
toxins

Communication

Quantitative Nuclear Magnetic Resonance
Spectroscopy Based on PULCON Methodology:
Application to Quantification of Invaluable Marine
Toxin, Okadaic Acid
Ryuichi Watanabe 1, Chika Sugai 2, Taichi Yamazaki 3, Ryoji Matsushima 1, Hajime Uchida 1,
Masahiro Matsumiya 2, Akiko Takatsu 3 and Toshiyuki Suzuki 1,*

1 National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama 236-8648, Japan;
rwatanabe@affrc.go.jp (R.W.); matsur@affrc.go.jp (R.M.); huchida@affrc.go.jp (H.U.)

2 Department of Marine Science and Resource, Nihon University, Kameino, Fujisawa 252-0880, Japan;
world_wide_love_0511@yahoo.co.jp (C.S.); matsumiya@brs.nihon-u.ac.jp (M.M.)

3 National Institute of Advanced Industrial Science and Technology, Tsukuba Chuo 3, 1-1-1 Umezono,
Tsukuba 305-8563, Japan; t-yamazaki@aist.go.jp (T.Y.); akiko-takatsu@aist.go.jp (A.T.)

* Correspondence: tsuzuki@affrc.go.jp; Tel.: +81-45-788-7630

Academic Editor: Luis M. Botana
Received: 27 July 2016; Accepted: 29 September 2016; Published: 13 October 2016

Abstract: ERETIC2 (Electronic Reference To access In vivo Concentrations 2) based on PULCON
(Pulse Length–based Concentration determination) methodology is a quantitative NMR (qNMR)
using an external standard. The performance of the PULCON method was assessed using maleic acid
(MA). Quantification of the diarrhetic shellfish toxin and okadaic acid by PULCON was successfully
consistent with that obtained by a conventional internal standard method, demonstrating that
the PULCON method is useful for the quantification of invaluable marine toxins without any
contaminations by an internal standard.
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1. Introduction

Diarrheic shellfish toxins (DSTs), okadaic acid (OA) [1] and its analogues, dinophysistoxins
(DTXs) [2], are lipophilic marine toxins produced by toxic dinoflagellates Prorocentrum lima [3] and
Dinophysis spp. [4]. DSTs may be accumulated in bivalves by filter-feeding the toxic dinoflagellates and
can cause diarrhea and vomiting in humans when bivalves contaminated with DSTs are consumed [5].
Recently, the mouse bioassay, the traditional official testing method for DSTs in bivalves, has been
replaced by LC/MS/MS [6] methodology in many countries, including Japan. Implementation of the
instrumental methods requires certified reference materials (CRMs) of OA and DTXs with a defined
concentration, purity and uncertainty.

NMR spectroscopy is a powerful analytical technique for structure elucidation of natural and
synthetic organic compounds. Recently 1H-NMR has also been applied as a quantitative analytical
technique as the NMR signal intensity is proportional to the number of nuclei under specific controlled
conditions [7,8]. Quantitative NMR (qNMR) gives accurate and precise quantitative results for analytes
when internal standards are used [9–11] since the concentration of analytes is directly determined via
the integral value ratio. Thanks to the generic nature of 1H-NMR and qNMR as a quantitative tool,
the technique has been used to determine purities of pharmaceutical products by assessing more than
two separated signals on the products. However, qNMR is intrinsically useful for the quantification of
analytes to prepare calibrant CRMs for instrumental analysis such as HPLC with UV, and fluorescence
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or mass spectrometric detection. The results obtained by the internal standard method are considered
to be higher in accuracy and precision than those obtained by the external standard method. However,
the use of internal standards results in the contamination of analytes which is a serious drawback in the
quantification of compounds with difficulties in availability to prepare CRMs of precious marine toxins.
Marine toxins, even though their molecules rarely exceed 1200 dalton in molecular mass, are complex
and difficult-to-synthesize molecules. Hence, they are often obtained using a culture of dinoflagellates
and painstaking isolation of the toxins which are secondary metabolites of these micro-organisms.
The external standard method for quantification of the purified toxin has the advantage of recovering
analytes without any contamination. Therefore, qNMR with external standards is more suitable to
prepare CRMs for marine toxins [12].

