]
  160. Wang, H.X.; Ng, T.B. Isolation of cucurmoschin, a novel antifungal peptide abundant in arginine, glutamate and glycine residues from black pumpkin seeds. Peptides 2003, 24, 969–972. [Google Scholar] [CrossRef] [PubMed]
  161. Chen, M.; Ye, X.; Cai, J.; Lin, Y. Crystallization and preliminary crystallographic study of cucurmosin, a ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 665–666. [Google Scholar] [CrossRef] [PubMed]
  162. Shi, X.-L.; Zhou, E.X.; Ye, X.-M.; Meehan, E.J.; Chen, M.-H.; Liqing, C. Molecular replacement studies of cucurmosin from Cucurbita moschata: Structure homology with trichosanthin. Chin. J. Struct. Chem. 2003, 22, 165–168. [Google Scholar]
  163. Hou, X.; Meehan, E.J.; Xie, J.; Huang, M.; Chen, M.; Chen, L. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. J. Struct. Biol. 2008, 164, 81–87. [Google Scholar] [CrossRef] [PubMed]
  164. Hou, X.-M.; Chen, M.-H.; Xie, J.-M.; Peng, Q.; Chen, L.-Q.; Huang, M.-D. Crystallization and preliminary crystallographic studies of cucurmosin 2, a ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. Chin. J. Struct. Chem. 2009, 28, 215–217. [Google Scholar]
  165. Chen, M.-H. Cucurmosin 2 from Cucurbita Moschata Melon Pulp and Its Application to Prepare the Medical Preparations as Antitumor Agent or Anti Aids Agent. Patent No. Cn 101386644 a, 18 March 2009. [Google Scholar]
  166. Xia, H.C.; Li, F.; Li, Z.; Zhang, Z.C. Purification and characterization of moschatin, a novel type i ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res. 2003, 13, 369–374. [Google Scholar] [CrossRef] [PubMed]
  167. Cho, K.-J.; Lee, S.-M.; Kim, Y.-T.; Hwang, Y.-S. Purification and properties of ribosome-inactivating proteins from the leaves of Cucurbita moschata duchesne. J. Korean Agric. Chem. Soc. 1997, 40, 375–379. [Google Scholar]
  168. Ng, T.B.; Parkash, A.; Tso, W.W. Purification and characterization of moschins, arginine-glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds. Protein Expr. Purif. 2002, 26, 9–13. [Google Scholar] [CrossRef] [PubMed]
  169. Yoshinari, S.; Yokota, S.; Sawamoto, H.; Koresawa, S.; Tamura, M.; Endo, Y. Purification, characterization and subcellular localization of a type-1 ribosome-inactivating protein from the sarcocarp of Cucurbita pepo. Eur. J. Biochem. 1996, 242, 585–591. [Google Scholar] [CrossRef] [PubMed]
  170. Lin, Y.; Chen, G.-Q.; Wu, Z.-J.; Lin, Q.-Y.; Xie, L.-H. Purification of a novel anti-tmv protein from Gynostemma pentaphyllum and sequence analysis of its partial DNA coding region. J. Agric. Biotechnol. 2003, 4, 365–369. [Google Scholar]
  171. Wang, H.X.; Ng, T.B. Lagenin, a novel ribosome-inactivating protein with ribonucleolytic activity from bottle gourd (Lagenaria siceraria) seeds. Life Sci. 2000, 67, 2631–2638. [Google Scholar] [CrossRef] [PubMed]
  172. Yeung, H.W.; Li, W.W.; Ng, T.B. Isolation of a ribosome-inactivating and abortifacient protein from seeds of Luffa acutangula. Int. J. Pept. Protein Res. 1991, 38, 15–19. [Google Scholar] [CrossRef] [PubMed]
  173. Lin, J.-K.; Chen, M.-H.; Xie, J.-M.; Zhao, R.; Ye, X.-M.; Shi, X.-L.; Wang, Z.-R. Purification and characterization of two luffaculins, ribosome-inactivating proteins from seeds of Luffa acutangula. Chin. J. Biochem. Mol. Biol. 2002, 18, 609–613. [Google Scholar]
  174. Wang, H.; Ng, T.B. Luffangulin, a novel ribosome inactivating peptide from ridge gourd (Luffa acutangula) seeds. Life Sci. 2002, 70, 899–906. [Google Scholar] [CrossRef] [PubMed]
  175. Anantharam, V.; Patanjali, S.R.; Swamy, M.J.; Sanadi, A.R.; Goldstein, I.J.; Surolia, A. Isolation, macromolecular properties, and combining site of a chito-oligosaccharide-specific lectin from the exudate of ridge gourd (Luffa acutangula). J. Biol. Chem. 1986, 261, 14621–14627. [Google Scholar] [PubMed]
  176. Kishida, K.; Masuho, Y.; Hara, T. Protein-synthesis inhibitory protein from seeds of Luffa cylindria roem. FEBS Lett. 1983, 153, 209–212. [Google Scholar] [CrossRef]
  177. Kamenosono, M.; Nishida, H.; Funatsu, G. Isolation and characterization of two luffins, protein-biosynthesis inhibitory proteins from the seeds of Luffa cylindrica. Agric. Biol. Chem. 1988, 52, 1223–1227. [Google Scholar] [CrossRef]
  178. Ng, T.B.; Wong, R.N.; Yeung, H.W. Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (cucurbitaceae). Biochem. Int. 1992, 27, 197–207. [Google Scholar] [PubMed]
  179. Kataoka, J.; Habuka, N.; Miyano, M.; Masuta, C.; Koiwai, A. Nucleotide sequence of cdna encoding alpha-luffin, a ribosome-inactivating protein from Luffa cylindrica. Plant Mol. Biol. 1992, 18, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
  180. Guo, F.; Liu, D. Isolation and purification of alpha- and beta-luffins, ribosome inactivating protein from seeds of Luffa cylindrica. Prog. Biochem. Biophys. 1995, 22, 464–468. [Google Scholar]
  181. Liu, L.; Wang, R.; He, W.; He, F.; Huang, G. Cloning and soluble expression of mature alpha-luffin from Luffa cylindrica and its antitumor activities in vitro. Acta Biochim. Biophys. Sin. 2010, 42, 585–592. [Google Scholar] [CrossRef] [PubMed]
  182. Kataoka, J.; Habuka, N.; Miyano, M.; Masuta, C.; Koiwai, A. Nucleotide sequence of cdna encoding beta-luffin, another ribosome-inactivating protein from Luffa cylindrica. Plant Mol. Biol. 1992, 19, 887–889. [Google Scholar] [CrossRef] [PubMed]
  183. Ramakrishnan, S.; Enghlid, J.J.; Bryant, H.L., Jr.; Xu, F.J. Characterization of a translation inhibitory protein from Luffa aegyptiaca. Biochem. Biophys. Res. Commun. 1989, 160, 509–516. [Google Scholar] [CrossRef] [PubMed]
  184. Parkash, A.; Ng, T.B.; Tso, W.W. Isolation and characterization of luffacylin, a ribosome inactivating peptide with anti-fungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides 2002, 23, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
  185. Li, F.; Yang, X.X.; Xia, H.C.; Zeng, R.; Hu, W.G.; Li, Z.; Zhang, Z.C. Purification and characterization of luffin p1, a ribosome-inactivating peptide from the seeds of Luffa cylindrica. Peptides 2003, 24, 799–805. [Google Scholar] [CrossRef] [PubMed]
  186. Gao, W.; Ling, J.; Zhong, X.; Liu, W.; Zhang, R.; Yang, H.; Cao, H.; Zhang, Z. Luffin-s—A small novel ribosome-inactivating protein from Luffa cylindrica. Characterization and mechanism studies. FEBS Lett. 1994, 347, 257–260. [Google Scholar] [CrossRef] [PubMed]
  187. Xiong, C.Y.; Zhang, Z.C. Isolation, purification and characterization of a group of novel small molecular ribosome inactivating protein—Luffins from seeds of Luffa cylindrica. Acta Biochim. Biophys. Sin. 1998, 30, 142–146. [Google Scholar] [PubMed]
  188. Li, F.; Hu, W.; Tai, N.; Zhang, Z. Gene Cloning of Luffin s2, a New Small Ribosome-Inactivating Protein from Seeds of Luffa cylindrica, and Expression in Escherichia coli. Available online: http://www.uniprot.org/uniprot/Q7XBB8 (accessed on 1 October 2003).
