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Abstract: Talaromyces marneffei is a thermally dimorphic fungus causing systemic infections in
patients positive for HIV or other immunocompromised statuses. Analysis of its ~28.9 Mb draft
genome and additional transcriptomic, proteomic and metabolomic studies revealed mechanisms
for environmental adaptations and virulence. Meiotic genes and genes for pheromone receptors,
enzymes which process pheromones, and proteins involved in pheromone response pathway are
present, indicating its possibility as a heterothallic fungus. Among the 14 Mp1p homologs, only Mp1p
is a virulence factor binding a variety of host proteins, fatty acids and lipids. There are 23 polyketide
synthase genes, one for melanin and two for mitorubrinic acid/mitorubrinol biosynthesis, which are
virulence factors. Another polyketide synthase is for biogenesis of the diffusible red pigment, which
consists of amino acid conjugates of monascorubin and rubropunctatin. Novel microRNA-like RNAs
(milRNAs) and processing proteins are present. The dicer protein, dcl-2, is required for biogenesis
of two milRNAs, PM-milR-M1 and PM-milR-M2, which are more highly expressed in hyphal cells.
Comparative transcriptomics showed that tandem repeat-containing genes were overexpressed in
yeast phase, generating protein polymorphism among cells, evading host’s immunity. Comparative
proteomics between yeast and hyphal cells revealed that glyceraldehyde-3-phosphate dehydrogenase,
up-regulated in hyphal cells, is an adhesion factor for conidial attachment.
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1. Introduction

Talaromyces marneffei (Segretain et al.) Samson et al. is a thermally dimorphic fungus. This fungus
exhibits yeast-like morphology at 37 ◦C, while, at 25 ◦C, it grows as a mold that produces a characteristic
diffusible red pigment (Figure 1). T. marneffei was for the first time isolated from Rhizomys sinensis
(Chinese bamboo rats) in 1955 [1], initially as Penicillium marneffei. Subsequently, this fungus was
also recovered from other bamboo rat species belonging to the Rhizomyinae Subfamily, such as
Rhizomys pruinosus (hoary bamboo rats), Rhizomys sumatrensis (large bamboo rats), and Cannomys badius
(lesser bay bamboo rats) [2–4]. In 2011, based on molecular data, which included the RNA polymerase
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II largest subunit gene (rpb1) sequence and internal transcribed spacer (ITS) region sequence, the fungus
was reclassified under the genus Talaromyces [5].
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Figure 1. Thermal dimorphism of Talaromyces marneffei: (A) at 25 °C, T. marneffei grows as a mold that 
produces greenish-yellow to yellow conidia and secretes a characteristic diffusible red pigment; (B) 
microscopically, hyphae are twisted; (C) conidiophores are mostly biverticillate (arrow) and resemble 
those of Penicillium species, while conidia are globose to sub-globose and are generated from 
phialides; (D) at 37 °C, T. marenffei grows as a yeast with a cerebriform colony appearance and no 
diffusible red pigment is produced; and (E) yeast cells are divided by budding. Microscopic slides 
were prepared using the stains (B,C) lactophenol cotton blue or (E) calcofluor white with 5% 
potassium hydroxide and observed using the Eclipse Ni-U upright microscope system (Nikon, Tokyo, 
Japan).  

T. marneffei is endemic in Southeast Asia, and most patients with T. marneffei infections either are 
residing in or have travel histories to Southeast Asia [6]. The fungus is believed to be taken up 
through inhalation of fungal spores [7]. It infects mainly cells of the reticuloendothelial system [8]. 
Patients with T. marneffei infections are mostly immunocompromised. Traditionally, it mainly infects 
HIV-positive patients and it is an important AIDS-defining condition for patients in Southeast Asia 
[6]. Recently, due to advancement in both technologies in diagnosing various primary 
immunodeficiency states and medications which result in generation of more secondary 
immunodeficiency conditions, T. marneffei is found to be causing infections in other groups of 
patients, such as those with antibodies against interferon gamma and patients receiving monoclonal 
anti-CD20 antibodies or inhibitors to kinases [9]. Occasionally, T. marneffei infection is also observed 
in patients with other immunocompromised conditions, such as systemic lupus erythematosus, bone 
marrow and solid organ transplant recipients, various malignancies, T-lymphocyte-depleting 
immunsuppressive drugs recipients, etc. [10].  

In 2011, we generated the draft genome of an isolate of T. marneffei (PM1) recovered from a 
patient in Hong Kong [11]. In the past six years, using the draft genome sequence as well as 
performing aedditional transcriptomic, proteomic and metabolomic studies, we analyzed the various 

Figure 1. Thermal dimorphism of Talaromyces marneffei: (A) at 25 ◦C, T. marneffei grows as a mold
that produces greenish-yellow to yellow conidia and secretes a characteristic diffusible red pigment;
(B) microscopically, hyphae are twisted; (C) conidiophores are mostly biverticillate (arrow) and
resemble those of Penicillium species, while conidia are globose to sub-globose and are generated
from phialides; (D) at 37 ◦C, T. marenffei grows as a yeast with a cerebriform colony appearance and
no diffusible red pigment is produced; and (E) yeast cells are divided by budding. Microscopic slides
were prepared using the stains (B,C) lactophenol cotton blue or (E) calcofluor white with 5% potassium
hydroxide and observed using the Eclipse Ni-U upright microscope system (Nikon, Tokyo, Japan).

T. marneffei is endemic in Southeast Asia, and most patients with T. marneffei infections either are
residing in or have travel histories to Southeast Asia [6]. The fungus is believed to be taken up through
inhalation of fungal spores [7]. It infects mainly cells of the reticuloendothelial system [8]. Patients with
T. marneffei infections are mostly immunocompromised. Traditionally, it mainly infects HIV-positive
patients and it is an important AIDS-defining condition for patients in Southeast Asia [6]. Recently,
due to advancement in both technologies in diagnosing various primary immunodeficiency states and
medications which result in generation of more secondary immunodeficiency conditions, T. marneffei
is found to be causing infections in other groups of patients, such as those with antibodies against
interferon gamma and patients receiving monoclonal anti-CD20 antibodies or inhibitors to kinases [9].
Occasionally, T. marneffei infection is also observed in patients with other immunocompromised
conditions, such as systemic lupus erythematosus, bone marrow and solid organ transplant recipients,
various malignancies, T-lymphocyte-depleting immunsuppressive drugs recipients, etc. [10].

