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Abstract: Massive efforts to develop neural interfaces have been made for controlling prosthetic
limbs according to the will of the patient, with the ultimate goal being long-term implantation. One of
the major struggles is that the electrode’s performance degrades over time due to scar formation.
Herein, we have developed peripheral nerve electrodes with a cone-shaped flexible artificial conduit
capable of protecting wire electrodes from scar formation. The wire electrodes, which are composed
of biocompatible alloy materials, were embedded in the conduit where the inside was filled with
collagen to allow the damaged nerves to regenerate into the conduit and interface with the wire
electrodes. After implanting the wire electrodes into the sciatic nerve of a rat, we successfully recorded
the peripheral neural signals while providing mechanical stimulation. Remarkably, we observed
the external stimuli-induced nerve signals at 19 weeks after implantation. This is possibly due to
axon regeneration inside our platform. To verify the tissue response of our electrodes to the sciatic
nerve, we performed immunohistochemistry (IHC) and observed axon regeneration without scar
tissue forming inside the conduit. Thus, our strategy has proven that our neural interface can play a
significant role in the long-term monitoring of the peripheral nerve signal.

Keywords: neural interface; wire electrode; peripheral nerve electrode; artificial conduit; long-term
implantation; neural signal recording

1. Introduction

Advances in interactive human–machine interfaces such as artificial prosthetic limbs and
rehabilitation robots have been gradually attracting significant attention due to the new opportunities
these present for enabling patients who have lost their arms or legs to improve their quality of life.
Such approaches in human–machine interfaces are ordered in terms of the interface’s increasing
degree of invasiveness: non-invasive, minimally invasive, and fully invasive applications [1]. As a
representative example of non-invasive methods, electromyography (EMG) measurement has been
widely utilized to control prosthetic limbs by monitoring the EMG signals of the muscle groups at
the amputated region [2,3]. Although the simple attachment of EMG electrodes onto the amputee’s
skin is non-invasive, significantly fewer distinct EMG signals can be obtained from the limited muscle
groups at the amputation site compared to that of the peripheral nerves that carry neural signals
originally intended to control precise motions ranging from finger movements to subtle tremors of
the missing limb. Thus, many research groups have focused on fully invasive “sieve-type” electrodes
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to obtain numerous distinguishable signals by interfacing directly with the peripheral nerve [4,5].
As expected, different types of side effects have hindered the application of such extreme approaches
to clinical surgery for long-term monitoring. The trade-off between the benefits of non-invasive and
fully invasive methodologies should be optimized.

To overcome such critical issues, minimally invasive electrodes such as transverse intra-fascicular
multichannel electrodes (TIME) [6] and longitudinal intra-fascicular electrodes (LIFE) [7,8] that have
mechanical reliability and biocompatibility have been explosively developed for use in long-term
implantation. However, there are severe problems such as scar formation caused by the inflammations
that occur chronically around the implanted struts [9–13] (Figure 1A). In the case of the flexible
penetrating microelectrode array (FPMA), which successfully acquires neural signals in the peripheral
nerves, the signal-to-noise-ratio (SNR) was decreased due to the fibrous encapsulation around the
electrode a week after its implantation [14]. As a promising candidate for solving the signal attenuation
issues, neurotrophic electrodes (NE) have been suggested [15,16]. Wire-type neural electrodes were
placed inside a glass conduit that was filled with a nerve growth factor (NGF). The NEs were
successfully implanted and used to acquire neural signals from human brains for about four years.
By filling it with the NGF, the neural signals were improved by narrowing the distance between
the electrodes and the neurons by promoting nerve growth into the conduit over time. In addition,
the internal and external nerve tissues of the conduit were connected together. Therefore, the neural
electrodes inside the cone-like conduit permitted long-term implantation and high-quality signal
acquisition by keeping the neural electrodes from glia scar formation. In addition, Lacour et al.
developed a new type of stretchable neural device to overcome the limitations of chronically implanted
electrodes that result in inflammatory responses and tissue scarring [17–19]. However, a few obstacles
remain in practical applications. Manually fabricating the NE to have uniform electrical and mechanical
performances is arduous and inefficient. Furthermore, the rigidity of the glass conduits used in the NEs
is much stiffer than that of nerve tissue, which can lead to damage due to the mechanical mismatch
between the tissue and the device. Therefore, a parylene sheath electrode (PSE)—fabricated using
flexible polymers instead of rigid ceramics—was developed [20–22]. Although the PSE’s mechanical
stiffness is reduced to compensate for the mechanical mismatch between the tissue and the PSE, it still
has critical problems such as poor adhesion between the various evaporated metal films, which may
cause an electrical breakdown due to its delamination from the substrate in long-term use. In addition,
these NEs were only used in the rat motor cortex. Realizing the next generation of artificial prosthetic
limbs will urgently require the application of flexible NEs to peripheral nerves.