  189. Shih, N.J.; McDonald, K.A.; Girbes, T.; Iglesias, R.; Kohlhoff, A.J.; Jackman, A.P. Ribosome-inactivating proteins (rips) of wild oregon cucumber (marah oreganus). Biol. Chem. 1998, 379, 721–725. [Google Scholar] [PubMed]
  190. Kaur, I.; Yadav, S.K.; Hariprasad, G.; Gupta, R.C.; Srinivasan, A.; Batra, J.K.; Puri, M. Balsamin, a novel ribosome-inactivating protein from the seeds of balsam apple Momordica balsamina. Amino Acids 2012, 43, 973–981. [Google Scholar] [CrossRef] [PubMed]
  191. Kushwaha, G.S.; Pandey, N.; Sinha, M.; Singh, S.B.; Kaur, P.; Sharma, S.; Singh, T.P. Crystal structures of a type-1 ribosome inactivating protein from Momordica balsamina in the bound and unbound states. Biochim. Biophys. Acta 2012, 1824, 679–691. [Google Scholar] [CrossRef] [PubMed]
  192. Kushwaha, G.S.; Yamini, S.; Kumar, M.; Sinha, M.; Kaur, P.; Sharma, S.; Singh, T.P. First structural evidence of sequestration of mRNA cap structures by type 1 ribosome inactivating protein from Momordica balsamina. Proteins 2013, 81, 896–905. [Google Scholar] [CrossRef] [PubMed]
  193. Ortigao, M.; Better, M. Momordin ii, a ribosome inactivating protein from Momordica balsamina, is homologous to other plant proteins. Nucleic Acids Res. 1992, 20, 4662. [Google Scholar] [CrossRef] [PubMed]
  194. Lee-Huang, S.; Huang, P.L.; Nara, P.L.; Chen, H.C.; Kung, H.F.; Huang, P.; Huang, H.I.; Huang, P.L. Map 30: A new inhibitor of hiv-1 infection and replication. FEBS Lett. 1990, 272, 12–18. [Google Scholar] [CrossRef] [PubMed]
  195. Lee-Huang, S.; Huang, P.L.; Chen, H.C.; Huang, P.L.; Bourinbaiar, A.; Huang, H.I.; Kung, H.F. Anti-hiv and anti-tumor activities of recombinant map30 from bitter melon. Gene 1995, 161, 151–156. [Google Scholar] [CrossRef] [PubMed]
  196. Yeung, H.W.; Li, W.W.; Chan, W.Y.; Law, L.K.; Ng, T.B. Alpha and beta momorcharins. Int. J. Pept. Protein Res. 1986, 28, 518–524. [Google Scholar] [CrossRef]
  197. Yeung, H.W.; Ng, T.B.; Li, W.W.; Cheung, W.K. Partial chemical characterization of alpha- and beta-momorcharins. Planta Med. 1987, 53, 164–166. [Google Scholar] [CrossRef] [PubMed]
  198. Yeung, H.W.; Li, W.W.; Feng, Z.; Barbieri, L.; Stirpe, F. Trichosanthin, alpha-momorcharin and beta-momorcharin: Identity of abortifacient and ribosome-inactivating proteins. Int. J. Pept. Protein Res. 1988, 31, 265–268. [Google Scholar] [CrossRef] [PubMed]
  199. Feng, Z.; Li, W.W.; Yeung, H.W.; Chen, S.Z.; Wang, Y.P.; Lin, X.Y.; Dong, Y.C.; Wang, J.H. Crystals of alpha-momorcharin. A new ribosome-inactivating protein. J. Mol. Biol. 1990, 214, 625–626. [Google Scholar] [CrossRef] [PubMed]
  200. Ng, T.B.; Chan, W.Y.; Yeung, H.W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-aids activities from cucurbitaceae plants. Gen. Pharmacol. 1992, 23, 579–590. [Google Scholar] [CrossRef] [PubMed]
  201. Fong, W.P.; Poon, Y.T.; Wong, T.M.; Mock, J.W.; Ng, T.B.; Wong, R.N.; Yao, Q.Z.; Yeung, H.W. A highly efficient procedure for purifying the ribosome-inactivating proteins alpha- and beta-momorcharins from Momordica charantia seeds, N-terminal sequence comparison and establishment of their N-glycosidase activity. Life Sci. 1996, 59, 901–909. [Google Scholar] [CrossRef] [PubMed]
  202. Ye, G.-J.; Qian, R.-Q.; Lu, B.-Y.; Gu, Z.-W.; Jin, S.-W.; Wang, Y. Isolation and characterization of alpha-, beta-momorcharins. Acta Chim. Sin. 1998, 56, 1135–1144. [Google Scholar]
  203. Tse, P.M.F.; Ng, T.B.; Fong, W.P.; Wong, R.N.S.; Wan, C.C.; Mak, N.K.; Yeung, H.W. New ribosome-inactivating proteins from seeds and fruits of the bitter gourd Momordica charantia. Int. J. Biochem. Cell Biol. 1999, 31, 895–901. [Google Scholar] [CrossRef]
  204. Zhu, F.; Zhang, P.; Meng, Y.F.; Xu, F.; Zhang, D.W.; Cheng, J.; Lin, H.H.; Xi, D.H. Alpha-momorcharin, a rip produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta 2013, 237, 77–88. [Google Scholar] [CrossRef] [PubMed]
  205. Pu, Z.; Lu, B.Y.; Liu, W.Y.; Jin, S.W. Characterization of the enzymatic mechanism of gamma-momorcharin, a novel ribosome-inactivating protein with lower molecular weight of 11,500 purified from the seeds of bitter gourd (Momordica charantia). Biochem. Biophys. Res. Commun. 1996, 229, 287–294. [Google Scholar] [CrossRef] [PubMed]
  206. Endo, Y.; Tsurugi, K.; Lambert, J.M. The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes: The RNA N-glycosidase activity of the proteins. Biochem. Biophys. Res. Commun. 1988, 150, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
  207. Barbieri, L.; Zamboni, M.; Lorenzoni, E.; Montanaro, L.; Sperti, S.; Stirpe, F. Inhibition of protein synthesis in vitro by proteins from the seeds of Momordica charantia (bitter pear melon). Biochem. J. 1980, 186, 443–452. [Google Scholar] [PubMed]
  208. Takemoto, D.J.; Jilka, C.; Rockenbach, S.; Hughes, J.V. Purification and characterization of a cytostatic factor with anti-viral activity from the bitter melon. Prep. Biochem. 1983, 13, 371–393. [Google Scholar] [PubMed]
  209. Stirpe, F.; Bailey, S.; Miller, S.P.; Bodley, J.W. Modification of ribosomal RNA by ribosome-inactivating proteins from plants. Nucleic Acids Res. 1988, 16, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
  210. Cunnick, J.E.; Sakamoto, K.; Chapes, S.K.; Fortner, G.W.; Takemoto, D.J. Induction of tumor cytotoxic immune cells using a protein from the bitter melon (Momordica charantia). Cell. Immunol. 1990, 126, 278–289. [Google Scholar] [CrossRef] [PubMed]
  211. Husain, J.; Tickle, I.J.; Wood, S.P. Crystal structure of momordin, a type i ribosome inactivating protein from the seeds of Momordica charantia. FEBS Lett. 1994, 342, 154–158. [Google Scholar] [CrossRef] [PubMed]
  212. Wang, Q.-H.; Ren, H.; Yu, C. Studies on ribosome inactivating protein of Momordica charantia L. Chin. Tradit. Herb. Drugs 1996, 27, 441–442. [Google Scholar]
  213. Valbonesi, P.; Barbieri, L.; Bolognesi, A.; Bonora, E.; Polito, L.; Stirpe, F. Preparation of highly purified momordin ii without ribonuclease activity. Life Sci. 1999, 65, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
  214. Minami, Y.; Nakahara, Y.; Funatsu, G. Isolation and characterization of two momordins, ribosome-inactivating proteins from the seeds of bitter gourd (Momordica charantia). Biosci. Biotechnol. Biochem. 1992, 56, 1470–1471. [Google Scholar] [CrossRef]
  215. Minami, Y.; Funatsu, G. The complete amino acid sequence of momordin-a, a ribosome-inactivating protein from the seeds of bitter gourd (Momordica charantia). Biosci. Biotechnol. Biochem. 1993, 57, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
  216. Parkash, A.; Ng, T.B.; Tso, W.W. Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Momordica charantia) seeds. J. Pept. Res. 2002, 59, 197–202. [Google Scholar] [CrossRef] [PubMed]
  217. Wang, H.; Ng, T.B. Ribosome inactivating protein and lectin from bitter melon (Momordica charantia) seeds: Sequence comparison with related proteins. Biochem. Biophys. Res. Commun. 1998, 253, 143–146. [Google Scholar] [CrossRef] [PubMed]
  218. Barbieri, L.; Lorenzoni, E.; Stirpe, F. Inhibition of protein synthesis in vitro by a lectin from Momordica charantia and by other haemagglutinins. Biochem. J. 1979, 182, 633–635. [Google Scholar] [PubMed]
  219. Ng, T.B.; Wong, C.M.; Li, W.W.; Yeung, H.W. Isolation and characterization of a galactose binding lectin with insulinomimetic activities. From the seeds of the bitter gourd Momordica charantia (family cucurbitaceae). Int. J. Pept. Protein Res. 1986, 28, 163–172. [Google Scholar] [CrossRef] [PubMed]
  220. Sultan, N.A.; Swamy, M.J. Energetics of carbohydrate binding to Momordica charantia (bitter gourd) lectin: An isothermal titration calorimetric study. Arch. Biochem. Biophys. 2005, 437, 115–125. [Google Scholar] [CrossRef] [PubMed]
  221. Tanaka, H.; Toyama, J.; Akashi, R. Molecular characterization of a galactose-binding lectin from Momordica charantia seeds and its expression in tobacco cells. Asian J. Plant Sci. 2009, 8, 544–550. [Google Scholar] [CrossRef]
  222. Toyama, J.; Tanaka, H.; Horie, A.; Uchiyama, T.; Akashi, R. Purification and characterization of anti-h lectin from the seed of Momordica charantia and the inter-specific differences of hemagglutinating activity in cucurbitaceae. Asian J. Plant Sci. 2008, 7, 647–653. [Google Scholar] [CrossRef]
  223. Lin, J.Y.; Hou, M.J.; Chen, Y.C. Isolation of toxic and non-toxic lectins from the bitter pear melon Momordica charantia linn. Toxicon 1978, 16, 653–660. [Google Scholar] [CrossRef] [PubMed]
  224. Li, S.S. Purification and partial characterization of two lectins from Momordica charantia. Experientia 1980, 36, 524–527. [Google Scholar] [CrossRef] [PubMed]
  225. Chuethong, J.; Oda, K.; Sakurai, H.; Saiki, I.; Leelamanit, W. Cochinin b, a novel ribosome-inactivating protein from the seeds of Momordica cochinchinensis. Biol. Pharm. Bull. 2007, 30, 428–432. [Google Scholar] [CrossRef] [PubMed]
  226. Yeung, H.W.; Ng, T.B.; Wong, N.S.; Li, W.W. Isolation and characterization of an abortifacient protein, momorcochin, from root tubers of Momordica cochinchinensis (family cucurbitaceae). Int. J. Pept. Protein Res. 1987, 30, 135–140. [Google Scholar] [CrossRef] [PubMed]
  227. Bolognesi, A.; Barbieri, L.; Carnicelli, D.; Abbondanza, A.; Cenini, P.; Falasca, A.I.; Dinota, A.; Stirpe, F. Purification and properties of a new ribosome-inactivating protein with RNA N-glycosidase activity suitable for immunotoxin preparation from the seeds of Momordica cochinchinensis. Biochim. Biophys. Acta 1989, 993, 287–292. [Google Scholar] [CrossRef] [PubMed]