In 2011, we generated the draft genome of an isolate of T. marneffei (PM1) recovered from
a patient in Hong Kong [11]. In the past six years, using the draft genome sequence as well as
performing aedditional transcriptomic, proteomic and metabolomic studies, we analyzed the various
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characteristics of this fungus. In this article, we review the potential mechanisms for environmental
adaptations and virulence based on these studies.

2. Mitochondrial Genome and Phylogeny

Since T. marneffei exhibits a thermally dimorphic mode of growth, a first and foremost question that
one will ask is whether it is phylogenetically more related to molds or yeasts. Based on phylogenetic
analysis of all the coding sequences within the complete fungal mitogenomes, T. marneffei is found
to be most closely related to other molds such as Talaromyces, Penicillium, and Aspergillus species
(Figure 2A) [12]. When other DNA markers, including the ITS region and RNA polymerase II second
largest subunit gene (rpb2), were used for analyzing the phylogeny of T. marneffei, results were found
to be in line with those obtained using the mitochondrial genomes for analysis (Figure 2B).
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Figure 2. Phylogeny of Talaromyces marneffei. (A) Phylogenetic tree showing the relationship of 
Talaromyces marneffei with other molds and yeasts, inferred from all the coding sequences within the 
complete mitogenomes of the organisms by the neighbor-joining method using CVTree version 2 [13]. 
(B) Phylogenetic trees showing the relationship of T. marneffei with other molds and yeasts, inferred 
from the: (i) internal transcribed spacer (ITS) region; and (ii) RNA polymerase II second largest 
subunit gene (rpb2) sequence data by the maximum likelihood method with the substitution models: 
(i) Kimura 2-parameter (K2) with gamma-distributed rate variation (+G); and (ii) Tamura 3-parameter 
(T92) + G utilizing using MEGA 6.0.6 [14]. The scale bar indicates the estimated number of 
substitutions per base. T. marneffei is highlighted in bold and red color. All names and accession 
numbers are given as cited in the International Nucleotide Sequence Databases. For (B), numbers at 
nodes (expressed in percentage) indicate levels of bootstrap support calculated from 1000 replicates, 
and values lower than 60 are not shown. 

Figure 2. Phylogeny of Talaromyces marneffei. (A) Phylogenetic tree showing the relationship of
Talaromyces marneffei with other molds and yeasts, inferred from all the coding sequences within the
complete mitogenomes of the organisms by the neighbor-joining method using CVTree version 2 [13].
(B) Phylogenetic trees showing the relationship of T. marneffei with other molds and yeasts, inferred
from the: (i) internal transcribed spacer (ITS) region; and (ii) RNA polymerase II second largest subunit
gene (rpb2) sequence data by the maximum likelihood method with the substitution models: (i) Kimura
2-parameter (K2) with gamma-distributed rate variation (+G); and (ii) Tamura 3-parameter (T92) + G
utilizing using MEGA 6.0.6 [14]. The scale bar indicates the estimated number of substitutions per
base. T. marneffei is highlighted in bold and red color. All names and accession numbers are given as
cited in the International Nucleotide Sequence Databases. For (B), numbers at nodes (expressed in
percentage) indicate levels of bootstrap support calculated from 1000 replicates, and values lower than
60 are not shown.
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3. Sexual Stage

Traditionally, T. marneffei was believed to be an “asexual” fungus. In 2005, a report described
T. marneffei as the potentially “most asexual fungus yet found” based on the fact that genetic diversity
of T. marneffei was found to be generated principally due to mutation rather than recombination,
leading to clonality with a highly significant linkage disequilibrium [15]. However, in our analysis of
the T. marneffei PM1 genome, we found that all the genes involved in meiosis, except HOP1, as well
as genes for pheromone receptors, enzymes which process pheromones, and proteins involved in
pheromone response pathway in Aspergillus nidulans and A. fumigatus were present in the genome
of T. marneffei PM1 [16]. Moreover, a putative MAT-1 α box mating-type gene was also found and
a putative MAT-2 high-mobility group mating-type gene could be amplified from T. marneffei strains
negative for MAT-1 α box mating-type gene [16]. In addition, further experiments revealed that among
37 T. marneffei strains isolated from patients in Hong Kong, MAT-1 α box and MAT-2 high-mobility
group mating-type genes could be respectively detected in 23 and 14 of the strains [16]. Based on
these results, we concluded that T. marneffei is probably a heterothallic fungus that does not change
mating type.

4. MP1 and Its Homologs

In 1998, the MP1 gene was cloned and the Mp1p encoded by it was found to be a cell wall
associated as well as secreted antigenic mannoprotein [17]. Subsequently, Mp1p as well as its homologs
in A. fumigatus and A. flavus were found to be useful for serological diagnosis of T. marneffei (Figure 3)
and the corresponding Aspergillus infections in patients [18–21]. In the T. marneffei PM1 genome,
13 additional Mp1p homologs were observed [17,22]. In contrast to Mp1p which possesses two lipid
binding domains, these 13 homologs only have one lipid binding domain [22].