ERETIC2 [13] (Electronic Reference to access in vivo Concentrations 2) is a commercial name by
Bruker for the PULCON methodology (Pulse Length–based Concentration determination) [14], and it
is a relatively new external standard technique in qNMR. Because PULCON correlates the absolute
intensities in two one-dimensional (1D) NMR spectra by the principle of reciprocity [14], PULCON
is easily applied to all NMR spectrometers. Despite the usefulness of the PULCON method, only
a few studies on PULCON qNMR have been reported [15–18]. In our present study, the PULCON
method was assessed by using the CRM maleic acid (MA) as a model compound and applied to the
quantification (concentration determination) of OA to investigate our preparative scheme of CRM
OA. By comparison with the internal standard method, the PULCON technique was assessed for its
accuracy and its precision.

2. Results and Discussion

2.1. Performance Tests of PULCON Method with Different Analytical Conditions

The quantitation of MA dissolved in five different solvents, D2O, CD3OD, acetone-d6, DMSO-d6

and acetonitrile-d3, obtained by PULCON with a reference of MA (6.27 ppm) gave sufficient recoveries
(Table 1). Recoveries obtained with protic solvents (D2O, CD3OD) were quantitative in comparison
to those obtained by aprotic solvents, probably due to problems of solubility of MA rather than
accuracy of the PULCON method. The average recovery in five solvents was 98.9% (1.5% RSD),
suggesting that the PULCON technique allows for the quantification of analytes dissolved in different
solvents. Frank et al. [15] also demonstrated that quantification of various compounds dissolved in
a variety of solvents (acetonitrile-d3, methanol-d4, D2O, benzene-d6, D2O/DCl and DMSO-d6) using
a caffeine/D2O solution as an external standard was in accordance with the results obtained by
gravimetric method. Our results indicate that the PULCON technique enables the quantitation of
compounds dissolved in various solvents, even when the external standard is dissolved in different
solvents with samples.

Table 1. Effect of different deuterated solvents on NMR quantitation 1.

Solvents Recovery (%) RSD (%, n = 3)

D2O 100.3 0.0
CD3OD 100.3 0.3

Acetone-d6 97.9 0.0
DMSO-d6 98.1 0.2

Acetonitrile-d3 97.1 0.2
Average 98.9 -

Stdev 1.5 -
RSD (%) 1.5 -

1 0.55 mM maleic acid in CD3OD was used as reference. Sample was used 2.86 mM maleic acid (n = 3).
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The effect of receiver gain on NMR quantitation was determined. The parameter is used to match
the amplitude of the FID to the dynamic range of the digitizer [15]. The receiver gain (RG) values
between the external standard and analyte are considered to be different due to different analytical
conditions, including solvents or impurities of analytes. The MA reference (89.06 mM) was initially
measured at a value of 6.35 on the RG which was set automatically by the rga command and then the
analyte MA was measured at different RG values of 1, 6.35 and 10. The recoveries measured at RGs
of 1 and 6.35 were 100.3% and were higher than that obtained at 10 (97.4%). The low recovery obtained
at the RG value of 10 could be caused by the analogue-digital converter (ADC) overflow. Moreover,
we investigated the linearity of the receiver using 3.03 mM MA/CD3OD solution. Figure 1 shows
the relationship between the receiver gain and the integral. The integral area of MA was linear in the
range from RG: 1 to RG: 60; however, beyond a RG of 60 the integral area was lower than expected
due to ADC overflow, indicating that adequate values of RG must be used.
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Figure 1. Relationship between receiver gain value and integral.

In the case of analytes at low concentrations, quantification of the analytes has to be done by
increasing the number of scans. Therefore, the number of scans for the analyte would be different
from that for the external standard. Thus, the effect of the number of scans on NMR quantitation
was investigated (Table 2). NMR spectra of the reference solution (0.55 mM MA) were acquired over
64 scans, while the analyte in solution (3.69 mM MA/CD3OD) was measured at one, eight, 16, 32
and 64 scans, respectively. The recoveries in all experiments gave consistent results, despite largely
differing numbers of scans (100.7% and 101.4%).

Table 2. Effect of number of scans on NMR quantitation 1.

Number of Scans Recovery (%)

1 100.7
8 101.4

16 101.4
32 101.4
64 100.7

Average 101.1
Stdev 0.4

RSD (%) 0.4
1 0.55 mM maleic acid in CD3OD was used as reference.
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Table 3 shows the repeatability obtained for the analyte MA quantified by PULCON with a
reference MA. The analyte was measured on three subsequent days and calculated as a recovery
by using the PULCON method. Intra-day precision was 100.3% ± 0.3% (average ± S.D.), whereas
inter-day precision was 99.8% ± 0.6%. The average recovery through three subsequent days was
99.8% ± 0.4%, demonstrating an excellent repeatability.