  228. Tsang, K.Y.; Ng, T.B. Isolation and characterization of a new ribosome inactivating protein, momorgrosvin, from seeds of the monk’s fruit Momordica grosvenorii. Life Sci. 2001, 68, 773–784. [Google Scholar] [CrossRef] [PubMed]
  229. Wu, T.H.; Chow, L.P.; Lin, J.Y. Sechiumin, a ribosome-inactivating protein from the edible gourd, sechium edule swartz—Purification, characterization, molecular cloning and expression. Eur. J. Biochem. 1998, 255, 400–408. [Google Scholar] [CrossRef] [PubMed]
  230. Vozari-Hampe, M.M.; Viegas, C.; Saucedo, C.; Rosseto, S.; Manica, G.G.; Hampe, O.G. A lectin from Sechium edule fruit exudate. Phytochemistry 1992, 31, 1477–1480. [Google Scholar] [CrossRef]
  231. Chow, L.P.; Chou, M.H.; Ho, C.Y.; Chuang, C.C.; Pan, F.M.; Wu, S.H.; Lin, J.Y. Purification, characterization and molecular cloning of trichoanguin, a novel type i ribosome-inactivating protein from the seeds of Trichosanthes anguina. Biochem. J. 1999, 338 Pt 1, 211–219. [Google Scholar] [CrossRef] [PubMed]
  232. Komath, S.S.; Nadimpalli, S.K.; Swamy, M.J. Purification in high yield and characterisation of the galactose-specific lectin from the seeds of snake gourd (Trichosanthes anguina). Biochem. Mol. Biol. Int. 1996, 39, 243–252. [Google Scholar] [PubMed]
  233. Manoj, N.; Jeyaprakash, A.A.; Pratap, J.V.; Komath, S.S.; Kenoth, R.; Swamy, M.J.; Vijayan, M. Crystallization and preliminary X-ray studies of snake gourd lectin: Homology with type ii ribosome-inactivating proteins. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 912–914. [Google Scholar] [CrossRef] [PubMed]
  234. Sharma, A.; Pohlentz, G.; Bobbili, K.B.; Jeyaprakash, A.A.; Chandran, T.; Mormann, M.; Swamy, M.J.; Vijayan, M. The sequence and structure of snake gourd (Trichosanthes anguina) seed lectin, a three-chain nontoxic homologue of type ii rips. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
  235. Sultan, N.A.; Kavitha, M.; Swamy, M.J. Purification and physicochemical characterization of two galactose-specific isolectins from the seeds of Trichosanthes cordata. IUBMB Life 2009, 61, 457–469. [Google Scholar] [CrossRef] [PubMed]
  236. Padma, P.; Komath, S.S.; Nadimpalli, S.K.; Swamy, M.J. Purification in high yield and characterization of a new galactose-specific lectin from the seeds of Trichosanthes cucumerina. Phytochemistry 1999, 50, 363–371. [Google Scholar] [CrossRef]
  237. Yeung, H.W.; Li, W.W. Beta-trichosanthin: A new abortifacient protein from the Chinese drug, wangua, Trichosanthes cucumeroides. Int. J. Pept. Protein Res. 1987, 29, 289–292. [Google Scholar] [CrossRef] [PubMed]
  238. Ng, T.B.; Feng, Z.; Li, W.W.; Yeung, H.W. Improved isolation and further characterization of beta-trichosanthin, a ribosome-inactivating and abortifacient protein from tubers of Trichosanthes cucumeroides (cucurbitaceae). Int. J. Biochem. 1991, 23, 561–567. [Google Scholar]
  239. Wong, R.N.; Dong, T.X.; Ng, T.B.; Choi, W.T.; Yeung, H.W. Alpha-kirilowin, a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii (family cucurbitaceae): A comparison with beta-kirilowin and other related proteins. Int. J. Pept. Protein Res. 1996, 47, 103–109. [Google Scholar] [CrossRef] [PubMed]
  240. Dong, T.X.; Ng, T.B.; Yeung, H.W.; Wong, R.N. Isolation and characterization of a novel ribosome-inactivating protein, beta-kirilowin, from the seeds of Trichosanthes kirilowii. Biochem. Biophys. Res. Commun. 1994, 199, 387–393. [Google Scholar] [CrossRef] [PubMed]
  241. Lee-Huang, S.; Huang, P.L.; Kung, H.F.; Li, B.Q.; Huang, P.L.; Huang, P.; Huang, H.I.; Chen, H.C. Tap 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA 1991, 88, 6570–6574. [Google Scholar] [CrossRef] [PubMed]
  242. Thorup, J.E.; McDonald, K.A.; Jackman, A.P.; Bhatia, N.; Dandekar, A.M. Ribosome-inactivating protein production from Trichosanthes kirilowii plant cell cultures. Biotechnol. Prog. 1994, 10, 345–352. [Google Scholar] [CrossRef]
  243. Remi Shih, N.J.; McDonald, K.A.; Dandekar, A.M.; Girbés, T.; Iglesias, R.; Jackman, A.P. A novel type-1 ribosome-inactivating protein isolated from the supernatant of transformed suspension cultures of Trichosanthes kirilowii. Plant Cell Rep. 1998, 17, 531–537. [Google Scholar] [CrossRef]
  244. Jin, S.-W.; Xiang, B.-P.; Cao, B.-X.; Wang, Y. Trichobitacin—A new ribosome-inactivating protein i. The isolation, physicochemical and biological properties of trichobitacin. Chin. J. Chem. 1997, 15, 160–168. [Google Scholar] [CrossRef]
  245. Xiang, B.-P.; Jin, S.-W.; Cao, B.-X.; Fu, G.-X.; Wang, Y. Trichobitacin ii. Determination of the partial primary structure of trichobitacin. Acta Chim. Sin. 1998, 56, 302–307. [Google Scholar]
  246. Zheng, Y.T.; Ben, K.L.; Jin, S.W. Anti-hiv-1 activity of trichobitacin, a novel ribosome-inactivating protein. Acta Pharmacol. Sin. 2000, 21, 179–182. [Google Scholar] [PubMed]
  247. Casellas, P.; Dussossoy, D.; Falasca, A.I.; Barbieri, L.; Guillemot, J.C.; Ferrara, P.; Bolognesi, A.; Cenini, P.; Stirpe, F. Trichokirin, a ribosome-inactivating protein from the seeds of trichosanthes kirilowii maximowicz. Purification, partial characterization and use for preparation of immunotoxins. Eur. J. Biochem. 1988, 176, 581–588. [Google Scholar] [CrossRef] [PubMed]
  248. Mi, S.L.; An, C.C.; Wang, Y.; Chen, J.Y.; Che, N.Y.; Gao, Y.; Chen, Z.L. Trichomislin, a novel ribosome-inactivating protein, induces apoptosis that involves mitochondria and caspase-3. Arch. Biochem. Biophys. 2005, 434, 258–265. [Google Scholar] [CrossRef] [PubMed]
  249. Gu, Z.-W.; Jin, S.-W.; Qian, W.-W.; Zhang, X.-L.; Cao, B.-X.; Wang, Q.-H.; Fu, Y.-H.; Xu, S.-Z.; Yao, Y.-Z.; Liu, Y.-F.; et al. Chemistry of trichosanthin iii: Amino acid sequence of cnbr degradation fragment cba. Acta Chim. Sin. 1983, 41, 1190–1192. [Google Scholar]
  250. Gu, Z.-W.; Qian, R.-R.; Jin, S.-W.; Qian, W.-W.; Liu, Y.-F.; Zhu, S.-Q.; Cao, B.-S.; Wang, S.-F.; Xu, S.-Z.; Zhang, L.-Q.; et al. Chemistry of trichosanthin iv: The principal structure of trichosanthin. Acta Chim. Sin. 1984, 42, 943–945. [Google Scholar]
  251. McGrath, M.S.; Hwang, K.M.; Caldwell, S.E.; Gaston, I.; Luk, K.C.; Wu, P.; Ng, V.L.; Crowe, S.; Daniels, J.; Marsh, J.; et al. Glq223: An inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc. Natl. Acad. Sci. USA 1989, 86, 2844–2848. [Google Scholar] [CrossRef] [PubMed]
  252. Collins, E.J.; Robertus, J.D.; LoPresti, M.; Stone, K.L.; Williams, K.R.; Wu, P.; Hwang, K.; Piatak, M. Primary amino acid sequence of alpha-trichosanthin and molecular models for abrin A-chain and alpha-trichosanthin. J. Biol. Chem. 1990, 265, 8665–8669. [Google Scholar] [PubMed]
  253. Shaw, P.C.; Chan, W.L.; Yeung, H.W.; Ng, T.B. Minireview: Trichosanthin—A protein with multiple pharmacological properties. Life Sci. 1994, 55, 253–262. [Google Scholar] [CrossRef] [PubMed]
  254. Bhatia, N.; McDonald, K.A.; Jackman, A.P.; Dandekar, A.M. A simplified procedure for the purification of trichosanthin (a type 1 ribosome inactivating protein) from Trichosanthes kirilowii root tubers. Protein Expr. Purif. 1996, 7, 143–146. [Google Scholar] [CrossRef] [PubMed]
  255. Narayanan, P.; Mak, N.K.; Luong, P.B.; Wong, R.N.S. Isolation and characterization of new isoforms of trichosanthin from Trichosanthes kirilowii. Plant Sci. 2002, 162, 79–85. [Google Scholar] [CrossRef]
  256. Shu, S.H.; Xie, G.Z.; Guo, X.L.; Wang, M. Purification and characterization of a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii maxim. Protein Expr. Purif. 2009, 67, 120–125. [Google Scholar] [CrossRef] [PubMed]
  257. Maraganore, J.M.; Joseph, M.; Bailey, M.C. Purification and characterization of trichosanthin. Homology to the ricin a chain and implications as to mechanism of abortifacient activity. J. Biol. Chem. 1987, 262, 11628–11633. [Google Scholar] [PubMed]
  258. Li, F.; Yang, X.X.; Hu, W.G.; Xia, H.C.; Li, Z.; Zhang, Z.C. Purification and characterization of trichokirin-s1, a novel ribosome-inactivating peptide from seeds of Trichosanthes kirilowii. Acta Biochim. Biophys. Sin. 2003, 35, 841–846. [Google Scholar] [PubMed]
  259. Tai, N.W.; Li, F.; Li, Z.; Zhuang, D.H.; Zhang, Z.C. Purification and partial characterization of s-trichokirin, a new small ribosome-inactivating protein, from seeds of Trichosanthes kirilowii. Acta Biochim. Biophys. Sin. (Shanghai) 2000, 32, 495–498. [Google Scholar]
  260. Li, M.; Wang, Y.P.; Chai, J.J.; Wang, K.Y.; Bi, R.C. Molecular-replacement studies of Trichosanthes kirilowii lectin 1: A structure belonging to the family of type 2 ribosome-inactivating proteins. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 1073–1075. [Google Scholar] [CrossRef] [PubMed]
  261. Li, M.; Chai, J.-J.; Wang, X.-P.; Wang, R.-Y.; Bi, R.-C. Crystal structure of Trichosanthes kirilowii lectin-1 and its relation to the type 2 ribosome inactivating proteins. Protein Pept. Lett. 2001, 8, 81–87. [Google Scholar] [CrossRef]
  262. Yeung, H.W.; Ng, T.B.; Wong, D.M.; Wong, C.M.; Li, W.W. Chemical and biological characterization of the galactose binding lectins from Trichosanthes kirilowii root tubers. Int. J. Pept. Protein Res. 1986, 27, 208–220. [Google Scholar] [CrossRef] [PubMed]
  263. Yeung, H.W.; Wong, D.M.; Ng, T.B.; Li, W.W. Purification of three isolectins from root tubers of Trichosanthes kirilowii (tianhuafen). Int. J. Pept. Protein Res. 1986, 27, 325–333. [Google Scholar] [CrossRef]
  264. Falasca, A.I.; Abbondanza, A.; Barbieri, L.; Bolognesi, A.; Rossi, C.A.; Stirpe, F. Purification and partial characterization of a lectin from the seeds of Trichosanthes kirilowii maximowicz. FEBS Lett. 1989, 246, 159–162. [Google Scholar] [CrossRef] [PubMed]