5. Virulence Properties

In our recent study, Mp1p was confirmed to be an important virulence factor of T. marneffei using
a mouse model [22]. Specifically, all the balb/c mice died when they were injected with wild-type
T. marneffei PM1, but none of the experimental mice died when challenged with MP1 knock-out mutant
(Figure 3). Notably, in contrast to Mp1p, all the other Mp1p homologs were not virulence factors as
demonstrated by the same mouse model [22]. The virulence property of Mp1p is mediated through
evading the host defense by enhancing its survival in host macrophages [22] (Figure 3). However,
the exact molecular mechanism of Mp1p is still unknown. Although Mp1p was observed to be able to
bind palmitic acid [23] and arachidonic acid [24] (Figure 3), its relationship to virulence was not shown
in site-directed mutagenesis experiments. Moreover, our recent experiments revealed that in addition
to these fatty acids, Mp1p is also able to bind a number of host proteins and phospholipids [25]
(Figure 3), indicating that the molecular mechanism for its virulence property is probably more
complicated than we thought.
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Figure 3. Virulence properties of the Talaromyces marneffei mannoprotein Mp1p. Mp1p is a cell wall 
protein and it could also be secreted out to the environment. It is highly antigenic and the detection 
of specific antibodies in patients’ sera against Mp1p constitutes one of the serological diagnostic 
methods for talaromycosis (penicilliosis). Mp1p also enhances the survival of the fungus inside 
macrophages, but how this protein mediates the evasion of host’s defense is not yet known. In 
addition, Mp1p is able to bind a variety of host factors, including proteins, fatty acids (such as 
arachidonic acid and palmitic acid), phospholipids, and sphingolipids. Wild-type T. marneffei is lethal 
to mice experimentally challenged with the fungus. However, when MP1-knock-out strain (ΔMP1) 
was used to infect experimental mice, none of the mice were killed. Moreover, when the MP1 gene 
was transformed into an avirulent strain of Pichia pastoris, the expression of Mp1p in P. pastoris 
conferred the transformed fungus an improved survival rate inside experimental mice. 

Figure 3. Virulence properties of the Talaromyces marneffei mannoprotein Mp1p. Mp1p is a cell wall
protein and it could also be secreted out to the environment. It is highly antigenic and the detection
of specific antibodies in patients’ sera against Mp1p constitutes one of the serological diagnostic
methods for talaromycosis (penicilliosis). Mp1p also enhances the survival of the fungus inside
macrophages, but how this protein mediates the evasion of host’s defense is not yet known. In addition,
Mp1p is able to bind a variety of host factors, including proteins, fatty acids (such as arachidonic
acid and palmitic acid), phospholipids, and sphingolipids. Wild-type T. marneffei is lethal to mice
experimentally challenged with the fungus. However, when MP1-knock-out strain (∆MP1) was used to
infect experimental mice, none of the mice were killed. Moreover, when the MP1 gene was transformed
into an avirulent strain of Pichia pastoris, the expression of Mp1p in P. pastoris conferred the transformed
fungus an improved survival rate inside experimental mice.
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6. Multilocus Sequence Typing

Since its first use in the late 1990s [26], multilocus sequence typing (MLST) is the state-of-the-art
molecular typing method for bacteria. MLST involves PCR amplification and sequencing
5–7 housekeeping genes and the nucleotide sequences of the genes are used to determine the sequence
type of the bacterial strain. For T. marneffei, when a set of housekeeping genes were sequenced
for a number of strains, it was observed that all the sequences were identical in all the T. marneffei
strains [27]. Therefore, the more lineage-specific MP1 gene and its homologs were sequenced for
a number of strains. Results showed that the sequences for five genes, including MP1, MPLP4, MPLP7,
MPLP10, and MPLP13, particularly MP1, were variable; and therefore were used for constructing
an MLST scheme for T. marneffei [27]. After sequencing these five loci in 44 T. marneffei strains
recovered from patients in Hong Kong, this scheme was found to be exceedingly discriminatory,
with a discriminatory power of 0.9884 [27]. However, the sequence types of the T. marneffei were
found to be not related to the epidemiological parameters, such as age, sex, and HIV status of the
patients [27].

7. Polyketide Synthases and Pigments

Polyketides are a diverse group of microorganism-produced secondary metabolites. Although
non-essential, these metabolites include compounds (e.g., pigments, antibiotics, and mycotoxins) that
provide survival advantages to the microbes. Polyketides are synthesized by polyketide synthases
(PKS) which together constitute complex enzymatic systems. The T. marneffei PM1 genome contains
23 putative PKS genes and two putative PKS-non-ribosomal peptide synthase hybrid genes [11].
This diversity of intra-host PKS and PKS-related genes is much higher when compared with other
pathogenic thermally dimorphic fungi, such as Coccidioides immitis and Histoplasma capsulatum, which
only possess ten and one putative PKS genes, respectively [28]. Phylogenetic analysis revealed that
these T. marneffei PKS genes were evenly distributed among the PKS genes of other fungi in the
phylogenetic tree [29]. This suggested that such a huge PKS gene diversity in T. marneffei was not due
to lineage-specific gene expansion through recent gene duplication [29].

Among these 23 PKS genes in the T. marneffei genome, the functions and their products of four
were characterized. When the 23 PKS genes were knocked-down one by one, it was observed that the
black pigment in the conidia was lost in one [30], the diffusible red pigment in the mycelial form was
lost in another [31], and the yellow pigment in the mycelial form was lost in two other clones [28].
The black pigment is melanin and is a virulence factor mediated through resistance to hydrogen
peroxide killing [30]. The yellow pigment consists of mitorubrinic acid and mitorubrinol [28]. Two PKS
genes are sequentially used in the biosynthesis of these two compounds, and they are virulence factors
of T. marneffei which have been shown to enhance the survival of the fungus in macrophages [28].
The diffusible red pigment is composed of a mixture of monascorubin- and rubropunctatin-amino acid
conjugates [31]. The synthesis of monascorubin and rubropunctatin are controlled by the corresponding
PKS genes and four additional genes downstream to it [31]. Recently, it was shown that the sakA gene
of T. marneffei, a gene that is widely involved in asexual development, chitin deposition, oxidative and
heat stresses tolerance, survival inside mouse and human macrophages, and yeast cell generation [32],
also affects production of the red pigment [33]. The biology of these PKS genes and pigments in
T. marneffei, including the biosynthetic pathway for red pigment production, has been recently reviewed
by Tam et al. [29].

8. microRNA

MicroRNAs (miRNAs) are small non-coding endogenous RNAs that are important gene
regulatory molecules. Mature miRNAs, which are about 22 nucleotides in length, down-regulate
post-transcriptional gene expression of specific target genes by binding to complementary mRNAs at
untranslated (UTR) regions or within the open-reading frames. miRNA-like small RNAs (milRNAs)
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have been detected in various fungi [34–36] including human pathogenic fungi such as Cryptococcus
neoformans [37]. Recently, we have identified milRNAs in both growth phases of T. marneffei, which
represents the first report of miRNAs in thermally dimorphic fungi [38]. Using high-throughput
Illumina sequencing, 24 putative milRNA candidates, which were expressed more abundantly in
hyphal cells than in yeast cells, were found. Three genes, dcl-1, dcl-2, and qde-2, encoding potential
miRNA-processing proteins, namely Dicer-like proteins (dcl-1 and dcl-2) and Argonaute-like protein
(qde-2), were also identified in the T. marneffei genome sequence [38].

