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Abstract: In this work, an insulated gate bipolar transistor (IGBT) is proposed that introduces a
portion of the p-polySi/p-SiC heterojunction on the collector side to reduce the tail current during
device turn-offs. By adjusting the doping concentration on both sides of the heterojunction, the
turn-off loss is further reduced without sacrificing other characteristics of the device. The electrical
characteristics of the device were simulated through the Silvaco ATLAS 2D simulation tool and
compared with the traditional structure to verify the design idea. The simulation results show that,
compared with the traditional structure, the turn-off loss of the proposed structure was reduced by
58.4%, the breakdown voltage increased by 13.3%, and the forward characteristics sacrificed 8.3%.
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1. Introduction

In recent years, with the development of semiconductor technology, market demand and power
electronics have undergone great changes [1–5]. The market not only requires semiconductor
devices that work properly in harsh environments, but devices with small sizes and high integration.
Since Si-based devices have reached their material limits, third-generation semiconductor materials
represented by SiC are widely used in device design.

There are two mainstreams processing methods for a 4H-SiC insulated gate bipolar transistor
(IGBT) at present: one is to make a good compromise between the forward and off characteristics of
the device by properly setting the structural parameters of the device such as the n buffer’s thickness
and doping parameters [6], the minority carrier lifetime in the n- drift region [7,8], and thickness and
doping parameters of the CSL (carrier storage layer) [9,10]; the other is by considering the process
conditions and designing a special device structure that can improve by affecting certain characteristics,
such as an anode short circuit IGBT [11,12], a super junction IGBT [13], or a collector trench IGBT
(CT-IGBT) with an electronic extraction channel [14]. By analyzing the previous research, it can be
observed that researchers have been mainly concerned with the compromise between the on-state and
breakdown characteristics of IGBT devices, and that relatively little research has been made into the
dynamic conversion characteristics of the device.

In this paper, we propose an improved structure of introducing a partial p-polySi/p-SiC
heterojunction on the collector side, which is named H-IGBT. By adjusting the doping concentration
on both sides of the heterojunction, it is ensured that the heterojunction contributes to electron bleed
under the premise of not affecting the forward characteristics, and that the tail current of the device is
greatly reduced and turn-off loss is improved.
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2. Fabrication Procedure and Parameters

2.1. Device Structure

Figure 1 is a schematic cross-sectional view showing the half-cell structure of a conventional
IGBT device (C-IGBT) and the proposed structure of the H-IGBT, respectively. In order to verify the
characteristic advantages of the proposed structure, we simulated the electrical characteristics of the
device using Silvaco ATLAS two-dimensional simulation software. In the simulation process, we first
design the basic structure of a breakdown voltage of 15 kV as the reference structure [15,16], and then
apply the design idea to the new structure while keeping most of the parameters unchanged. The
relevant parameters of the two structures during the simulation process are listed in Table 1 [17,18]. In
this simulation, the carrier lifetime in the n- drift region is 1 µs, and the carrier lifetime of the n buffer is
0.1 µs.
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Table 1. Devices parameters for the simulations.

Parameter C-IGBT H-IGBT

Gate oxide wall thickness 0.05 µm 0.05 µm
Gate oxide bottom thickness 0.1 µm 0.1 µm

Half-cell width 2.1 µm 2.1 µm
N- drift thickness 160 µm 160 µm
P+ source doping 5 × 1019 cm−3 5 × 1019 cm−3

N+ source doping 2 × 1019 cm−3 2 × 1019 cm−3

p-body doping 4 × 1017 cm−3 4 × 1017 cm−3

CSL doping 1 × 1015 cm−3 1 × 1015 cm−3

N- drift doping 4.5 × 1014 cm−3 4.5 × 1014 cm−3

N buffer doping 1 × 1017 cm−3 1 × 1017 cm−3

P+ collector doping 1 × 1019 cm−3 1 × 1019 cm−3

p-SiC doping — 1 × 1019 cm−3

p polysilicon doping
P+ source region width
N+ source region width

p-SiC width
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0.45 µm
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2.2. Proposed Fabrication Procedure