  265. Toyokawa, S.; Takeda, T.; Ogihara, Y. Isolation and characterization of a new abortifacient protein, karasurin, from root tubers of Trichosanthes kirilowii max. Var. Japonicum kitam. Chem. Pharm. Bull. 1991, 39, 716–719. [Google Scholar] [CrossRef] [PubMed]
  266. Toyokawa, S.; Takeda, T.; Kato, Y.; Wakabayashi, K.; Ogihara, Y. The complete amino acid sequence of an abortifacient protein, karasurin. Chem. Pharm. Bull. 1991, 39, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
  267. Kondo, T.; Mizukami, H.; Takeda, T.; Ogihara, Y. Amino acid sequences and ribosome-inactivating activities of karasurin-b and karasurin-c. Biol. Pharm. Bull. 1996, 19, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
  268. Kondo, T.; Kurihara, S.; Yoshikawa, T.; Mizukami, H. Effect of N- and C-terminal deletions on the RNA N-glycosidase activity and the antigenicity of karasurin-a, a ribosome-inactivating protein from Trichosanthes kirilowii var. Japonica. Biotechnol. Lett. 2004, 26, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
  269. Chen, R.; Xu, Y.Z.; Wu, J.; Pu, Z.; Jin, S.W.; Liu, W.Y.; Xia, Z.X. Purification and characterization of trichomaglin—A novel ribosome-inactivating protein with abortifacient activity. Biochem. Mol. Biol. Int. 1999, 47, 185–193. [Google Scholar] [PubMed]
  270. Sultan, N.A.; Kenoth, R.; Swamy, M.J. Purification, physicochemical characterization, saccharide specificity, and chemical modification of a gal/galnac specific lectin from the seeds of Trichosanthes dioica. Arch. Biochem. Biophys. 2004, 432, 212–221. [Google Scholar] [CrossRef] [PubMed]
  271. Chi, P.V.; Truong, H.Q.; Ha, N.T.; Chung, W.I.; Binh, L.T. Characterization of trichobakin, a type i ribosome-inactivating protein from Trichosanthes sp. Bac kan 8-98. Biotechnol. Appl. Biochem. 2001, 34, 85–92. [Google Scholar] [CrossRef] [PubMed]
  272. Si, Y.-X.; Liu, W.-Y.; Qian, K.-X. Investigation on isolation and functional mechanism of ribosome-inactivating protein from arborvitae seeds. J. Zhejiang Univ. 2005, 39, 423–426. [Google Scholar]
  273. Stirpe, F.; Pession-Brizzi, A.; Lorenzoni, E.; Strocchi, P.; Montanaro, L.; Sperti, S. Studies on the proteins from the seeds of croton tiglium and of jatropha curcas. Toxic properties and inhibition of protein synthesis in vitro. Biochem. J. 1976, 156, 1–6. [Google Scholar] [PubMed]
  274. Sperti, S.; Montanaro, L.; Mattioli, A.; Testoni, G.; Stirpe, F. Inhibition of protein synthesis in vitro by crotins and ricin. Effect on the steps of peptide chain elongation. Biochem. J. 1976, 156, 7–13. [Google Scholar] [PubMed]
  275. Chen, M.H.; Zhou, K.J.; Fu, Z.J.; Pan, K.Z. Preliminary crystallographic studies of crotin ii. J. Mol. Biol. 1993, 234, 908–909. [Google Scholar] [CrossRef] [PubMed]
  276. Iglesias, R.; Escarmis, C.; Alegre, C.; Ferreras, J.M.; Girbes, T. Fusidic acid-dependent ribosomal complexes protect escherichia coli ribosomes from the action of the type 1 ribosome-inactivating protein crotin 2. FEBS Lett. 1993, 318, 189–192. [Google Scholar] [CrossRef] [PubMed]
  277. Ferreras, J.M.; Alegre, C.; Iglesias, R.; Girbes, T. Sensitivity of translation by brevibacterium lactofermentum ribosomes to type 1 and type 2 ribosome-inactivating proteins. Biosci. Biotechnol. Biochem. 1994, 58, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
  278. Alegre, C.; Iglesias, R.; Ferreras, J.M.; Citores, L.; Girbes, T. Sensitivity of ribosomes from agrobacterium tumefaciens to the ribosome-inactivating protein crotin 2 depending on the translocational state. Cell. Mol. Biol. 1996, 42, 151–158. [Google Scholar] [PubMed]
  279. Barbieri, L.; Falasca, A.; Franceschi, C.; Licastro, F.; Rossi, C.A.; Stirpe, F. Purification and properties of two lectins from the latex of the euphorbiaceous plants hura crepitans l. (sand-box tree) and Euphorbia characias L. (mediterranean spurge). Biochem. J. 1983, 215, 433–439. [Google Scholar] [PubMed]
  280. Stirpe, F.; Olsnes, S.; Pihl, A. Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin a. J. Biol. Chem. 1980, 255, 6947–6953. [Google Scholar] [PubMed]
  281. Ebert, R.F.; Spryn, L.A. Immunotoxin construction with a ribosome-inactivating protein from barley. Bioconjug. Chem. 1990, 1, 331–336. [Google Scholar] [CrossRef] [PubMed]
  282. Rosenblum, M.G.; Kohr, W.A.; Beattie, K.L.; Beattie, W.G.; Marks, W.; Toman, P.D.; Cheung, L. Amino acid sequence analysis, gene construction, cloning, and expression of gelonin, a toxin derived from gelonium multiflorum. J. Interferon Cytokine Res. 1995, 15, 547–555. [Google Scholar] [CrossRef] [PubMed]
  283. Singh, V.; Singh, R.C.; Dubey, R.K.; Alam, A. Purification and characterisation of gelonin from seeds of Gelonium multiflorum. Indian J. Biochem. Biophys. 1999, 36, 258–265. [Google Scholar] [PubMed]
  284. Ferreras, J.M.; Iglesias, R.; Barbieri, L.; Alegre, C.; Bolognesi, A.; Rojo, M.A.; Carbajales, M.L.; Escarmis, C.; Girbes, T. Effects and molecular action of ribosome-inactivating proteins on ribosomes from Streptomyces lividans. Biochim. Biophys. Acta 1995, 1243, 85–93. [Google Scholar] [CrossRef] [PubMed]
  285. Jaffe, W.G.; Seidl, D. Crepitin, a phytohemagglutinin from Hura crepitans. Experientia 1969, 25, 891–892. [Google Scholar] [CrossRef] [PubMed]
  286. Falasca, A.; Franceschi, C.; Rossi, C.A.; Stirpe, F. Mitogenic and haemagglutinating properties of a lectinpurified from Hura crepitans seeds. Biochim. Biophys. Acta 1980, 632, 95–105. [Google Scholar] [CrossRef] [PubMed]
  287. Kaufman, S.J.; McPherson, A. Abrin and hurin: Two new lymphocyte mitogens. Cell 1975, 4, 263–268. [Google Scholar] [CrossRef] [PubMed]
  288. McPherson, A.; Hoover, S. Purification o mitogenic proteins from hura crepitans and Robinia pseudaccacia. Biochem. Biophys. Res. Commun. 1979, 89, 713–720. [Google Scholar] [CrossRef] [PubMed]
  289. Lin, J.; Zhou, X.; Wang, J.; Jiang, P.; Tang, K. Purification and characterization of curcin, a toxic lectin from the seed of Jatropha curcas. Prep. Biochem. Biotechnol. 2010, 40, 107–118. [Google Scholar] [CrossRef] [PubMed]
  290. Qin, W.; Ming-Xing, H.; Ying, X.; Xin-Shen, Z.; Fang, C. Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J. Biosci. 2005, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
  291. Huang, M.-X.; Hou, P.; Wei, Q.; Xu, Y.; Chen, F. A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant. Growth Regul. 2008, 54, 115–123. [Google Scholar] [CrossRef]
  292. Qin, X.; Zheng, X.; Shao, C.; Gao, J.; Jiang, L.; Zhu, X.; Yan, F.; Tang, L.; Xu, Y.; Chen, F.; et al. Stress-induced curcin-l promoter in leaves of Jatropha curcas l. And characterization in transgenic tobacco. Planta 2009, 230, 387–395. [Google Scholar] [CrossRef]
  293. Qin, X.; Shao, C.; Hou, P.; Gao, J.; Lei, N.; Jiang, L.; Ye, S.; Gou, C.; Luo, S.; Zheng, X.; et al. Different functions and expression profiles of curcin and curcin-L in Jatropha curcas L. Z. Naturforsch C 2010, 65, 355–362. [Google Scholar] [CrossRef] [PubMed]
  294. Nuchsuk, C.; Wetprasit, N.; Roytrakul, S.; Choowongkomon, K.; Thienprasert, N.T.; Yokthongwattana, C.; Arpornsuwan, T.; Ratanapo, S. Bioactivities of jc-scrip, a type 1 ribosome-inactivating protein from Jatropha curcas seed coat. Chem. Biol. Drug Des. 2013, 82, 453–462. [Google Scholar] [CrossRef] [PubMed]
  295. Carnicelli, D.; Brigotti, M.; Alvergna, P.; Pallanca, A.; Sperti, S.; Montanaro, L. Cofactor requirement of ribosome-inactivating proteins from plants. J. Exp. Bot. 1997, 48, 1519–1523. [Google Scholar] [CrossRef]
  296. Osborne, T.B.; Mendel, L.B.; Harris, I.F. A study of the proteins of the castor bean, with special reference to the isolation of ricin. Am. J. Physiol. 1905, 14, 259–286. [Google Scholar]
  297. Kabat, E.A.; Heidelberger, M.; Bezer, A.E. A study of the purification and properties of ricin. J. Biol. Chem. 1947, 168, 629–639. [Google Scholar] [PubMed]
  298. Kunitz, M.; McDonald, M.R. Isolation of crystalline ricin. J. Gen. Physiol. 1948, 32, 25–31. [Google Scholar] [CrossRef] [PubMed]
  299. Ishiguro, M.; Takahashi, T.; Funatsu, G.; Hayashi, K.; Funatsu, M. Biochemical studies on ricin. I. Purification of ricin. J. Biochem. 1964, 55, 587–592. [Google Scholar] [PubMed]
  300. Ishiguro, M.; Takahashi, T.; Hayashi, K.; Funatsu, M. Biochemical studies on ricin. II. Molecular weight and some physicochemical properties of crystalline ricin d. J. Biochem. 1964, 56, 325–327. [Google Scholar] [PubMed]
  301. Ishiguro, M.; Funatsu, G.; Funatsu, M. Biochemical studies on ricin part iii. Reinvestigation on the purification of ricin. Agric. Biol. Chem. 1971, 35, 724–728. [Google Scholar] [CrossRef]
  302. Funatsu, M.; Funatsu, G.; Ishiguro, M.; Nanno, S.; Hara, K. Structure and toxic function of ricin. II: Subunit structure of ricin d. Proc. Jpn. Acad 1971, 47, 718–723. [Google Scholar]
  303. Cawley, D.B.; Hedblom, M.L.; Houston, L.L. Homology between ricin and ricinus communis agglutinin: Amino terminal sequence analysis and protein synthesis inhibition studies. Arch. Biochem. Biophys. 1978, 190, 744–755. [Google Scholar] [CrossRef] [PubMed]
  304. Fulton, R.J.; Blakey, D.C.; Knowles, P.P.; Uhr, J.W.; Thorpe, P.E.; Vitetta, E.S. Purification of ricin a1, a2, and b chains and characterization of their toxicity. J. Biol. Chem. 1986, 261, 5314–5319. [Google Scholar] [PubMed]
  305. Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin a-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987, 262, 8128–8130. [Google Scholar] [PubMed]