Table 3. Repeatability (%) of maleic acid with intra-day and inter-day precision 1.

Samples Day 1 Day 2 Day 3 Average Stdev RSD (%)

1 99.7 100.3 99.5 99.8 0.4 0.4
2 99.5 100.5 99.5 99.8 0.6 0.6
3 99.7 100.0 99.2 99.6 0.4 0.4

Average 99.6 100.3 99.4 - - -
Stdev 0.2 0.3 0.2 - - -

RSD (%) 0.2 0.3 0.2 - - -
1 0.55 mM maleic acid in CD3OD was used as reference. Sample was used 3.69 mM maleic acid in CD3OD.

2.2. Relationship of MA Concentrations between Gravimetric and PULCON Method

MA/CD3OD solutions of 0.55, 0.92, 3.69, 9.22, 18.43 and 36.86 mM, respectively, were measured
and quantified by the PULCON method using 0.55 mM MA/CD3OD solution as an external standard.
The relationship between MA concentrations by gravimetric and PULCON methods was plotted
(Figure 2). The linear regression coefficient was 0.999 and the slope was 1.02, indicating that PULCON
gives good linearity and accuracy compared to the gravimetric method. Frank et al. [15] also showed
that the PULCON method gave a good linearity compared to gravimetry in the quantification of
benzoic acid, caffeine, and L-tyrosine.
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Figure 2. Linear regression of concentration of maleic acid determined by either gravimetric and
PULCON methods.

2.3. Comparison of OA Concentrations between PULCON Method and Internal Standard Method

OA was isolated from a large culture of the toxic dinoflagellate Prorocentrum lima by liquid-liquid
partitioning and several column chromatography steps [19]. The purity analysis of OA using NMR
demonstrated sufficient purities of more than 95%, with signals of impurities hardly being detectable
in the range from 0 to 8 ppm (Figure 3). The five well-separated signals at 5.78, 5.52, 5.36, 5.30
and 5.06 ppm corresponding to H-14, H-15, H-41, H-9 and H-41 of OA, respectively, were used for
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quantitation. A slight fluctuation of the baseline was noticed in the spectra after baseline correction;
this effect was detected in signal integration with both methods (Table 4). In addition, signal 1 gave
lower concentration values compared to the other signals, which is possibly related to conformational
disorder in the OA skeleton [20]. Therefore, signal 1 was excluded from calculations for quantitation.
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Figure 3. Chemical structure and 1H-NMR spectrum of okadaic acid dissolved in CD3OD (800 MHz).

Table 4. Quantitation results obtained by internal standard method and PULCON.

Method Tube Signal Integral
Region

Quantitation (µg/g)
Average Stdev RSD

(%)Run1 Run2 Run3

Internal
standard
method

1

1 5.85–5.72 344.30 344.08 340.38 342.92 2.20 0.64

2 5.57–5.49 346.23 345.58 344.36 345.39 0.95 0.28

3 5.38–5.25 345.44 349.27 354.62 349.78 4.61 1.32

4 5.09–5.03 367.78 332.26 345.23 348.42 17.98 5.16

2

1 5.85–5.72 346.39 344.29 349.36 346.68 2.55 0.74

2 5.57–5.49 362.29 360.85 357.01 360.05 2.73 0.76

3 5.38–5.25 365.55 361.48 355.51 360.85 5.05 1.40

4 5.09–5.03 361.77 355.68 355.76 357.74 3.49 0.98

PULCON

1

1 5.86–5.72 344.81 333.91 340.59 339.77 5.50 1.62

2 5.58–5.48 359.29 355.49 355.08 356.62 2.32 0.65

3 5.41–5.24 363.20 360.73 338.95 354.29 13.34 3.77

4 5.10–5.01 371.00 363.92 364.74 366.55 3.87 1.06

2

1 5.86–5.72 339.47 351.09 342.76 344.44 5.99 1.74

2 5.58–5.48 351.92 360.04 357.88 356.61 4.21 1.18

3 5.41–5.24 353.67 359.63 342.35 351.88 8.78 2.49

4 5.10–5.01 359.73 365.08 366.31 363.71 3.50 0.96
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Generally, the internal standard method gives higher precision and accuracy than the external
standard method. Therefore, the precision and accuracy of PULCON were compared with those
of the internal standard method. Each method was performed in duplicate. In both methods,
the concentrations obtained in those signals were averaged in each tube and then the average
concentration in each tube was averaged. The OA concentration (average ± S.D.) was calculated by
the internal standard with 1,4-BTMSB-d4 gave 352.8 ± 7.5 µg/g. On the other hand, the concentration
quantified by PULCON gave 355.4 ± 0.1 µg/g, corresponding to 100.7% of the values obtained
by the internal standard method (Table 4). OA is a lipophilic polyether compound with a medium
molecular size of MW 804.5 in lipophilic marine toxins. Because quantification of OA by PULCON with
1,4-BTMSB-d4 external standard gave a relevant result, PULCON can be useful for several lipophilic
polyether marine toxins with availability difficulties.