Since the relevant flow test work has not been performed, Figure 2 shows the feasibility
manufacturing process of H-IGBT. A p-poly layer, a p-SiC layer, a N- drift layer, a CSL layer, a
p-body layer, and so on are sequentially grown on the N+ substrate [19,20], as shown in Figure 2a. Then,
dry etching [21,22] is used to form gate trench regions, as shown in Figure 2b. The P+ shield, P+ source
region, and N+ source regions are formed by ion implantation [23,24], as shown in Figure 2c. The gate
oxide layer is thermally grown in dry O2 [25–27] and the trench regions are filled with polysilicon [28],
as shown in Figure 2d. The substrate is removed and backside p-polySi and p-SiC epitaxial layers are
dry-etched, as shown in Figure 2e. Epitaxial growing n buffer and P+ collector in the etched portion
are shown in Figure 2f, respectively. The reason why the gate oxide layer is grown under dry oxygen
conditions is to avoid the problem of the oxide layer at the bottom of the trench being too thin under
thermal oxidation conditions. Finally, all electrodes are metalized, including emitter, gate, and collector.
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growing an oxide layer and filling the polysilicon. (e) Forming a normal PN junction region by dry
etching. (f) Forming a normal PN junction portion by epitaxy.

In the manufacturing process of the device, it should be noted that in order to obtain a high
quality gate oxide layer, a dry oxygen process is selected. In actual production, it is often necessary
to comprehensively consider the effects of film formation quality and production efficiency using
a dry oxygen-wet oxygen-dry oxygen process; meanwhile, because SiC materials are special, their
hardness is relatively large, so the etching is very difficult. SiO2 can be used as a mask and etched by
an inductively coupled plasma (ICP) etching method containing SF6. The specific etching scheme can
use a combination of SF6/O2/Ar gases, with a flow rate of 4.2/8.4/28 sccm, a pressure and temperature
of 0.4 Pa and 80 ◦C, respectively, an ICP power of 500 W and a bias power fixed at 15 W [29]. Attention
should be paid to the formation of micro-grooves throughout the ICP etching process, which can cause
an electric field concentration effect that in turn reduces the breakdown voltage of the device. After
the etching, the surface of the trench will inevitably appear rough, which can be improved by the
subsequent high temperature annealing process.
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3. Simulation Results and Discussion

The material parameters and simulation models used in the simulation process are based on
previous studies. Since these parameters have been widely used in the simulation of 4H-SiC IGBT,
and the simulation results have been proved by experiments, these parameters and models have
also been applied to this simulation. The models used in the simulation mainly include an energy
band narrowing model (BGN), a parallel electric-field-dependent model (FLDMOB), a Fermi model, a
concentration-dependent mobility model (CONMOB), and recombination models (Schockley-read-hall,
AUGER) [30,31].

3.1. Forward Characteristics

Figure 3 shows the forward I-V characteristic curves of C-IGBT and H-IGBT and the hole
concentration distribution through the drift region. It can be seen from the figure that the on-state
characteristics of H-IGBT are slightly lower than C-IGBT. When Vge = 20 V and Ice = 100 A/cm2, the
on-state voltage drops of the two structures are 11.7 and 10.8 V, respectively. After data analysis, it
can be concluded that the conduction voltage drop of the improved structure is increased by 8.3%
compared to the conventional structure. From the heterojunction band diagram, the p-polySi/p-SiC
junction contributes to hole injection, but the number of holes injected into the drift region is controlled
by the upper PN junction, at which point the bias voltage of the PN junction above the heterojunction
is small. As such, the total hole injection efficiency is lower than that of the left half of the PN junction
and the forward characteristics of the C-IGBT are superior to those of the H-IGBT. The hole distribution
of the drift region in the figure further confirms the above explanation.
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3.2. Breakdown Characteristics