  306. Citores, L.; Ferreras, J.M.; Iglesias, R.; Carbajales, M.L.; Arias, F.J.; Jimenez, P.; Rojo, M.A.; Girbes, T. Molecular mechanism of inhibition of mammalian protein synthesis by some four-chain agglutinins. Proposal of an extended classification of plant ribosome-inactivating proteins (rRNA N-glycosidases). FEBS Lett. 1993, 329, 59–62. [Google Scholar] [CrossRef] [PubMed]
  307. Olsnes, S. The history of ricin, abrin and related toxins. Toxicon 2004, 44, 361–370. [Google Scholar] [CrossRef] [PubMed]
  308. Sehgal, P.; Rao, M.K.; Kumar, O.; Vijayaraghavan, R. Characterization of native and denatured ricin using maldi-tof/ms. Cell. Mol. Biol. 2010, 56, Ol1385–Ol1399. [Google Scholar] [PubMed]
  309. Sehgal, P.; Khan, M.; Kumar, O.; Vijayaraghavan, R. Purification, characterization and toxicity profile of ricin isoforms from castor beans. Food Chem. Toxicol. 2010, 48, 3171–3176. [Google Scholar] [CrossRef] [PubMed]
  310. Mise, T.; Funatsu, G.; Ishiguro, M.; Funatsu, M. Isolation and characterization of ricin e from castor beans. Agric. Biol. Chem. 1977, 41, 2041–2046. [Google Scholar] [CrossRef]
  311. Araki, T.; Funatsu, G. The complete amino acid sequence of the b-chain of ricin e isolated from small-grain castor bean seeds. Ricin e is a gene recombination product of ricin d and ricinus Communis agglutinin. Biochim. Biophys. Acta 1987, 911, 191–200. [Google Scholar] [CrossRef] [PubMed]
  312. Ladin, B.F.; Murray, E.E.; Halling, A.C.; Halling, K.C.; Tilakaratne, N.; Long, G.L.; Houston, L.L.; Weaver, R.F. Characterization of a cdna encoding ricin e, a hybrid ricin-ricinus Communis agglutinin gene from the castor plant Ricinus communis. Plant Mol. Biol. 1987, 9, 287–295. [Google Scholar] [CrossRef] [PubMed]
  313. Nicolson, G.L.; Blaustein, J. The interaction of ricinus Communis agglutinin with normal and tumor cell surfaces. Biochim. Biophys. Acta 1972, 266, 543–547. [Google Scholar] [CrossRef] [PubMed]
  314. Lugnier, A.; Dirheimer, G. Differences between ricin and phytohemagglutinins from Ricinus communis seeds. FEBS Lett. 1973, 35, 117–120. [Google Scholar] [CrossRef] [PubMed]
  315. Olsnes, S.; Saltvedt, E.; Pihl, A. Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J. Biol. Chem. 1974, 249, 803–810. [Google Scholar] [PubMed]
  316. Nicolson, G.L.; Blaustein, J.; Etzler, M.E. Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 1974, 13, 196–204. [Google Scholar] [CrossRef] [PubMed]
  317. Nicolson, G.L.; Lacorbiere, M.; Hunter, T.R. Mechanism of cell entry and toxicity of an affinity- purified lectin from ricinus communis and its differential effects on normal and virus-transformed fibroblasts. Cancer Res. 1975, 35, 144–155. [Google Scholar] [PubMed]
  318. Harley, S.M.; Beevers, H. Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc. Natl. Acad. Sci. USA 1982, 79, 5935–5938. [Google Scholar] [CrossRef] [PubMed]
  319. Roberts, L.M.; Lamb, F.I.; Pappin, D.J.; Lord, J.M. The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J. Biol. Chem. 1985, 260, 15682–15686. [Google Scholar] [PubMed]
  320. Sweeney, E.C.; Tonevitsky, A.G.; Temiakov, D.E.; Agapov, I.I.; Saward, S.; Palmer, R.A. Preliminary crystallographic characterization of ricin agglutinin. Proteins 1997, 28, 586–589. [Google Scholar] [CrossRef] [PubMed]
  321. Hegde, R.; Podder, S.K. Evolution of tetrameric lectin ricinus communis agglutinin from two variant groups of ricin toxin dimers. Eur. J. Biochem. 1998, 254, 596–601. [Google Scholar] [CrossRef] [PubMed]
  322. Helmy, M.; Piéroni, G. Rca60: Purification and characterization of ricin d isoforms from Ricinus sanguineus. J. Plant Physiol. 2000, 156, 477–482. [Google Scholar]
  323. Hegde, R.; Podder, S.K. Studies on the variants of the protein toxins ricin and abrin. Eur. J. Biochem. 1992, 204, 155–164. [Google Scholar] [CrossRef] [PubMed]
  324. El-Nikhely, N.; Helmy, M.; Saeed, H.M.; Abou Shama, L.A.; Abd El-Rahman, Z. Ricin a chain from Ricinus sanguineus: DNA sequence, structure and toxicity. Protein J. 2007, 26, 481–489. [Google Scholar] [CrossRef] [PubMed]
  325. Lin, J.Y.; Lei, L.L.; Tung, T.C. Purification of abrin from Abrus precatorius L. Leguminosae. J. Formos. Med. Assoc. 1969, 68, 518–521. [Google Scholar]
  326. Olsnes, S.; Pihl, A. Isolation and properties of abrin: A toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent-peptide chains. Eur. J. Biochem. 1973, 35, 179–185. [Google Scholar] [CrossRef] [PubMed]
  327. Olsnes, S.; Heiberg, R.; Pihl, A. Inactivation of eucaryotic ribosomes by the toxic plant proteins abrin and ricin. Mol. Biol. Rep. 1973, 1, 15–20. [Google Scholar] [CrossRef] [PubMed]
  328. McPherson, A., Jr.; Rich, A. Studies on crystalline abrin: X-ray diffraction data, molecular weight, carbohydrate content and subunit structure. FEBS Lett. 1973, 35, 257–261. [Google Scholar] [CrossRef] [PubMed]
  329. Olsnes, S.; Pihl, A. Abrin, ricin, and their associated agglutinins. In The Specificity and Action of Animal, Bacterial and Plant Toxins; Cuatrecasas, P., Ed.; Springer US: New York, NY, USA, 1977; pp. 129–173. [Google Scholar]
  330. Kumar, O.; Kannoji, A.; Jayaraj, R.; Vijayaraghavan, R. Purification and characterization of abrin toxin from white Abrus precatorius seeds. J. Cell Tissue Res. 2008, 8, 1243–1248. [Google Scholar]
  331. Wei, C.H.; Hartman, F.C.; Pfuderer, P.; Yang, W.K. Purification and characterization of two major toxic proteins from seeds of abrus precatorius. J. Biol. Chem. 1974, 249, 3061–3067. [Google Scholar] [PubMed]
  332. Wei, C.H.; Einstein, J.R. Preliminary crystallographic data for a new crystalline form of abrin. J. Biol. Chem. 1974, 249, 2985–2986. [Google Scholar] [PubMed]
  333. Lin, J.Y.; Lee, T.C.; Tung, T.C. Isolation of antitumor proteins abrin-a and abrin-b from Abrus precatorius. Int. J. Pept. Protein Res. 1978, 12, 311–317. [Google Scholar] [CrossRef] [PubMed]
  334. Lin, J.Y.; Lee, T.C.; Hu, S.T.; Tung, T.C. Isolation of four isotoxic proteins and one agglutinin from jequiriti bean (Abrus precatorius). Toxicon 1981, 19, 41–51. [Google Scholar] [CrossRef] [PubMed]
  335. Lin, J.Y.; Lee, T.C.; Tung, T.C. Inhibitory effects of four isoabrins on the growth of sarcoma 180 cells. Cancer Res. 1982, 42, 276–279. [Google Scholar] [PubMed]
  336. Herrmann, M.S.; Behnke, W.D. A characterization of abrin a from the seeds of the Abrus precatorius plant. Biochim. Biophys. Acta 1981, 667, 397–410. [Google Scholar] [CrossRef] [PubMed]
  337. Hegde, R.; Maiti, T.K.; Podder, S.K. Purification and characterization of three toxins and two agglutinins from Abrus precatorius seed by using lactamyl-sepharose affinity chromatography. Anal. Biochem. 1991, 194, 101–109. [Google Scholar] [CrossRef] [PubMed]
  338. Hung, C.H.; Lee, M.C.; Lee, T.C.; Lin, J.Y. Primary structure of three distinct isoabrins determined by cDNA sequencing. Conservation and significance. J. Mol. Biol. 1993, 229, 263–267. [Google Scholar] [CrossRef] [PubMed]
  339. Tahirov, T.H.; Lu, T.H.; Liaw, Y.C.; Chen, Y.L.; Lin, J.Y. Crystal structure of abrin-a at 2.14 a. J. Mol. Biol. 1995, 250, 354–367. [Google Scholar] [CrossRef] [PubMed]
  340. Li, X.-B.; Xie, G.-H.; Zhou, C.-F.; Zhang, Z.-G.; Song, W.-X.; Zhou, X.-C.; Zhang, N.-S.; Wang, X.-L.; Gao, H.-W.; Wang, Z.; et al. Purification and characterization of abrin-a. Chin. J. Vet. Sci. 2008, 28, 310–313. [Google Scholar]
  341. Wei, C.H.; Koh, C.; Pfuderer, P.; Einstein, J.R. Purification, properties, and crystallographic data for a principal nontoxic lectin from seeds of abrus precatorius. J. Biol. Chem. 1975, 250, 4790–4795. [Google Scholar] [PubMed]
  342. Roy, J.; Som, S.; Sen, A. Isolation, purification, and some properties of a lectin and abrin from Abrus precatorius linn. Arch. Biochem. Biophys. 1976, 174, 359–361. [Google Scholar] [CrossRef] [PubMed]
  343. Murray, D.R.; Vairinhos, F. The seed proteins of Abrus precatorius L. Z. Pflanzenphysiol. 1982, 108, 471–476. [Google Scholar] [CrossRef]
  344. Liu, C.L.; Tsai, C.C.; Lin, S.C.; Wang, L.I.; Hsu, C.I.; Hwang, M.J.; Lin, J.Y. Primary structure and function analysis of the Abrus precatorius agglutinin a chain by site-directed mutagenesis. Pro(199) of amphiphilic alpha-helix h impairs protein synthesis inhibitory activity. J. Biol. Chem. 2000, 275, 1897–1901. [Google Scholar] [CrossRef] [PubMed]
  345. Panneerselvam, K.; Lin, S.C.; Liu, C.L.; Liaw, Y.C.; Lin, J.Y.; Lu, T.H. Crystallization of agglutinin from the seeds of Abrus precatorius. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 898–899. [Google Scholar] [CrossRef] [PubMed]
  346. Bagaria, A.; Surendranath, K.; Ramagopal, U.A.; Ramakumar, S.; Karande, A.A. Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin i in relation to abrin. J. Biol. Chem. 2006, 281, 34465–34474. [Google Scholar] [CrossRef] [PubMed]
  347. Ramos, M.V.; Mota, D.M.; Teixeira, C.R.; Cavada, B.S.; Moreira, R.A. Isolation and partial characterisation of highly toxic lectins from Abrus pulchellus seeds. Toxicon 1998, 36, 477–484. [Google Scholar] [CrossRef] [PubMed]
  348. Silva, A.L.; Horta, A.C.; Moreira, R.A.; Beltramini, L.M.; Araujo, A.P. Production of Abrus pulchellus ribosome-inactivating protein from seeds callus culture. Toxicon 2003, 41, 841–849. [Google Scholar] [CrossRef] [PubMed]
  349. Silva, A.L.; Goto, L.S.; Dinarte, A.R.; Hansen, D.; Moreira, R.A.; Beltramini, L.M.; Araujo, A.P. Pulchellin, a highly toxic type 2 ribosome-inactivating protein from Abrus pulchellus. Cloning heterologous expression of a-chain and structural studies. FEBS J. 2005, 272, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