In this case, we describe wire electrodes with thin and cone-shaped artificial conduits for long-term
monitoring of the peripheral nerve. Our novel sensing platform can maintain reliable signal acquisitions
by protecting the wire neural electrode from the typical formation of scar tissue that occurs a few weeks
after implantation (Figure 1B). Au-plated Ni-Cr wires were placed inside the polyimide (PI)-based
artificial conduit and the internal space was filled with collagen so that the axons of the nerve could
regenerate through the conduit, which enables the chronic monitoring of neural activity. We implanted
the fabricated wire electrodes with the artificial conduit into the sciatic nerve of rats with minimal
invasiveness. After long-term neural signal acquisition, an IHC was carried out to confirm scar
formation and nerve regeneration around the implanted site. Our wire electrode equipped with
the cone-shaped artificial conduit is expected to pave the way for future human–machine interfaces
in prostheses.
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Figure 1. Overall schematics and in vivo images of wire electrodes with the artificial conduit. (A) 
Schematic of implanted wire electrode without the artificial conduit into the sciatic nerve. (B) 
Schematic of implanted neural electrode with the artificial conduit into the sciatic nerve. 
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The artificial conduit was designed to protect the electrodes from scar formation due to nerve 
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addition, the Ni-Cr wires for recording neural signals were placed inside a cone-shaped PI conduit 
and connected to the copper (Cu) wire and then to a head stage. In total, three wire electrodes were 
used for signal acquisition. 

2.2. Fabrication of Wire Electrodes with Artificial Conduit 

Figure 2A shows the fabrication process for the artificial conduit. The structure of the cone-
shaped artificial conduit was fabricated by applying heat and tensile force to the glass tube 
(Borosilicate Glass Capillaries, World Precision Instruments Inc., Sarasota, FL, USA) using a 
micropipette puller (P-97, SUTTER INSTRUMENT Co., Novato, CA, USA). Then, the dextran 
solution (20% w/w, SIGMA-ALDRICH, St. Louis, MI, USA) was thinly coated as a sacrificial layer on 
to the glass cone to later separate the PI (VTEC™PI-1388, RBI Inc., Toronto, ON, Canada) from the 
glass cone. The dextran-coated glass cone was cured at 65 °C for five minutes and the end of the glass 
cone was dipped into the precursor solution of PI for thin coating. This was then cured in an oven at 
200 °C for two hours. After curing, a suture thread (8-0, NK825PDN, AILEE Co., Ltd., Busan, South 
Korea), which acts as an insertion guide during implantation, was fixed in the longitudinal direction 
using an epoxy (EPO-TEK®301, Epoxy Technology, Inc., Billerica, MA, USA). In this case, the two 
parts of the suture thread were tied in knots to increase the adhesion between the cone-shaped PI 
conduit and the thread, which increases the epoxy contact area. Epoxy was cured in an oven at 65 °C 
for two hours. After fixing the suture thread to the cone, it was immersed in deionized water (DI 
water) to dissolve the previously coated dextran layer and detach the conduit from the glass cone. 
The narrow and wide portions of the conduit that were fixed to the suture thread were trimmed to a 
total length of about 2 mm. 

Figure 1. Overall schematics and in vivo images of wire electrodes with the artificial conduit. (A) Schematic
of implanted wire electrode without the artificial conduit into the sciatic nerve. (B) Schematic of implanted
neural electrode with the artificial conduit into the sciatic nerve.

2. Materials and Methods

2.1. Overall Design of the Wire Electrodes with an Artificial Conduit

The artificial conduit was designed to protect the electrodes from scar formation due to nerve
injury during implantation. The conduit was fabricated out of flexible and biocompatible PI.
In addition, the Ni-Cr wires for recording neural signals were placed inside a cone-shaped PI conduit
and connected to the copper (Cu) wire and then to a head stage. In total, three wire electrodes were
used for signal acquisition.

2.2. Fabrication of Wire Electrodes with Artificial Conduit

Figure 2A shows the fabrication process for the artificial conduit. The structure of the cone-shaped
artificial conduit was fabricated by applying heat and tensile force to the glass tube (Borosilicate Glass
Capillaries, World Precision Instruments Inc., Sarasota, FL, USA) using a micropipette puller (P-97, SUTTER
INSTRUMENT Co., Novato, CA, USA). Then, the dextran solution (20% w/w, SIGMA-ALDRICH,
St. Louis, MI, USA) was thinly coated as a sacrificial layer on to the glass cone to later separate the
PI (VTEC™PI-1388, RBI Inc., Toronto, ON, Canada) from the glass cone. The dextran-coated glass
cone was cured at 65 ◦C for five minutes and the end of the glass cone was dipped into the precursor
solution of PI for thin coating. This was then cured in an oven at 200 ◦C for two hours. After curing,
a suture thread (8-0, NK825PDN, AILEE Co., Ltd., Busan, South Korea), which acts as an insertion
guide during implantation, was fixed in the longitudinal direction using an epoxy (EPO-TEK®301,
Epoxy Technology, Inc., Billerica, MA, USA). In this case, the two parts of the suture thread were tied
in knots to increase the adhesion between the cone-shaped PI conduit and the thread, which increases
the epoxy contact area. Epoxy was cured in an oven at 65 ◦C for two hours. After fixing the suture
thread to the cone, it was immersed in deionized water (DI water) to dissolve the previously coated
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dextran layer and detach the conduit from the glass cone. The narrow and wide portions of the conduit
that were fixed to the suture thread were trimmed to a total length of about 2 mm.