The two-dimensional electric field distribution when the device reaches its avalanche breakdown
voltage is shown in Figure 4. At this time, the collector voltages of C-IGBT and H-IGBT are 15 and
17 kV, respectively. As can be seen from the figure, when the device reaches its breakdown voltage, the
maximum internal electric fields of the conventional structure and proposed structure are 2.96 and
2.98 MV/cm, respectively. The breakdown voltage of the H-IGBT is larger than that of the C-IGBT
because its hole injection efficiency is low, which is equivalent to lowering the doping concentration
of the drift region. Therefore, when the device is blocked in the forward direction, the electric field
strength of the entire drift region is raised, and the breakdown voltage of the H-IGBT is increased.
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3.3. Turn-Off Characteristics

Since the device stores a large number of minority carriers in the drift region during the forward
conduction process, the on-resistance is very small, but this is very disadvantageous for the turn-off

process of the device. When the device is turned off, the carriers stored in the drift regions form a
large tail current that extends the turn-off time of the device and greatly increases the power loss of
the turn-off. In this simulation, we used the test circuit shown in Figure 5 to compare the shutdown
performance of C-IGBT and H-IGBT. The clamped inductive load was modeled by a constant current
source (2.1 × 10-6) and the bus voltage was set to 60% of the breakdown voltage. A gate voltage of
5 kHz, a 50% duty cycle, and a voltage change from 20 to –5 V were used to control the turn-on and
turn-off of the device.
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The turn-off characteristic curves of the conventional structure and the proposed structure are
shown in Figure 5. It can be seen from the figure that the turn-off speed of the proposed structure is
significantly better than that of the conventional structure, which is mainly due to the introduction
of the p-polySi/p-SiC heterojunction on one side of the collector. After numerical calculation, it can
be concluded that the turn-off losses of the traditional structure and the proposed structure were
7.7 and 3.2 mJ, respectively, and the turn-off loss was improved by about 58.4%. The reason why
H-IGBT can have such excellent shutdown performance is mainly due to the introduction of a collector
heterojunction. Through the adjustment of the doping concentration, the heterojunction can accelerate
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the extraction of electrons during the process of turning off the device, thereby reducing the turn-off

loss. The above explanation can be further proven by the following analysis.
Figure 6 shows the electron concentration and carrier recombination rates near the collector of the

conventional structure and the proposed structure during device turn-offs. It can be seen from the
figure that the electron concentration and the carrier recombination rate of the conventional structure
were higher than those of the proposed structure, indicating that the carriers generally disappeared by
recombination when the conventional structure was turned off. The electron concentration and carrier
recombination rate of the proposed structure were lower than those of the conventional structure, but
the final turn-off loss was lower than that of the conventional structure, further indicating that the
proposed structure had other bleed paths in addition to the composite bleed.Micromachines 2019, 10, x  6 of 9 
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The electric field stubs and the p-polySi/p-SiC heterojunction energy band diagram near the
collector during device turn-offs is shown in Figure 7. As can be seen from the figure, when the
proposed structure was turned off, a much larger electric field spike was introduced to the collector
side than that of the conventional structure, and this larger electric field could drive more electrons
from the drift region to the collector, thus accelerating the turn-off of the device. In addition, it can be
seen from the energy band diagram of the heterojunction that the heterojunction portion was more
favorable for electron bleed than the ordinary PN junction portion. Ultimately, the combined effect of
the two bleeds mechanisms greatly reduced the turn-off losses of the proposed structure.
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Figure 8 shows a compromise between the on-state voltage and turn-off loss of the device for
different drift region carrier lifetimes. It can be seen from the figure that as the carrier lifetime in the
drift region decreases, the turn-on voltage drop gradually increases and the turn-off loss gradually
decreases. The main reason for this result is that the carrier lifetime injected into the drift region
decreases as the carrier lifetime decreases, which weakens the positive conductance modulation effect
and increases the on-state voltage drop. When the device is turned off, the carrier bleed time is reduced
since less carriers are stored in the drift region, and the device turn-off loss is reduced.Micromachines 2019, 10, x  7 of 9 
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