  350. Castilho, P.V.; Goto, L.S.; Roberts, L.M.; Araujo, A.P. Isolation and characterization of four type 2 ribosome inactivating pulchellin isoforms from Abrus pulchellus seeds. FEBS J. 2008, 275, 948–959. [Google Scholar] [CrossRef] [PubMed]
  351. Lam, S.S.; Wang, H.; Ng, T.B. Purification and characterization of novel ribosome inactivating proteins, alpha- and beta-pisavins, from seeds of the garden pea pisum sativum. Biochem. Biophys. Res. Commun. 1998, 253, 135–142. [Google Scholar] [CrossRef] [PubMed]
  352. Ye, X.Y.; Wang, H.X.; Ng, T.B. Sativin: A novel antifungal miraculin-like protein isolated from legumes of the sugar snap Pisum sativum var. Macrocarpon. Life Sci. 2000, 67, 775–781. [Google Scholar] [CrossRef] [PubMed]
  353. Van Damme, E.J.; Barre, A.; Barbieri, L.; Valbonesi, P.; Rouge, P.; van Leuven, F.; Stirpe, F.; Peumans, W.J. Type 1 ribosome-inactivating proteins are the most abundant proteins in Iris (iris hollandica var. Professor blaauw) bulbs: Characterization and molecular cloning. Biochem. J. 1997, 324 Pt 3, 963–970. [Google Scholar] [PubMed]
  354. Desmyter, S.; Vandenbussche, F.; Hao, Q.; Proost, P.; Peumans, W.J.; van Damme, E.J. Type-1 ribosome-inactivating protein from Iris bulbs: A useful agronomic tool to engineer virus resistance? Plant Mol. Biol. 2003, 51, 567–576. [Google Scholar] [CrossRef] [PubMed]
  355. Mo, H.; van Damme, E.J.; Peumans, W.J.; Goldstein, I.J. Isolation and characterization of an N-acetyl-d-galactosamine-binding lectin from dutch Iris bulbs which recognizes the blood group a disaccharide (galnac alpha 1-3gal). J. Biol. Chem. 1994, 269, 7666–7673. [Google Scholar] [PubMed]
  356. Hao, Q.; van Damme, E.J.; Hause, B.; Barre, A.; Chen, Y.; Rouge, P.; Peumans, W.J. Iris bulbs express type 1 and type 2 ribosome-inactivating proteins with unusual properties. Plant Physiol. 2001, 125, 866–876. [Google Scholar] [CrossRef] [PubMed]
  357. Vandenbussche, F.; Peumans, W.J.; Desmyter, S.; Proost, P.; Ciani, M.; van Damme, E.J. The type-1 and type-2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. Planta 2004, 220, 211–221. [Google Scholar] [CrossRef] [PubMed]
  358. Verma, H.N.; Srivastava, S.; Varsha; Kumar, D. Induction of systemic resistance in plants against viruses by a basic protein from Clerodendrum aculeatum leaves. Phytopathology 1996, 86, 485–492. [Google Scholar] [CrossRef]
  359. Kumar, D.; Verma, H.N.; Tuteja, N.; Tewari, K.K. Cloning and characterisation of a gene encoding an antiviral protein from Clerodendrum aculeatum L. Plant Mol. Biol. 1997, 33, 745–751. [Google Scholar] [CrossRef] [PubMed]
  360. Prasad, V.; Srivastava, S.; Varsha; Verma, H.N. Two basic proteins isolated from Clerodendrum inerme gaertn. Are inducers of systemic antiviral resistance in susceptible plants. Plant Sci. 1995, 110, 73–82. [Google Scholar] [CrossRef]
  361. Olivieri, F.; Prasad, V.; Valbonesi, P.; Srivastava, S.; Ghosal-Chowdhury, P.; Barbieri, L.; Bolognesi, A.; Stirpe, F. A systemic antiviral resistance-inducing protein isolated from Clerodendrum inerme gaertn. Is a polynucleotide: Adenosine glycosidase (ribosome-inactivating protein). FEBS Lett. 1996, 396, 132–134. [Google Scholar] [CrossRef] [PubMed]
  362. Yang, X.-Y.; Xiao, Y.-H.; Pei, Y. Sequence of a Novel Leonurus japonicus Ribosome-Inactivating Protein (Rip) Gene. Patent No. Cn 1563381 a, 12 January 2005. [Google Scholar]
  363. Hou, F.-J.; Wang, B.-Z.; Liu, W.-Y. Comparative studies of three type ii ribosome-inactivating proteins from the seeds of three species of the genus Cinnamomum. Protein Pept. Lett. 2001, 8, 193–200. [Google Scholar] [CrossRef]
  364. Ling, J.; Liu, W.Y.; Wang, T.P. Simultaneous existence of two types of ribosome-inactivating proteins in the seeds of Cinnamonum camphora—Characterization of the enzymatic activities of these cytotoxic proteins. Biochim. Biophys. Acta 1995, 1252, 15–22. [Google Scholar] [CrossRef] [PubMed]
  365. Ling, J.; Liu, W.Y. Cytotoxicity of two new ribosome-inactivating proteins, cinnamomin and camphorin, to carcinoma cells. Cell Biochem. Funct. 1996, 14, 157–161. [Google Scholar] [CrossRef] [PubMed]
  366. He, W.J.; Liu, W.Y. Cinnamomin: A multifunctional type ii ribosome-inactivating protein. Int. J. Biochem. Cell Biol. 2003, 35, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
  367. Xu, H.; Liu, W.Y. Cinnamomin—A versatile type ii ribosome-inactivating protein. Acta Biochim. Biophys. Sin. 2004, 36, 169–176. [Google Scholar] [CrossRef] [PubMed]
  368. Hou, F.-J.; Liu, R.-S.; Liu, W.-Y. Cinphorin: A novel type ii ribosome-inactivating protein with miniature active a-chain. Prog. Biochem. Biophys. 2002, 29, 531–532. [Google Scholar]
  369. Li, X.D.; Liu, W.Y.; Niu, C.L. Purification of a new ribosome-inactivating protein from the seeds of Cinnamomum porrectum and characterization of the RNA N-glycosidase activity of the toxic protein. Biol. Chem. 1996, 377, 825–831. [Google Scholar] [PubMed]
  370. Kondo, T.; Yoshikawa, T. Purification and characterization of abelesculin, a novel ribosome-inactivating protein from the mature seeds of Abelmoschus esculentus. J. Nat. Med. 2007, 61, 170–174. [Google Scholar] [CrossRef]
  371. Verma, H.N.; Awasthi, L.P. Antiviral activity of boerhaavia diffusa root extract and the physical properties of the virus inhibitor. Can. J. Bot. 1979, 57, 926–932. [Google Scholar] [CrossRef]
  372. Verma, H.N.; Awasthi, L.P.; Saxena, K.C. Isolation of the virus inhibitor from the root extract of Boerhaavia diffusa inducing systemic resistance in plants. Can. J. Bot. 1979, 57, 1214–1217. [Google Scholar] [CrossRef]
  373. Kubo, S.; Ikeda, T.; Imaizumi, S.; Takanami, Y.; Mikami, Y. A potent plant virus inhibitor found in Mirabilis jalapa L. Jpn. J. Phytopathol. 1990, 56, 481–487. [Google Scholar] [CrossRef]
  374. Balasaraswathi, R.; Sadasivam, S.; Ward, M.; Walker, J.M. An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation. Phytochemistry 1998, 47, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
  375. den Hartog, M.T.; Lubelli, C.; Boon, L.; Heerkens, S.; Ortiz Buijsse, A.P.; de Boer, M.; Stirpe, F. Cloning and expression of cDNA coding for bouganin. Eur. J. Biochem. 2002, 269, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
  376. Narwal, S.; Balasubrahmanyam, A.; Lodha, M.L.; Kapoor, H.C. Purification and properties of antiviral proteins from the leaves of Bougainvillea xbuttiana. Indian J. Biochem. Biophys. 2001, 38, 342–347. [Google Scholar] [PubMed]
  377. Narwal, S.; Balasubrahmanyam, A.; Sadhna, P.; Kapoor, H.; Lodha, M.L. A systemic resistance inducing antiviral protein with N-glycosidase activity from Bougainvillea xbuttiana leaves. Indian J. Exp. Biol. 2001, 39, 600–603. [Google Scholar] [PubMed]
  378. Choudhary, N.L.; Yadav, O.P.; Lodha, M.L. Ribonuclease, deoxyribonuclease, and antiviral activity of escherichia coli-expressed Bougainvillea xbuttiana antiviral protein 1. Biochemistry 2008, 73, 273–277. [Google Scholar] [PubMed]
  379. Choudhary, N.; Kapoor, H.C.; Lodha, M.L. Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea xbuttiana. J. Biosci. 2008, 33, 91–101. [Google Scholar] [CrossRef] [PubMed]
  380. Vivanco, J.M.; Savary, B.J.; Flores, H.E. Characterization of two novel type i ribosome-inactivating proteins from the storage roots of the andean crop Mirabilis expansa. Plant Physiol. 1999, 119, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
  381. Vepachedu, R.; Bais, H.P.; Vivanco, J.M. Molecular characterization and post-transcriptional regulation of me1, a type-i ribosome-inactivating protein from Mirabilis expansa. Planta 2003, 217, 498–506. [Google Scholar] [CrossRef] [PubMed]
  382. Habuka, N.; Murakami, Y.; Noma, M.; Kudo, T.; Horikoshi, K. Amino acid sequence of mirabilis antiviral protein, total synthesis of its gene and expression in Escherichia coli. J. Biol. Chem. 1989, 264, 6629–6637. [Google Scholar] [PubMed]
  383. Bolognesi, A.; Polito, L.; Lubelli, C.; Barbieri, L.; Parente, A.; Stirpe, F. Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jalapa L. Tissues. J. Biol. Chem. 2002, 277, 13709–13716. [Google Scholar] [CrossRef] [PubMed]
  384. Yuan, Y.; Dai, X.; Wang, D.; Zeng, X. Purification, characterization and cytotoxicity of malanin, a novel plant toxin from the seeds of Malania oleifera. Toxicon 2009, 54, 121–127. [Google Scholar] [CrossRef] [PubMed]
  385. Voss, C.; Eyol, E.; Frank, M.; von der Lieth, C.W.; Berger, M.R. Identification and characterization of riproximin, a new type ii ribosome-inactivating protein with antineoplastic activity from Ximenia americana. FASEB J. 2006, 20, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
  386. Bayer, H.; Ey, N.; Wattenberg, A.; Voss, C.; Berger, M.R. Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr. Purif. 2012, 82, 97–105. [Google Scholar] [CrossRef] [PubMed]
  387. Refsnes, K.; Haylett, T.; Sandvig, K.; Olsnes, S. Modeccin—A plant toxin inhibiting protein synthesis. Biochem. Biophys. Res. Commun. 1977, 79, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
  388. Olsnes, S.; Haylett, T.; Refsnes, K. Purification and characterization of the highly toxic lectin modeccin. J. Biol. Chem. 1978, 253, 5069–5073. [Google Scholar] [PubMed]
  389. Stirpe, F.; Gasperi-Campani, A.; Barbieri, L.; Lorenzoni, E.; Montanaro, L.; Sperti, S.; Bonetti, E. Inhibition of protein synthesis by modeccin, the toxin of Modecca digitata. FEBS Lett. 1977, 85, 65–67. [Google Scholar] [CrossRef] [PubMed]
  390. Barbieri, L.; Zamboni, M.; Montanaro, L.; Sperti, S.; Stirpe, F. Purification and properties of different forms of modeccin, the toxin of Adenia digitata. Separation of subunits with inhibitory and lectin activity. Biochem. J. 1980, 185, 203–210. [Google Scholar] [PubMed]