Using dcl-1, dcl-2, and qde-2 knock-out mutants, it has been shown that the expression of two
milRNAs, PM-milR-M1 and PM-milR-M2, found only in hyphal cells, was dependent on dcl-2
but not dcl-1 or qde-2, supporting that dcl-2 is involved in the biosynthesis of PM-milR-M1 and
PM-milR-M2 milRNAs in T. marneffei [38]. Interestingly, dcl-2 was also expressed more abundantly
in hyphal cells than in yeast cells. Moreover, dcl-2 of T. marneffei was phylogenetically more closely
related to the homologs of the other pathogenic thermally dimorphic fungi, namely Blastomyces
dermatitidis, Coccidioides immitis, Histoplasma capsulatum, and Paracoccidioides brasiliensis, than to those of
other Penicillium and Aspergillus species, as shown by the closer clustering of dcl-2 of T. marneffei
to those of other thermally dimorphic fungi upon phylogenetic analysis. This is in contrast to
phylogenetic analyses of the mitochondrial genome or house-keeping genes such as rpb2 in which
genes of T. marneffei are usually clustered with those of Penicillium and Aspergillus species (Figure 2).
The findings suggest that dcl-2 has co-evolved among the thermally dimorphic fungi instead of
along species evolution [38]. Further studies may be conducted to explore for parallel pathways of
milRNA processing and differential milRNAs expression in different growth phases in other thermally
dimorphic fungi.

There is still a lot to be done to ascertain the function of miRNAs in T. marneffei. In our previous
study, although potential gene targets were predicted for the different milRNA candidates [38],
it remains to be determined if they are genuine targets of gene regulation for each miRNA. When
a PM-milR-M1 knock-down strain was compared with the wild-type PM1 strain, the expression of three
predicted gene targets, including the putative RanBP10 gene, the putative benzoate 4-monooxygenase
cytochrome P450 gene, and a gene encoding a conserved hypothetical protein, were found to be
upregulated by 1.7–3.8 folds [38]. However, the biological effects of such gene regulation remain
unknown. Similar studies should also be performed to examine the role of other milRNAs in the
regulation of their potential target genes in T. marneffei.

9. Transcriptome Profiling

Transcriptomics is the study of the full set of mRNAs expressed by a cell or a specific population
of cells under a defined condition. Profiling of transcriptomes could usually be achieved by
high-throughput DNA microarrays or by RNA sequencing employing next-generation sequencing
technologies. Not only could transcriptome profiling inform the identity of each mRNA expressed
by a specific cell or cell population, the quantity of each type of these mRNAs could also be revealed.
Transcriptome profiling has been employed to give insights into the physiologies of different T. marneffei
growth phases/forms. Using DNA microarrays, Lin et al. identified 1884 genes differentially expressed
in yeast and hyphal cells of T. marneffei [39]. These genes could be grossly categorized into 18 different
groups according to their biological functions. Moreover, 11 highly differential pathways were found.
Notably, genes involved in the mitogen-activated protein kinase (MAPK) signaling and fatty acid
metabolism pathways were expressed differentially between yeast and hyphal cells, suggesting that
these two pathways may play important roles for T. marneffei to grow as yeast cells [39]. Subsequently
in another microarray analysis, Pasricha et al. found that genes upregulated during early yeast
phase development and throughout yeast growth included genes which are responsible for nutrient
assimilation, in particular iron acquisition [40]. Improved iron uptake in yeast cells may help them
survive the hostile environment inside host cells. In addition, genes involved in cell wall synthesis,
such as the chitin synthase-encoding chsE, were also found upregulated in yeast cells. This implied
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that there is an increased production of chitin in yeast cells which may exert an important effect to
host-pathogen interaction [40]. However, the limitation of these DNA microarray studies was that not
all the transcripts were characterized. For example, in the first study, the design of the microarray panel
only allowed identification of differential genes which were orthologous to genes of Saccharomyces
cerevisiae with identified Gene Ontology (GO) annotations [39]; whereas in the second study the
microarray panel was predicted to cover only 42% of the entire T. marneffei genome [40].

Different from the DNA microarray approach, we have previously attempted to characterize
the transcriptome of T. marneffei using RNA sequencing [41]. It was revealed that there are a total
of 11,042 predicted protein-coding genes in T. marneffei, which could be alternatively spliced to give
15,567 unique transcripts [41]. Of these, 1447 genes were over-expressed in yeast cells while another
1414 were under-expressed. Unexpectedly, heat-responsive genes were found not to be overexpressed
in yeast cells, suggesting that T. marneffei may employ an alternative, unknown genetic regulatory
strategy in response to temperature elevation which remains to be characterized. Moreover, it was
also found that genes containing tandem repeat sequences (TRSs) were overexpressed in yeast cells.
The expression products of these TRS-containing genes usually contain repeated amino acid residues,
leading to polymorphism of these proteins among a population of T. marneffei strains and resulting
in a variation of phenotypes. The diversity of phenotypes, particularly those related to adhesion,
flocculation, and biofilm formation, may help T. marneffei yeast cells to disguise themselves and
therefore better evade the immune response of the host [41]. On the other hand, another recent study
by our group has identified madsA as a differential gene overexpressed during the transition from
yeast cells to hyphal cells. madsA encodes a MADS-box transcription factor [42]. Overexpression of
madsA in T. marneffei at 37 ◦C resulted in mycelium development, suggesting that madsA is responsible
for the control of dimorphic transition from yeast to mold [42].

10. Proteome Profiling

Proteomics is the characterization of the whole set of proteins synthesized by an organism or
a system, most commonly using two-dimensional polyacrylamide gel electrophoresis coupled with
mass spectrometry (MS) for protein resolution and identification. The technique has been used for
several purposes in studying T. marneffei, most often in an attempt to elucidate the mechanisms
of dimorphic switching. Xi et al. have identified 26 proteins with differential expression in the
yeast cells and hyphal cells [43]. Catalase-peroxidase, cytochrome P-450, Hsp90 and binding protein,
as well as isocitrate lyase were expressed more abundantly in yeast cells, while poly(A) polymerase
and SNF22 were expressed more abundantly in the hyphal cells. In another study, Chandler et al.
identified different sets of proteins common or specific to the early development stages of the two
growth phases [44]. Proteins with increased expression in the yeast development phase were found
to be involved in cell wall biosynthesis, general metabolism, and heat-shock responses. In particular,
the RanA protein, which is responsible for the regulation of mitosis and nuclear membrane transport,
was hypothesized to be involved in the signaling mechanisms of dimorphism.