3. Conclusions

We conducted performance tests of the PULCON method using CRM MA as a model compound.
The PULCON method gave quantitative results for MA with an external standard prepared in various
solvents (acetonitrile-d3, methanol-d4, D2O, acetone-d6, and DMSO-d6). It was noticed that adequate
values of the receiver gain must be used to obtain quantitative results with the PULCON method.
The PULCON method showed good linearity and repeatability in the quantification of MA. It was
demonstrated that the PULCON method was also applicable to the quantification of OA as a diarrhetic
shellfish toxin without any contaminations by an internal standard.

4. Materials and Methods

4.1. Reagents and Chemicals

Maleic acid (TraceCERT grade, Lot: BCBG2002V, 99.99% ± 0.09%, k = 2) was purchased from
Fluka (Tokyo, Japan). Traceable reference material of 1,4-bis (trimethylsilyl) benzene-d4 (1,4-BTMSB-d4,
Lot:KPQ4815, 99.9% ± 0.5%, k = 2, TraceSure grade) were purchased from Wako pure chemicals
(Tokyo, Japan). Deuterated solvents; D2O 99.96 atom%D (Aldrich, Tokyo, Japan), CD3OD 99.8
atom%D (Wako pure chemicals, Tokyo, Japan), CD3OD 100.0 atom%D (Acros organics, Yokohama,
Japan), acetone-d6 99.9 atom%D (Aldrich), DMSO-d6 99.9 atom%D and acetonitrile-d3 99.8 atom%D
(Cambridge Isotope Laboratories, Tokyo, Japan) were used. NMR tubes used in the study were
standard NMR tube with 5 mm i.d. (Kusano Science Corp., Tokyo, Japan). OA was purified and
isolated by liquid-liquid partitioning and several column chromatography steps from a large culture
of toxic dinoflagellate Prorocentrum lima [19].

4.2. NMR Instrument, Data Acquisition and Data Processing on Performance Tests

All NMR spectra were acquired by a Bruker AVANCE III spectrometer (1H: 800 MHz)
with a cryogenic probe (CPTCI 5 mm 1H/19F-13C/15N/D Z-GRD) using standard NMR tubes at 298 K.
The data acquisition and data processing were performed using the Topspin 3.0 software
(Bruker, Kanagawa, Japan). Prior to the data acquisition, the 90◦ pulse length was calibrated. Sample
was well-tuned and matched automatically. The acquisition parameters used for performance tests
were set as follows; Pulse sequence: ‘zg’, relaxation delay (D1): 30 s, spectral width (SW): 20 ppm, data
acquisition time (AQ): 3 s, flip angle (P1): 90◦ (ca. 9.0 µs), dummy scans (DS): 8, number of scans (NS):
64, DigMod: Baseopt, spinning: OFF. Relaxation delay time of 30 s was sufficient, which is more than
10 times T1 (1.47 s) of MA. Receiver gain (RG) was automatically set by Topspin 3.0 software (RG: 4).
In particular, pulse calibration was performed as follows: 360◦ pulse was at first roughly calculated
in 0.5 µs interval within 10 µs (e.g., 30–40 µs) and then the accurate 360◦ pulse was calculated in
0.03 µs interval within 1 µs. the other parameters; D1: 30 s, SW: 20 ppm, AQ: 2 s, DS: 0, NS: 1. The
obtained NMR spectra were processed by multiplying with exponential (0.3 Hz line broadening) and
zero-filling. The phases were corrected manually, and then the baseline was corrected by fifth-order
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polynomial. Peak integration was manually selected. The slope and bias corrections of the integral
were not used. The concentration of analyte was quantified by using PULCON method in Topspin 3.0
software. Individual integral values, concentration and the number of protons in the signal used for
quantitation in the reference were entered to PULCON software and then the concentration of signal
in sample was automatically calculated.