  391. Stirpe, F.; Bolognesi, A.; Bortolotti, M.; Farini, V.; Lubelli, C.; Pelosi, E.; Polito, L.; Dozza, B.; Strocchi, P.; Chambery, A.; et al. Characterization of highly toxic type 2 ribosome-inactivating proteins from Adenia lanceolata and Adenia stenodactyla (passifloraceae). Toxicon 2007, 50, 94–105. [Google Scholar] [CrossRef] [PubMed]
  392. Monti, B.; D’Alessandro, C.; Farini, V.; Bolognesi, A.; Polazzi, E.; Contestabile, A.; Stirpe, F.; Battelli, M.G. In vitro and in vivo toxicity of type 2 ribosome-inactivating proteins lanceolin and stenodactylin on glial and neuronal cells. Neurotoxicology 2007, 28, 637–644. [Google Scholar] [CrossRef] [PubMed]
  393. Barbieri, L.; Falasca, A.I.; Stirpe, F. Volkensin, the toxin of Adenia volkensii (Kilyambiti plant). FEBS Lett. 1984, 171, 277–279. [Google Scholar] [CrossRef]
  394. Stirpe, F.; Barbieri, L.; Abbondanza, A.; Falasca, A.I.; Brown, A.N.; Sandvig, K.; Olsnes, S.; Pihl, A. Properties of volkensin, a toxic lectin from Adenia volkensii. J. Biol. Chem. 1985, 260, 14589–14595. [Google Scholar] [PubMed]
  395. Chambery, A.; di Maro, A.; Monti, M.M.; Stirpe, F.; Parente, A. Volkensin from Adenia volkensii harms (kilyambiti plant), a type 2 ribosome-inactivating protein. Eur. J. Biochem. 2004, 271, 108–117. [Google Scholar] [CrossRef] [PubMed]
  396. Kataoka, J.; Habuka, N.; Masuta, C.; Miyano, M.; Koiwai, A. Isolation and analysis of a genomic clone encoding a pokeweed antiviral protein. Plant Mol. Biol. 1992, 20, 879–886. [Google Scholar] [CrossRef] [PubMed]
  397. Honjo, E.; Dong, D.; Motoshima, H.; Watanabe, K. Genomic clones encoding two isoforms of pokeweed antiviral protein in seeds (pap-s1 and s2) and the N-glycosidase activities of their recombinant proteins on ribosomes and DNA in comparison with other isoforms. J. Biochem. 2002, 131, 225–231. [Google Scholar] [CrossRef] [PubMed]
  398. Irvin, J.D.; Robertus, J.D.; Monzingo, A.F. Preliminary X-ray diffraction studies on an anti-viral protein. Biochem. Biophys. Res. Commun. 1977, 74, 775–779. [Google Scholar] [CrossRef] [PubMed]
  399. Irvin, J.D. Pokeweed antiviral protein. Pharmacol. Ther. 1983, 21, 371–387. [Google Scholar] [CrossRef] [PubMed]
  400. Bjorn, M.J.; Larrick, J.; Piatak, M.; Wilson, K.J. Characterization of translational inhibitors from Phytolacca americana. Amino-terminal sequence determination and antibody-inhibitor conjugates. Biochim. Biophys. Acta 1984, 790, 154–163. [Google Scholar] [CrossRef] [PubMed]
  401. Lin, Q.; Chen, Z.C.; Antoniw, J.F.; White, R.F. Isolation and characterization of a cDNA clone encoding the anti-viral protein from Phytolacca americana. Plant Mol. Biol. 1991, 17, 609–614. [Google Scholar] [CrossRef] [PubMed]
  402. Poyet, J.L.; Hoeveler, A. Cdna cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett. 1997, 406, 97–100. [Google Scholar] [CrossRef] [PubMed]
  403. Irvin, J.D.; Uckun, F.M. Pokeweed antiviral protein: Ribosome inactivation and therapeutic applications. Pharmacol. Ther. 1992, 55, 279–302. [Google Scholar] [CrossRef] [PubMed]
  404. Rajamohan, F.; Venkatachalam, T.K.; Irvin, J.D.; Uckun, F.M. Pokeweed antiviral protein isoforms pap-i, pap-ii, and pap-iii depurinate RNA of human immunodeficiency virus (HIV)-1. Biochem. Biophys. Res. Commun. 1999, 260, 453–458. [Google Scholar] [CrossRef] [PubMed]
  405. Irvin, J.D.; Kelly, T.; Robertus, J.D. Purification and properties of a second antiviral protein from Phytolacca americana which inactivates eukaryotic ribosomes. Arch. Biochem. Biophys. 1980, 200, 418–425. [Google Scholar] [CrossRef] [PubMed]
  406. Barbieri, L.; Bolognesi, A.; Cenini, P.; Falasca, A.I.; Minghetti, A.; Garofano, L.; Guicciardi, A.; Lappi, D.; Miller, S.P.; Stirpe, F.; et al. Ribosome-inactivating proteins from plant cells in culture. Biochem. J. 1989, 257, 801–807. [Google Scholar] [PubMed]
  407. Park, S.W.; Lawrence, C.B.; Linden, J.C.; Vivanco, J.M. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol. 2002, 130, 164–178. [Google Scholar] [CrossRef] [PubMed]
  408. Barbieri, L.; Aron, G.M.; Irvin, J.D.; Stirpe, F. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed). Biochem. J. 1982, 203, 55–59. [Google Scholar] [PubMed]
  409. Parente, A.; Conforto, B.; di Maro, A.; Chambery, A.; de Luca, P.; Bolognesi, A.; Iriti, M.; Faoro, F. Type 1 ribosome-inactivating proteins from Phytolacca dioica L. Leaves: Differential seasonal and age expression, and cellular localization. Planta 2008, 228, 963–975. [Google Scholar] [CrossRef] [PubMed]
  410. Di Maro, A.; Valbonesi, P.; Bolognesi, A.; Stirpe, F.; de Luca, P.; Siniscalco Gigliano, G.; Gaudio, L.; Delli Bovi, P.; Ferranti, P.; Malorni, A.; et al. Isolation and characterization of four type-1 ribosome-inactivating proteins, with polynucleotide: Adenosine glycosidase activity, from leaves of Phytolacca dioica L. Planta 1999, 208, 125–131. [Google Scholar] [CrossRef] [PubMed]
  411. Severino, V.; Chambery, A.; di Maro, A.; Marasco, D.; Ruggiero, A.; Berisio, R.; Giansanti, F.; Ippoliti, R.; Parente, A. The role of the glycan moiety on the structure-function relationships of pd-l1, type 1 ribosome-inactivating protein from p. Dioica leaves. Mol. Biosyst. 2010, 6, 570–579. [Google Scholar] [CrossRef] [PubMed]
  412. Di Maro, A.; Chambery, A.; Carafa, V.; Costantini, S.; Colonna, G.; Parente, A. Structural characterization and comparative modeling of pd-ls 1-3, type 1 ribosome-inactivating proteins from summer leaves of Phytolacca dioica L. Biochimie 2009, 91, 352–363. [Google Scholar] [CrossRef] [PubMed]
  413. Ruggiero, A.; Chambery, A.; di Maro, A.; Parente, A.; Berisio, R. Atomic resolution (1.1 a) structure of the ribosome-inactivating protein pd-l4 from Phytolacca dioica L. Leaves. Proteins 2008, 71, 8–15. [Google Scholar] [CrossRef] [PubMed]
  414. Parente, A.; de Luca, P.; Bolognesi, A.; Barbieri, L.; Battelli, M.G.; Abbondanza, A.; Sande, M.J.; Gigliano, G.S.; Tazzari, P.L.; Stirpe, F.; et al. Purification and partial characterization of single-chain ribosome-inactivating proteins from the seeds of Phytolacca dioica L. Biochim. Biophys. Acta 1993, 1216, 43–49. [Google Scholar] [CrossRef] [PubMed]
  415. Del Vecchio Blanco, F.; Bolognesi, A.; Malorni, A.; Sande, M.J.; Savino, G.; Parente, A. Complete amino-acid sequence of pd-s2, a new ribosome-inactivating protein from seeds of Phytolacca dioica L. Biochim. Biophys. Acta 1997, 1338, 137–144. [Google Scholar] [CrossRef] [PubMed]
  416. Ready, M.P.; Adams, R.P.; Robertus, J.D. Dodecandrin, a new ribosome-inhibiting protein from Phytolacca dodecandra. Biochim. Biophys. Acta 1984, 791, 314–319. [Google Scholar] [CrossRef] [PubMed]
  417. Thomsen, S.; Hansen, H.S.; Nyman, U. Ribosome-inhibiting proteins from in vitro cultures of Phytolacca dodecandra. Planta Med. 1991, 57, 232–236. [Google Scholar] [CrossRef] [PubMed]
  418. Di Maro, A.; Chambery, A.; Daniele, A.; Casoria, P.; Parente, A. Isolation and characterization of heterotepalins, type 1 ribosome-inactivating proteins from Phytolacca heterotepala leaves. Phytochemistry 2007, 68, 767–776. [Google Scholar] [CrossRef] [PubMed]
  419. Moon, Y.H.; Song, S.K.; Choi, K.W.; Lee, J.S. Expression of a cdna encoding Phytolacca insularis antiviral protein confers virus resistance on transgenic potato plants. Mol. Cells 1997, 7, 807–815. [Google Scholar] [PubMed]
  420. Song, S.K.; Choi, Y.; Moon, Y.H.; Kim, S.G.; Choi, Y.D.; Lee, J.S. Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid. Plant Mol. Biol. 2000, 43, 439–450. [Google Scholar] [CrossRef] [PubMed]
  421. Coleman, W.H.; Roberts, W.K. Inhibitors of animal cell-free protein synthesis from grains. Biochim. Biophys. Acta 1982, 696, 239–244. [Google Scholar] [CrossRef] [PubMed]
  422. Asano, K.; Svensson, B.; Poulsen, F.M. Isolation and characterization of inhibitors of animal cell-free protein synthesis from barley seeds. Carlsberg Res. Commun. 1984, 49, 619–626. [Google Scholar] [CrossRef]
  423. Endo, Y.; Tsurugi, K.; Ebert, R.F. The mechanism of action of barley toxin: A type 1 ribosome-inactivating protein with RNA N-glycosidase activity. Biochim. Biophys. Acta 1988, 954, 224–226. [Google Scholar] [CrossRef] [PubMed]
  424. Leah, R.; Tommerup, H.; Svendsen, I.; Mundy, J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 1991, 266, 1564–1573. [Google Scholar] [PubMed]
  425. Asano, K.; Svensson, B.; Poulsen, F.M.; Nygård, O.; Nilsson, L. Influence of a protein synthesis inhibitor from barley seeds upon different steps of animal cell-free protein synthesis. Carlsberg Res. Commun. 1986, 51, 75–81. [Google Scholar] [CrossRef]
  426. Chaudhry, B.; Muller-Uri, F.; Cameron-Mills, V.; Gough, S.; Simpson, D.; Skriver, K.; Mundy, J. The barley 60 kDa jasmonate-induced protein (jip60) is a novel ribosome-inactivating protein. Plant J. 1994, 6, 815–824. [Google Scholar] [CrossRef] [PubMed]
  427. Salehzadeh, A.; Arasteh, A.; Shafighi, T.; Ranjee, N. Isolation and sequencing of ribosome inactivating protein gene from iranian rice (Oryza sativa). Afr. J. Agric. Res. 2011, 6, 4941–4946. [Google Scholar]
  428. Minami, Y.; Yamaguchi, K.; Yagi, F.; Tadera, K.; Funatsu, G. Isolation and amino acid sequence of a protein-synthesis inhibitor from the seeds of rye (Secale cereale). Biosci. Biotechnol. Biochem. 1998, 62, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
  429. Stewart, T.S.; Hruby, D.E.; Sharma, O.K.; Roberts, W.K. An atp-dependent inhibition of protein synthesis in ascites cell extracts by wheat germ protein. Biochim. Biophys. Acta 1977, 479, 31–38. [Google Scholar] [CrossRef] [PubMed]