Using proteomic profiling, we have also previously identified glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as an adhesion factor for T. marneffei conidial attachment [45]. Among
the 12 identified proteins with differential expression in the culture supernatant from hyphal and
yeast cells, GAPDH, which was up-regulated in hyphal cells, was subject to further adhesion assays.
Adhesion of T. marneffei conidia to fibronectin and laminin as well as A549 pneumocytes was
inhibited by recombinant GAPDH (rGAPDH) or anti-rGAPDH antibody in a dose-dependent manner,
supporting the role of GAPDH in mediating conidial binding to human extracellular matrix proteins
and pneumocytes, which may be important for the early establishment phase of infection in the lungs
of patients with talaromycosis (penicilliosis) [45]. The application of proteomics in future studies may
further shed lights in the pathogenesis and morphogenesis of this special fungus.
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11. Concluding Remarks

As the life’s recipe cookbook of every single microbe in the world, the genome provides
all the instructions for the creation of various phenotypes. In the current genomic era, genome
sequencing can be achieved at a low cost using second-generation (e.g., 454 pyrosequencing and
Solexa/Illumina technology) and recently third-generation (e.g., Pacific Biosciences Single Molecule,
Real-Time (SMRT) sequencing platform, Ion Torrent semiconductor-based system, and Oxford
Nanopore MinION/PromethION panels) sequencing technologies coupled with downstream sequence
annotation as well as functional and comparative genomics work which could be efficaciously attained
by complicated bioinformatics utilities along with transcriptomics and proteomics tools. In addition,
facilitation of microbial metabolomics study by contemporary advanced techniques, such as ultra
high performance liquid chromatography (UHPLC)—photodiode array detector (PDA)/electrospray
ionization (ESI)—quadruple (Q)—time of flight (ToF) MS and nuclear magnetic resonance (NMR),
has greatly improved the characterization of biochemical and metabolic fingerprints of microorganisms.
In the last decade or so, we have used all these state-of-the-art genomic, transcriptomic, proteomic,
and metabolomic lenses to examine how T. marneffei adapts to its environments, evade our immune
system, and cause disease in humans at different angles. These studies have revealed potential novel
targets for preventive and therapeutic interventions. Based on these various omics data, future work
could be performed to induce the development of the sexual stage of the fungus, or to elucidate the
functions and uses of other PKS genes, etc. to advance our understanding on this fungal pathogen.
The ultimate goal should aim at utilizing these data for the design of novel antifungal agents and
vaccines for the control of T. marneffei infection.

Acknowledgments: This work was partly supported by the Health and Medical Research Fund (No. HKM-15-M07
[commissioned project]), Food and Health Bureau, Government of the Hong Kong Special Administrative Region,
Hong Kong; the Strategic Research Theme Fund, The University of Hong Kong, Hong Kong; and Croucher Senior
Medical Research Fellowship, Croucher Foundation, Hong Kong. We thank Antonio H. Y. Ngan for his technical
support in capturing images of T. marneffei.

Author Contributions: P.C.Y.W. conceived the idea for and initiated the review. S.K.P.L., C.-C.T. and P.C.Y.W.
wrote the manuscript.

Conflicts of Interest: P.C.Y.W. has provided scientific advisory/laboratory services for Gilead Sciences,
Incorporated and International Health Management Associates, Incorporated/Pfizer, Incorporated. The other
authors report no conflicts of interest. The funding sources had no role in study design, data collection, analysis,
interpretation, or writing of the report. The authors alone are responsible for the content and the writing of
the manuscript.

References

1. Capponi, M.; Sureau, P.; Segretain, G. Pénicilliose de Rhizomys sinensis. Bull. Soc. Pathol. Exot. 1956, 49,
418–421.

2. Deng, Z.; Yun, M.; Ajello, L. Human penicilliosis marneffei and its relation to the bamboo rat (Rhizomys pruinosus).
J. Med. Vet. Mycol. 1986, 24, 383–389. [CrossRef] [PubMed]

3. Ajello, L.; Padhye, A.A.; Sukroongreung, S.; Nilakul, C.H.; Tantimavanic, S. Occurrence of Penicillium
marneffei infections among wild bamboo rats in Thailand. Mycopathologia 1995, 131, 1–8. [CrossRef] [PubMed]

4. Chariyalertsak, S.; Vanittanakom, P.; Nelson, K.E.; Sirisanthana, T.; Vanittanakom, N. Rhizomys sumatrensis
and Cannomys badius, new natural animal hosts of Penicillium marneffei. J. Med. Vet. Mycol. 1996, 34, 105–110.
[CrossRef] [PubMed]

5. Samson, R.A.; Yilmaz, N.; Houbraken, J.; Spierenburg, H.; Seifert, K.A.; Peterson, S.W.; Varga, J.; Frisvad, J.C.
Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus
Biverticillium. Stud. Mycol. 2011, 70, 159–183. [CrossRef] [PubMed]

6. Vanittanakom, N.; Cooper, C.R.; Fisher, M.C.; Sirisanthana, T. Penicillium marneffei infection and recent
advances in the epidemiology and molecular biology aspects. Clin. Microbiol. Rev. 2006, 19, 95–110.
[CrossRef] [PubMed]

http://dx.doi.org/10.1080/02681218680000581
http://www.ncbi.nlm.nih.gov/pubmed/3783360
http://dx.doi.org/10.1007/BF01103897
http://www.ncbi.nlm.nih.gov/pubmed/8532047
http://dx.doi.org/10.1080/02681219680000161
http://www.ncbi.nlm.nih.gov/pubmed/8732355
http://dx.doi.org/10.3114/sim.2011.70.04
http://www.ncbi.nlm.nih.gov/pubmed/22308048
http://dx.doi.org/10.1128/CMR.19.1.95-110.2006
http://www.ncbi.nlm.nih.gov/pubmed/16418525


