Supplementary Material: Novel Aflatoxin-Degrading Enzyme from Bacillus shackletonii L7

Liang Xu, Mohamed Farah Eisa Ahmed, Lancine Sangare, Yueju Zhao, Jonathan Nimal Selvaraj, Fuguo Xing, Yan Wang, Hongping Yang and Yang Liu

Table S1. AFB_{1} degradation by individual microbial isolates selected using coumarin medium.

No	Isolates ${ }^{\text {a }}$	Source of Samples	Percentage of Degradation (\%) ${ }^{\text {b }}$
1	Stenotrophomonas maltophilia 97-D-5	Soil from Dongping, Taian	88.5
2	Stenotrophomonas sp. E-D-1	Soil from Dongping, Taian	86.4
3	Stenotrophomonas maltophilia 97-D-3	Soil from Dongping, Taian	85.0
4	Pseudomonas aeruginosa N17-1	Soil from Changping, Beijing	82.8
5	Stenotrophomonas sp. 97-D-1	Soil from Dongping, Taian	80.2
6	Arthrobacter sp. L15	Soil from Qiandou, Jilin	78.3
7	Flavobacteriaceae sp. 14	Soil from Quyang, Shanxi	74.1
8	Pseudomonas aeruginosa F26-1	Soil from Changping, Beijing	73.3
9	Bacillus shackletonii L7	Soil from Tangshan, Hebei	71.7
10	F26-2	Soil from Changping, Beijing	69.0
11	NS7	Maize from Yancheng, Jiangsu	65.4
12	NS3	Rice from Chaoyang, Beijing	65.4
13	19-A	Soil from Guangzhou, Guangdong	65.2
14	F18-1	Soil from Chaoyang, Beijing	56.1
15	NS10	Maize from Zhuozhou, Hebei	56.0
16	NS6	Maize from Changzhi, Shanxi	52.6
17	F24-C	Soil from Changping, Beijing	52.5
18	F24-1	Soil from Changping, Beijing	52.4
19	NS8	Maize from Baoji, Shannxi	45.5
20	NS9	Maize from Yancheng, Jiangsu	41.4
21	30	Soil from Shaoguan, Guangdong	39.3
22	F25	Soil from Changping, Beijing	38.4
23	NS1	Rice from Changping, Beijing	33.4
24	18	Soil from Fuyang, Anhui	30.3
25	NSL 25	Rice from Huaian, Jiangsu	30.0
26	16	Soil from Shantou, Guangdong	24.8
27	29-D-1	Soil from Quyang, Shanxi	22.7
28	20	Soil from Shaoguan, Guangdong	21.9
29	NSL24	Rice from Huaian, Jiangsu	21.8
30	M77	Maize from Suzhou, Anhui	21.4
31	M30	Maize from Suzhou, Anhui	19.5
32	NS2	Rice from Changping, Beijing	16.4
33	25-C	Soil from Shaoguan, Guangdong	16.0
34	25-B	Soil from Shaoguan, Guangdong	15.0
35	G-B	Soil from Shantou, Guangdong	15.8
36	NSL23	Rice from Yangzhou, Jiangsu	15.2
37	M15	Maize from Suzhou, Anhui	13.8
38	25-C-3	Soil from Fuyu, Jilin	13.1
39	25-C-2	Soil from Fuyu, Jilin	12.9
40	E-D	Soil from Guangzhou, Guangdong	12.7
41	11-B	Soil from Dianbai, Guangdong	11.6
42	F4-1	Soil from Changping, Beijing	11.0
43	M60	Maize from Yancheng, Jiangsu	10.8

${ }^{\text {a }}$ Individual microbial isolates grown on medium with coumarin as the sole carbon source; ${ }^{\text {b }}$ The detoxification tests were conducted in the dark at $37^{\circ} \mathrm{C}$ for 72 h . The percentage of AFB_{1} degradation was calculated using the following formula: ($1-\mathrm{AFB}_{1}$ peak area in treatment/AFB ${ }_{1}$ peak area in control) $\times 100 \%$.

Table S2. Characteristics of strain L7.

Item Result ${ }^{\text {a }}$		Item Result		Item Result	Item Result		
Morphological Characteristic:							
Cell shape rod-shap		Gram stain	+				
Physiological and Biochemical Characteristic:							
Oxidase activity	-	Arginine double hydrolase	-	Hydrolysis of gelatin		Hydrolysis of amylum	-
Catalase activity	+	Hydrolysis of butyrin	-	Nitrate reduction	-	Bile Esculin Test	+
Hydrolysis of casein	+	Hydrolysis of Tween 80	-	Production of Indole	-	Urease	-
Utilization of citrate	+	Production of $\mathrm{H}_{2} \mathrm{~S}$	-	VP test	-	$5 \% \mathrm{NaCl}$	+
Anaerobic growth	-	$50^{\circ} \mathrm{C}$	+	$55^{\circ} \mathrm{C}$	+	pH 9.0	+
Acid from:							
Glycerin	-	Erythritol	-	D-Arabinose		L-Arabinose	-
D-Ribose	+	D-Xylose	+	L-Xylose	-	Adonitol	-
β-Methy-D-Xyloside	-	D-Galactose	+	D-Glucose	+	D-Fructose	+
D-Mannose	+	L-Sorbose	-	L-Rhamnose	-	Dulcitol	-
Inositol	-	Mannitol	+	α-Methyl-D-Glucoside		N-Acetyl glucosamine	+
Sorbitol	-	α-Methyl-D-Mannopyranoside	-	Amygdalin	+	Arbutin	+
Aesculin	+	Salicin	+	D-(+)-Cellobiose	+	D-Maltose	+
D-Lactose	+	D-(+)-Melibiose	-	D-Sucrose	+	D-Trehalose	+
Inulin	-	D-Melezitose	-	D-Raffinose	-	Amylum	-
Glycogen	-	Xylitol	-	D-Lyxose	-	D-Fucose	-
L-Fucose	-	D-Arabitol	-	L-Arabitol	-	Potassium gluconate	-
2-Keto-D-Gluconate	-	5-Keto-D-Gluconate	-				

a "+" means positive response; "-" means negative response.