  430. Roberts, W.K.; Stewart, T.S. Purification and properties of a translation inhibitor from wheat germ. Biochemistry 1979, 18, 2615–2621. [Google Scholar] [CrossRef] [PubMed]
  431. Coleman, W.H.; Roberts, W.K. Factor requirements for the tritin inactivation of animal cell ribosomes. Biochim. Biophys. Acta 1981, 654, 57–66. [Google Scholar] [CrossRef] [PubMed]
  432. Reisbig, R.R.; Bruland, O. The protein synthesis inhibitors from wheat, barley, and rye have identical antigenic determinants. Biochem. Biophys. Res. Commun. 1983, 114, 190–196. [Google Scholar] [CrossRef] [PubMed]
  433. Massiah, A.J.; Hartley, M.R. Wheat ribosome-inactivating proteins: Seed and leaf forms with different specificities and cofactor requirements. Planta 1995, 197, 633–640. [Google Scholar] [CrossRef] [PubMed]
  434. Di Fonzo, N.; Manzocchi, L.; Salamini, F.; Soave, C. Purification and properties of an endospermic protein of maize associated with the opaque-2 and opaque-6 genes. Planta 1986, 167, 587–594. [Google Scholar] [CrossRef] [PubMed]
  435. Di Fonzo, N.; Hartings, H.; Brembilla, M.; Motto, M.; Soave, C.; Navarro, E.; Palau, J.; Rhode, W.; Salamini, F. The b-32 protein from maize endosperm, an albumin regulated by the o2 locus: Nucleic acid (cDNA) and amino acid sequences. Mol. Gen. Genet. 1988, 212, 481–487. [Google Scholar] [CrossRef] [PubMed]
  436. Bass, H.W.; OBrian, G.R.; Boston, R.S. Cloning and sequencing of a second ribosome-inactivating protein gene from maize (Zea mays L.). Plant Physiol. 1995, 107, 661–662. [Google Scholar] [CrossRef] [PubMed]
  437. Bass, H.W.; Krawetz, J.E.; OBrian, G.R.; Zinselmeier, C.; Habben, J.E.; Boston, R.S. Maize ribosome-inactivating proteins (rips) with distinct expression patterns have similar requirements for proenzyme activation. J. Exp. Bot. 2004, 55, 2219–2233. [Google Scholar] [CrossRef] [PubMed]
  438. Hey, T.D.; Hartley, M.; Walsh, T.A. Maize ribosome-inactivating protein (b-32). Homologs in related species, effects on maize ribosomes, and modulation of activity by pro-peptide deletions. Plant Physiol. 1995, 107, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
  439. Cammue, B.P.; Peeters, B.; Peumans, W.J. Isolation and partial characterization of an N-acetylgalactosamine-specific lectin from winter-aconite (Eranthis hyemalis) root tubers. Biochem. J. 1985, 227, 949–955. [Google Scholar] [PubMed]
  440. Kumar, M.A.; Timm, D.E.; Neet, K.E.; Owen, W.G.; Peumans, W.J.; Rao, A.G. Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein synthesis. J. Biol. Chem. 1993, 268, 25176–25183. [Google Scholar] [PubMed]
  441. Endo, Y.; Oka, T.; Tsurugi, K.; Franz, H. The mechanism of action of the cytotoxic lectin from Phoradendron californicum: The RNA N-glycosidase activity of the protein. FEBS Lett. 1989, 248, 115–118. [Google Scholar] [CrossRef] [PubMed]
  442. Mishra, V.; Sharma, R.S.; Yadav, S.; Babu, C.R.; Singh, T.P. Purification and characterization of four isoforms of himalayan mistletoe ribosome-inactivating protein from viscum album having unique sugar affinity. Arch. Biochem. Biophys. 2004, 423, 288–301. [Google Scholar] [CrossRef] [PubMed]
  443. Mishra, V.; Ethayathulla, A.S.; Sharma, R.S.; Yadav, S.; Krauspenhaar, R.; Betzel, C.; Babu, C.R.; Singh, T.P. Structure of a novel ribosome-inactivating protein from a hemi-parasitic plant inhabiting the northwestern himalayas. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2295–2304. [Google Scholar] [CrossRef] [PubMed]
  444. Mishra, V.; Bilgrami, S.; Sharma, R.S.; Kaur, P.; Yadav, S.; Krauspenhaar, R.; Betzel, C.; Voelter, W.; Babu, C.R.; Singh, T.P.; et al. Crystal structure of himalayan mistletoe ribosome-inactivating protein reveals the presence of a natural inhibitor and a new functionally active sugar-binding site. J. Biol. Chem. 2005, 280, 20712–20721. [Google Scholar] [CrossRef] [PubMed]
  445. Ziska, P.; Franz, H.; Kindt, A. The lectin from viscum album l. Purification by biospecific affinity chromatography. Experientia 1978, 34, 123–124. [Google Scholar] [CrossRef] [PubMed]
  446. Stirpe, F.; Legg, R.F.; Onyon, L.J.; Ziska, P.; Franz, H. Inhibition of protein synthesis by a toxic lectin from Viscum album L. (mistletoe). Biochem. J. 1980, 190, 843–845. [Google Scholar] [PubMed]
  447. Luther, P.; Theise, H.; Chatterjee, B.; Karduck, D.; Uhlenbruck, G. The lectin from Viscum album L.—Isolation, characterization, properties and structure. Int. J. Biochem. 1980, 11, 429–435. [Google Scholar] [CrossRef] [PubMed]
  448. Franz, H.; Ziska, P.; Kindt, A. Isolation and properties of three lectins from mistletoe (Viscum album L.). Biochem. J. 1981, 195, 481–484. [Google Scholar] [PubMed]
  449. Olsnes, S.; Stirpe, F.; Sandvig, K.; Pihl, A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J. Biol. Chem. 1982, 257, 13263–13270. [Google Scholar] [PubMed]
  450. Franz, H. Mistletoe lectins and their a and b chains. Oncology 1986, 43, 23–34. [Google Scholar] [CrossRef] [PubMed]
  451. Jung, M.L.; Baudino, S.; Ribereau-Gayon, G.; Beck, J.P. Characterization of cytotoxic proteins from mistletoe (Viscum album L.). Cancer Lett. 1990, 51, 103–108. [Google Scholar] [CrossRef] [PubMed]
  452. Sweeney, E.C.; Tonevitsky, A.G.; Palmer, R.A.; Niwa, H.; Pfueller, U.; Eck, J.; Lentzen, H.; Agapov, I.I.; Kirpichnikov, M.P. Mistletoe lectin i forms a double trefoil structure. FEBS Lett. 1998, 431, 367–370. [Google Scholar] [CrossRef] [PubMed]
  453. Eck, J.; Langer, M.; Mockel, B.; Baur, A.; Rothe, M.; Zinke, H.; Lentzen, H. Cloning of the mistletoe lectin gene and characterization of the recombinant a-chain. Eur. J. Biochem. 1999, 264, 775–784. [Google Scholar] [CrossRef] [PubMed]
  454. Yoon, T.J.; Yoo, Y.C.; Kang, T.B.; Shimazaki, K.; Song, S.K.; Lee, K.H.; Kim, S.H.; Park, C.H.; Azuma, I.; Kim, J.B.; et al. Lectins isolated from korean mistletoe (Viscum album coloratum) induce apoptosis in tumor cells. Cancer Lett. 1999, 136, 33–40. [Google Scholar] [CrossRef] [PubMed]
  455. Das, M.K.; Sharma, R.S.; Mishra, V. A cytotoxic type-2 ribosome inactivating protein (from leafless mistletoe) lacking sugar binding activity. Int. J. Biol. Macromol. 2011, 49, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
  456. Park, C.H.; Lee, D.W.; Kang, T.B.; Lee, K.H.; Yoon, T.J.; Kim, J.B.; Do, M.S.; Song, S.K. Cdna cloning and sequence analysis of the lectin genes of the korean mistletoe (Viscum album coloratum). Mol. Cells 2001, 12, 215–220. [Google Scholar] [PubMed]
  457. Kang, T.B.; Song, S.K.; Yoon, T.J.; Yoo, Y.C.; Lee, K.H.; Her, E.; Kim, J.B. Isolation and characterization of two korean mistletoe lectins. J. Biochem. Mol. Biol. 2007, 40, 959–965. [Google Scholar] [CrossRef] [PubMed]
  458. Park, W.B.; Han, S.K.; Lee, M.H.; Han, K.H. Isolation and characterization of lectins from stem and leaves of korean mistletoe (Viscum album var.Coloratum) by affinity chromatography. Arch. Pharm. Res. 1997, 20, 306–312. [Google Scholar] [CrossRef] [PubMed]
  459. Lyu, S.Y.; Park, S.M.; Choung, B.Y.; Park, W.B. Comparative study of korean (Viscum album var. Coloratum) and european mistletoes (viscum album). Arch. Pharm. Res. 2000, 23, 592–598. [Google Scholar] [CrossRef] [PubMed]
  460. Li, Y.; Jia, Y.; Zhang, Z.; Chen, X.; He, H.; Fang, R.; Hao, X. Purification and characterization of a new ribosome inactivating protein from cinchonaglycoside c-treated tobacco leaves. J. Integr. Plant Biol. 2007, 49, 1327–1333. [Google Scholar] [CrossRef]
  461. Sharma, N.; Park, S.W.; Vepachedu, R.; Barbieri, L.; Ciani, M.; Stirpe, F.; Savary, B.J.; Vivanco, J.M. Isolation and characterization of an rip (ribosome-inactivating protein)-like protein from tobacco with dual enzymatic activity. Plant Physiol. 2004, 134, 171–181. [Google Scholar] [CrossRef] [PubMed]
  462. Sismindari. Identification of ribosome-inactivating proteins (rips) from Phaleria macrocarpa (scheff) boerl., a possible active compound. Maj. Farm. Indones. 2004, 15, 44–49. [Google Scholar]
  463. Funatsu, G.; Islam, M.R.; Minami, Y.; Sung-Sil, K.; Kimura, M. Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991, 73, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
  464. Barbieri, L.; Valbonesi, P.; Bonora, E.; Gorini, P.; Bolognesi, A.; Stirpe, F. Polynucleotide: Adenosine glycosidase activity of ribosome-inactivating proteins: Effect on DNA, RNA and poly(a). Nucleic Acids Res. 1997, 25, 518–522. [Google Scholar] [CrossRef] [PubMed]
  465. Ferreras, J.M.; Merino, M.J.; Iglesias, R.; Munoz, R.; Girbés, T. Isolation of a ribosome-inactivating type 1 protein from seeds of cucumis melo. Biochem. Int. 1989, 19, 201–207. [Google Scholar]
  466. Rojo, M.A.; Arias, F.J.; Iglesias, R.; Ferreras, J.M.; Soriano, F.; Méndez, E.; Escarmis, C.; Girbés, T. Enzymic activity of melonin, a translational inhibitor present in dry seeds of Cucumis melo L. Plant Sci. 1994, 103, 127–134. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Schrot, J.; Weng, A.; Melzig, M.F. Ribosome-Inactivating and Related Proteins. Toxins 2015, 7, 1556-1615. https://0-doi-org.brum.beds.ac.uk/10.3390/toxins7051556

AMA Style

Schrot J, Weng A, Melzig MF. Ribosome-Inactivating and Related Proteins. Toxins. 2015; 7(5):1556-1615. https://0-doi-org.brum.beds.ac.uk/10.3390/toxins7051556

Chicago/Turabian Style

Schrot, Joachim, Alexander Weng, and Matthias F. Melzig. 2015. "Ribosome-Inactivating and Related Proteins" Toxins 7, no. 5: 1556-1615. https://0-doi-org.brum.beds.ac.uk/10.3390/toxins7051556

Article Metrics

Back to TopTop