Toxins 2017, 9, 192 11 of 13

7. Nittayananta, W. Penicilliosis marneffei: Another AIDS defining illness in Southeast Asia. Oral Dis. 1999, 5,
286–293. [CrossRef] [PubMed]

8. Deng, Z.; Ribas, J.L.; Dean, W.G.; Connor, D.H. Infections caused by Penicillium marneffei in China and
Southeast Asia: Review of eighteen published cases and report of four more chinese cases. Rev. Infect. Dis.
1988, 10, 640–652. [CrossRef] [PubMed]

9. Chan, J.F.W.; Chan, T.S.Y.; Gill, H.; Lam, F.Y.F.; Trendell-Smith, N.J.; Sridhar, S.; Tse, H.; Lau, S.K.P.;
Hung, I.F.N.; Yuen, K.-Y.; et al. Disseminated infections with Talaromyces marneffei in non-AIDS patients
given monoclonal antibodies against CD20 and kinase inhibitors. Emerg. Infect. Dis. 2015, 21, 1101–1106.
[CrossRef] [PubMed]

10. Chan, J.F.W.; Lau, S.K.P.; Yuen, K.-Y.; Woo, P.C.Y. Talaromyces (Penicillium) marneffei infection in
non-HIV-infected patients. Emerg. Microbes Infect. 2016, 5, e19. [CrossRef] [PubMed]

11. Woo, P.C.Y.; Lau, S.K.P.; Liu, B.; Cai, J.J.; Chong, K.T.K.; Tse, H.; Kao, R.Y.T.; Chan, C.-M.; Chow, W.-N.;
Yuen, K.-Y. Draft genome sequence of Penicillium marneffei strain PM1. Eukaryot. Cell 2011, 10, 1740–1741.
[CrossRef] [PubMed]

12. Tam, E.W.T.; Tsang, C.-C.; Lau, S.K.P.; Woo, P.C.Y. Comparative mitogenomic and phylogenetic
characterization on the complete mitogenomes of Talaromyces (Penicillium) marneffei. Mitochondrial DNA
B Resour. 2016, 1, 941–942. [CrossRef]

13. Xu, Z.; Hao, B. CVTree update: A newly designed phylogenetic study platform using composition vectors
and whole genomes. Nucleic Acids Res. 2009, 37, W174–W178. [CrossRef] [PubMed]

14. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics
Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [CrossRef] [PubMed]

15. Fisher, M.C.; Hanage, W.P.; de Hoog, S.; Johnson, E.; Smith, M.D.; White, N.J.; Vanittanakom, N. Low effective
dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei.
PLoS Pathog. 2005, 1, e20. [CrossRef] [PubMed]

16. Woo, P.C.Y.; Chong, K.T.K.; Tse, H.; Cai, J.J.; Lau, C.C.Y.; Zhou, A.C.; Lau, S.K.P.; Yuen, K.-Y. Genomic
and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus
Penicillium marneffei. FEBS Lett. 2006, 580, 3409–3416. [CrossRef] [PubMed]

17. Cao, L.; Chan, C.-M.; Lee, C.; Wong, S.S.Y.; Yuen, K.-Y. MP1 encodes an abundant and highly antigenic
cell wall mannoprotein in the pathogenic fungus Penicillium marneffei. Infect. Immun. 1998, 66, 966–973.
[PubMed]

18. Cao, L.; Chan, K.-M.; Chen, D.; Vanittanakom, N.; Lee, C.; Chan, C.-M.; Sirisanthana, T.; Tsang, D.N.C.;
Yuen, K.-Y. Detection of cell wall mannoprotein Mp1p in culture supernatants of Penicillium marneffei and in
sera of penicilliosis patients. J. Clin. Microbiol. 1999, 37, 981–986. [PubMed]

19. Yuen, K.-Y.; Chan, C.-M.; Chan, K.-M.; Woo, P.C.Y.; Che, X.-Y.; Leung, A.S.P.; Cao, L. Characterization of
AFMP1: A novel target for serodiagnosis of Aspergillosis. J. Clin. Microbiol. 2001, 39, 3830–3837. [CrossRef]
[PubMed]

20. Woo, P.C.Y.; Chan, C.-M.; Leung, A.S.P.; Lau, S.K.P.; Che, X.-Y.; Wong, S.S.Y.; Cao, L.; Yuen, K.-Y. Detection
of cell wall galactomannoprotein AFMP1P in culture supernatants of Aspergillus fumigatus and in sera of
aspergillosis patients. J. Clin. Microbiol. 2002, 40, 4382–4387. [CrossRef] [PubMed]

21. Woo, P.C.Y.; Chong, K.T.K.; Leung, A.S.P.; Wong, S.S.Y.; Lau, S.K.P.; Yuen, K.-Y. AFLMP1 encodes an antigenic
cell wall protein in Aspergillus flavus. J. Clin. Microbiol. 2003, 41, 845–850. [CrossRef] [PubMed]

22. Woo, P.C.Y.; Lau, S.K.P.; Lau, C.C.Y.; Tung, E.T.K.; Chong, K.T.K.; Yang, F.; Zhang, H.; Lo, R.K.C.; Cai, J.-P.;
Au-Yeung, R.K.H.; et al. Mp1p is a virulence factor in Talaromyces (Penicillium) marneffei. PLoS Negl. Trop. Dis.
2016, 10, e0004907. [CrossRef] [PubMed]

23. Liao, S.; Tung, E.T.K.; Zheng, W.; Chong, K.; Xu, Y.; Dai, P.; Guo, Y.; Bartlam, M.; Yuen, K.-Y.; Rao, Z.
Crystal structure of the Mp1p ligand binding domain 2 reveals its function as a fatty acid-binding protein.
J. Biol. Chem. 2010, 285, 9211–9220. [CrossRef] [PubMed]