4.3. Sample Preparation for Performance Tests of PULCON Method

MA of 31.75 mg was precisely weighed using electronic force balance XS205 (0.01 mg precision,
Mettler Toledo, Tokyo, Japan), and then was mixed with 20 mL of methanol (5000-fold concentrated,
Kanto chem., Tokyo, Japan) using a 20 mL volumetric flask (20 ± 0.03 mL at 20 ◦C, SHIBATA,
Tokyo, Japan). Aliquots (20 µL) of the MA solutions were put into 2 mL glass vials by using
gas-tight glass syringe and then dried up using nitrogen gas. The dried MA was dissolved in 500 µL
deuterated solvents (CD3OD) using 0.5 mL gas-tight glass syringe and then transferred into NMR
tubes. This solution of 0.547 mM was used as reference.

Subsequently, to assess the effect of different solvents on quantitation, MA solutions were prepared
as follows: MA of 33.21 mg was precisely weighed using electronic force balance XS205 and then was
dissolved in 20 mL of methanol using a 20 mL volumetric flask. Aliquots (100 µL) of the MA solution
were divided in each 2 mL glass vial by using 100 µL gas-tight glass syringes, and then were dried up
using nitrogen gas. The dried MAs were dissolved in 500 µL of deuterated solvents (D2O, CD3OD,
acetone-d6, DMSO-d6 and acetonitrile-d3) using 0.5 mL gas-tight glass syringe and then transferred
into NMR tubes.

Furthermore, MA solutions for performance tests were prepared as follows. MA of 42.81 mg was
precisely weighed using electronic force balance XS205 and then was dissolved in 20 mL of methanol
using a 20 mL volumetric flask. Aliquots (1000, 500, 250, 100, 25 µL) of the MA solution were divided
in each 2 mL glass vial by using gas-tight glass syringes, and then were dried up using nitrogen gas.
The dried MAs were dissolved in 500 µL of CD3OD using 0.5 mL gas-tight glass syringe and then
transferred into NMR tubes.

4.4. Comparison of OA Concentrations between PULCON Method and Internal Standard Method

Sample preparation for internal standard method was performed as follows. One milliliter of OA
solution (ca. 300 µg/mL) was weighed precisely using XS205 electronic force balance and a gas-tight
syringe, and then dried up by nitrogen gas for over 72 h. The dried OA was dissolved in 1 mL of
1,4-BTMSB-d4/CD3OD solution at a final concentration of 1.000 mg/g, 0.8 mL of which was transferred
into an NMR tube. The test was performed twice. The NMR spectra were acquired by an 800 MHz
Avance III spectrometer on the following acquisition parameters. Pulse sequence: ‘zgig’, D1: 60 s, SW:
40 ppm, AQ: 6 s, P1: 90◦ (ca. 9.0 µs), DS: 16, NS: 512, 13C decoupling: ON (90 ppm offset), temperature:
298 K, spinning: OFF. T1 for signals 1 to 4 of OA was 0.62, 1.26, 0.57 and 1.15, and 0.67 s, respectively.
The relaxation delay time of 60 s was sufficient because it is over 10 times T1 of OA signals. As the
baseline obtained was fluctuated, the baseline was manually corrected using the .baslpts command.
Peak integrals were manually selected. The slope and bias corrections of the integral were not used.
The OA concentration was calculated from integral ratio of an internal standard signal vs. olefinic
signals in OA. The concentration obtained of each signal was averaged in each tube and then the data
repeatedly acquired were averaged.

Sample preparation for PULCON method was performed as follows. OA solution was prepared
according to the internal standard method. On the other hand, 1,4-BTMSB-d4 solution as an external
standard was prepared at a final concentration of 1.000 mg/mL CD3OD (6.4579 mM), 0.8 mL of which
was transferred into an NMR tube. The test was performed twice. The basic data acquisition and data
processing parameters were the same as the above internal standard method. As the baseline obtained
was fluctuated, the baseline was manually corrected using the .baslpts command. However pulse
sequence used was ‘zg’, and 13C decoupling was off to avoid sample heating as it was observed in
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internal standard method preceding performed. OA concentration was calculated from integral values,
concentration and the number of protons in 1,4-BTMSB-d4 by using PULCON method in Topspin
3.0 software. The concentration obtained of each signal was averaged in each tube and then the data
repeatedly acquired were averaged. In the experiments, 1,4-BTMSB-d4 was used as internal standards
because MA was possible to overlap by being shifted the olefinic signals (especially signal 1) of OA
depending on concentration [20].
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