24. Sze, K.-H.; Lam, W.-H.; Zhang, H.; Ke, Y.-H.; Tse, M.-K.; Woo, P.C.Y.; Lau, S.K.P.; Lau, C.C.Y.; Cai, J.-P.;
Tung, E.T.K.; et al. Talaromyces marneffei Mp1p Is a virulence factor that binds and sequesters a key
proinflammatory lipid to dampen host innate immune response. Cell Chem. Biol. 2017, 24, 182–194.
[CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1601-0825.1999.tb00091.x
http://www.ncbi.nlm.nih.gov/pubmed/10561715
http://dx.doi.org/10.1093/clinids/10.3.640
http://www.ncbi.nlm.nih.gov/pubmed/3293165
http://dx.doi.org/10.3201/eid2107.150138
http://www.ncbi.nlm.nih.gov/pubmed/26079984
http://dx.doi.org/10.1038/emi.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26956447
http://dx.doi.org/10.1128/EC.05255-11
http://www.ncbi.nlm.nih.gov/pubmed/22131218
http://dx.doi.org/10.1080/23802359.2016.1261610
http://dx.doi.org/10.1093/nar/gkp278
http://www.ncbi.nlm.nih.gov/pubmed/19398429
http://dx.doi.org/10.1093/molbev/mst197
http://www.ncbi.nlm.nih.gov/pubmed/24132122
http://dx.doi.org/10.1371/journal.ppat.0010020
http://www.ncbi.nlm.nih.gov/pubmed/16254598
http://dx.doi.org/10.1016/j.febslet.2006.05.014
http://www.ncbi.nlm.nih.gov/pubmed/16714021
http://www.ncbi.nlm.nih.gov/pubmed/9488383
http://www.ncbi.nlm.nih.gov/pubmed/10074513
http://dx.doi.org/10.1128/JCM.39.11.3830-3837.2001
http://www.ncbi.nlm.nih.gov/pubmed/11682494
http://dx.doi.org/10.1128/JCM.40.11.4382-4387.2002
http://www.ncbi.nlm.nih.gov/pubmed/12409437
http://dx.doi.org/10.1128/JCM.41.2.845-850.2003
http://www.ncbi.nlm.nih.gov/pubmed/12574298
http://dx.doi.org/10.1371/journal.pntd.0004907
http://www.ncbi.nlm.nih.gov/pubmed/27560160
http://dx.doi.org/10.1074/jbc.M109.057760
http://www.ncbi.nlm.nih.gov/pubmed/20053994
http://dx.doi.org/10.1016/j.chembiol.2016.12.014
http://www.ncbi.nlm.nih.gov/pubmed/28111099


Toxins 2017, 9, 192 12 of 13

25. Woo, P.C.Y.; Tsang, C.-C.; Xue, S.; Yang, F.; Tan, Y.-P.; Cai, J.-P.; Kok, K.-H.; Yuen, K.-Y.; Lau, S.K.P.
Talaromyces marneffei Mp1p binds a variety of proteins, sphingolipids and phospholipids: Implication
on virulence mechanism. 2017, unpublished, manuscript in preparation.

26. Maiden, M.C.J.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R.; Zhang, Q.; Zhou, J.; Zurth, K.;
Caugant, D.A.; et al. Multilocus sequence typing: A portable approach to the identification of clones within
populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [CrossRef]
[PubMed]

27. Woo, P.C.Y.; Lau, C.C.Y.; Chong, K.T.K.; Tse, H.; Tsang, D.N.C.; Lee, R.A.; Tse, C.W.S.; Que, T.-L.;
Chung, L.M.W.; Ngan, A.H.Y.; et al. MP1 homologue-based multilocus sequence system for typing the
pathogenic fungus Penicillium marneffei: A novel approach using lineage-specific genes. J. Clin. Microbiol.
2007, 45, 3647–3654. [CrossRef] [PubMed]

28. Woo, P.C.Y.; Lam, C.-W.; Tam, E.W.T.; Leung, C.K.F.; Wong, S.S.Y.; Lau, S.K.P.; Yuen, K.-Y. First discovery of
two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and
implications in virulence of Penicillium marneffei. PLoS Negl. Trop. Dis. 2012, 6, e1871. [CrossRef] [PubMed]

29. Tam, E.W.T.; Tsang, C.-C.; Lau, S.K.P.; Woo, P.C.Y. Polyketides, toxins and pigments in Penicillium marneffei.
Toxins 2015, 7, 4421–4436. [CrossRef] [PubMed]

30. Woo, P.C.Y.; Tam, E.W.T.; Chong, K.T.K.; Cai, J.J.; Tung, E.T.K.; Ngan, A.H.Y.; Lau, S.K.P.; Yuen, K.-Y. High
diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.
FEBS J. 2010, 277, 3750–3758. [CrossRef] [PubMed]

31. Woo, P.C.Y.; Lam, C.-W.; Tam, E.W.T.; Lee, K.-C.; Yung, K.K.Y.; Leung, C.K.F.; Sze, K.-H.; Lau, S.K.P.;
Yuen, K.-Y. The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in
Penicillium marneffei. Sci. Rep. 2014, 4, 6728. [CrossRef] [PubMed]

32. Nimmanee, P.; Woo, P.C.Y.; Kummasook, A.; Vanittanakom, N. Characterization of sakA gene from pathogenic
dimorphic fungus Penicillium marneffei. Int. J. Med. Microbiol. 2015, 305, 65–74. [CrossRef] [PubMed]

33. Nimmanee, P.; Tam, E.W.T.; Woo, P.C.Y.; Vanittanakom, P.; Vanittanakom, N. Role of the Talaromyces marneffei
(Penicillium marneffei) sakA gene in nitrosative stress response, conidiation and red pigment production.
FEMS Microbiol. Lett. 2017, 364, fnw292. [CrossRef] [PubMed]

34. Lee, H.-C.; Li, L.; Gu, W.; Xue, Z.; Crosthwaite, S.K.; Pertsemlidis, A.; Lewis, Z.A.; Freitag, M.; Selker, E.U.;
Mello, C.C.; et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering
RNAs in fungi. Mol. Cell 2010, 38, 803–814. [CrossRef] [PubMed]

35. Zhou, J.; Fu, Y.; Xie, J.; Li, B.; Jiang, D.; Li, G.; Cheng, J. Identification of microRNA-like RNAs in a plant
pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol. Genet. Genom. 2012, 287,
275–282. [CrossRef] [PubMed]

36. Zhou, Q.; Wang, Z.; Zhang, J.; Meng, H.; Huang, B. Genome-wide identification and profiling of
microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol. 2012, 116, 1156–1162.
[CrossRef] [PubMed]

37. Jiang, N.; Yang, Y.; Janbon, G.; Pan, J.; Zhu, X. Identification and functional demonstration of miRNAs in the
fungus Cryptococcus neoformans. PLoS ONE 2012, 7, e52734. [CrossRef] [PubMed]

38. Lau, S.K.P.; Chow, W.-N.; Wong, A.Y.P.; Yeung, J.M.Y.; Bao, J.; Zhang, N.; Lok, S.; Woo, P.C.Y.; Yuen, K.-Y.
Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus
Penicillium marneffei. PLoS Negl. Trop. Dis. 2013, 7, e2398. [CrossRef] [PubMed]

39. Lin, X.; Ran, Y.; Gou, L.; He, F.; Zhang, R.; Wang, P.; Dai, Y. Comprehensive transcription analysis of human
pathogenic fungus Penicillium marneffei in mycelial and yeast cells. Med. Mycol. 2012, 50, 835–842. [CrossRef]
[PubMed]

40. Pasricha, S.; Payne, M.; Canovas, D.; Pase, L.; Ngaosuwankul, N.; Beard, S.; Oshlack, A.; Smyth, G.K.;
Chaiyaroj, S.C.; Boyce, K.J.; et al. Cell-type–specific transcriptional profiles of the dimorphic pathogen
Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands. G3 (Bethesda)
2013, 3, 1997–2014. [CrossRef] [PubMed]

41. Yang, E.; Wang, G.; Woo, P.C.Y.; Lau, S.K.P.; Chow, W.-N.; Chong, K.T.K.; Tse, H.; Kao, R.Y.T.;
Chan, C.-M.; Che, X.; et al. Unraveling the molecular basis of temperature-dependent genetic regulation in
Penicillium marneffei. Eukaryot. Cell 2013, 12, 1214–1224. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.95.6.3140
http://www.ncbi.nlm.nih.gov/pubmed/9501229
http://dx.doi.org/10.1128/JCM.00619-07
http://www.ncbi.nlm.nih.gov/pubmed/17881546
http://dx.doi.org/10.1371/journal.pntd.0001871
http://www.ncbi.nlm.nih.gov/pubmed/23094121
http://dx.doi.org/10.3390/toxins7114421
http://www.ncbi.nlm.nih.gov/pubmed/26529013
http://dx.doi.org/10.1111/j.1742-4658.2010.07776.x
http://www.ncbi.nlm.nih.gov/pubmed/20718860
http://dx.doi.org/10.1038/srep06728
http://www.ncbi.nlm.nih.gov/pubmed/25335861
http://dx.doi.org/10.1016/j.ijmm.2014.11.003
http://www.ncbi.nlm.nih.gov/pubmed/25466206
http://dx.doi.org/10.1093/femsle/fnw292
http://www.ncbi.nlm.nih.gov/pubmed/28011700
http://dx.doi.org/10.1016/j.molcel.2010.04.005
http://www.ncbi.nlm.nih.gov/pubmed/20417140
http://dx.doi.org/10.1007/s00438-012-0678-8
http://www.ncbi.nlm.nih.gov/pubmed/22314800
http://dx.doi.org/10.1016/j.funbio.2012.09.001
http://www.ncbi.nlm.nih.gov/pubmed/23153806
http://dx.doi.org/10.1371/journal.pone.0052734
http://www.ncbi.nlm.nih.gov/pubmed/23300755
http://dx.doi.org/10.1371/journal.pntd.0002398
http://www.ncbi.nlm.nih.gov/pubmed/23991243
http://dx.doi.org/10.3109/13693786.2012.678398
http://www.ncbi.nlm.nih.gov/pubmed/22563855
http://dx.doi.org/10.1534/g3.113.006809
http://www.ncbi.nlm.nih.gov/pubmed/24062530
http://dx.doi.org/10.1128/EC.00159-13
http://www.ncbi.nlm.nih.gov/pubmed/23851338


Toxins 2017, 9, 192 13 of 13

42. Yang, E.; Chow, W.-N.; Wang, G.; Woo, P.C.Y.; Lau, S.K.P.; Yuen, K.-Y.; Lin, X.; Cai, J.J. Signature gene
expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei.
PLoS Genet. 2014, 10, e1004662. [CrossRef] [PubMed]

43. Xi, L.; Xu, X.; Liu, W.; Li, X.; Liu, Y.; Li, M.; Zhang, J.; Li, M. Differentially expressed proteins of pathogenic
Penicillium marneffei in yeast and mycelial phases. J. Med. Microbiol. 2007, 56, 298–304. [CrossRef] [PubMed]

44. Chandler, J.M.; Treece, E.R.; Trenary, H.R.; Brenneman, J.L.; Flickner, T.J.; Frommelt, J.L.; Oo, Z.M.;
Patterson, M.M.; Rundle, W.T.; Valle, O.V.; et al. Protein profiling of the dimorphic, pathogenic fungus,
Penicillium marneffei. Proteome Sci. 2008, 6, 17. [CrossRef] [PubMed]

45. Lau, S.K.P.; Tse, H.; Chan, J.S.Y.; Zhou, A.C.; Curreem, S.O.T.; Lau, C.C.Y.; Yuen, K.-Y.; Woo, P.C.Y.
Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification
of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment.
FEBS J. 2013, 280, 6613–6626. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pgen.1004662
http://www.ncbi.nlm.nih.gov/pubmed/25330172
http://dx.doi.org/10.1099/jmm.0.46808-0
http://www.ncbi.nlm.nih.gov/pubmed/17314357
http://dx.doi.org/10.1186/1477-5956-6-17
http://www.ncbi.nlm.nih.gov/pubmed/18533041
http://dx.doi.org/10.1111/febs.12566
http://www.ncbi.nlm.nih.gov/pubmed/24128375
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mitochondrial Genome and Phylogeny 
	Sexual Stage 
	MP1 and Its Homologs 
	Virulence Properties 
	Multilocus Sequence Typing 
	Polyketide Synthases and Pigments 
	microRNA 
	Transcriptome Profiling 
	Proteome Profiling 
	Concluding Remarks 