Where the metal electrode was exposed to nerve fibers, a 3-cm long Ni-Cr wire (KANTHAL
precision Technology Inc., Hallstahammer, Sweden) of diameter 12.7 µm with aromatic PI (PAC 240,
film insulation made of polyimide resins) was used as an insulation film. The insulation film at the tips
of the wires of length ~200 µm was removed using oxygen plasma (Figure 2B). The exposed areas of
the Ni-Cr wires were electro-plated with Au to improve their electrical properties and biocompatibility
simultaneously [23–25]. The Ni-Cr wires were coiled into a spiral structure to cope with nerve and
muscle movements. A Cu wire (SBYC-05, SME Co., Ltd., West Sussex, UK) of 36 AWG (american wire
gauge) and the other end of the wire electrodes were connected by soldering. The head stage connector
(Molex Co., Ltd., Lisle, IL, USA) was connected to the other end of the Cu interconnects by soldering
for periodic neural signal measurement. To prevent the interconnect fracture and short-circuiting
due to the penetration of bodily fluids into the wires during implantation, the Cu interconnection
between the Ni-Cr electrodes and the head stage was encased in a silicone tube. Both ends of the silicon
tube were sealed using epoxy and gingival mask (Esthetic Mask, DETAX GmbH&Co.KG, Ettlingen,
Germany). Three wire electrodes were fixed inside the conduit in the longitudinal direction at 200 µm
intervals with epoxy to prevent direct current flow between them (Figure 2C). To fix the silicon tube
on the epineurium of the sciatic nerve, a PI film was laser-cut into a cruciform 3 mm in width and 3
mm in length. It was then pre-bent and fixed onto the silicon tube using a gingival mask (Figure S1).
The wire neural electrode with the artificial conduit was filled with collagen. Since collagen forms into
a gel within a few minutes at room temperature, the collagen injection was conducted on ice to keep
the process as cold as possible.
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2.3. Electrical Characterizations  

Electrochemical impedance spectroscopy (EIS) was used to analyze the electrical characteristics 
of the fabricated neural electrodes with conduit. The electrochemical impedance of the neural 
electrode was measured using a potentiostat (Versa STAT3, AMETEK Inc., Berwyn, IL, USA) over 

Figure 2. Fabrication and implantation process for wire electrodes with artificial conduits. (A-a) Preparation
of glass cone. (A-b) Dextran coating. (A-c,d) PI coating and curing. (A-e) suture thread fixation. (A-f) PI
cone release. (A-g,h) PI cone cutting. (B-a,b) Ni-Cr wire insulation removal by plasma etching. (B-c)
Three Ni-Cr wires array and fixation using epoxy. (B-d) Au electroplating. (C-a) Attaching Ni-Cr wires
within the PI cone. (C-b,c) Collagen loading. (C-d) Fabricated neural electrode with the cone-shaped
artificial conduit.
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2.3. Electrical Characterizations

Electrochemical impedance spectroscopy (EIS) was used to analyze the electrical characteristics
of the fabricated neural electrodes with conduit. The electrochemical impedance of the neural
electrode was measured using a potentiostat (Versa STAT3, AMETEK Inc., Berwyn, IL, USA) over
the frequency range of 1 Hz to 100 kHz in phosphate buffered saline (PBS) (1XPBS, SAMCHUN
PURE CHEMICAL Co., Ltd., Seoul, South Korea). The amplitude was a 10 mV root mean square
(RMS) for the potentiostatic EIS experiment. The electrochemical impedances were recorded with the
two-electrode method using a Platinum (Pt) wire (RDE0021, ATfrontier Inc., Anyang, South Korea) as
a reference electrode and the Au-plated Ni-Cr wire electrodes inside the conduit.

2.4. In Vivo Implantation

The wire neural electrode with the artificial conduit was implanted into the sciatic nerve of rats
(Figure 3). Eight-week-old Sprague Dawley (SD) male rats were anesthetized by an intramuscular
injection of Zoletil (Virbac)-Rompun (BAYER) mixture at a 3:1 ratio. The sciatic nerve was exposed and
the epineurium was incised longitudinally to make a 5 mm-long slit. The needle of the 8-0 surgical
suture thread attached to the artificial conduit was inserted into the slit and pulled out through the
non-incised nerve, which placed the artificial conduit inside the nerve. The artificial conduit was
fixed by suturing and the slit on the nerve was sutured closed. To fix the artificial conduit and the
silicon tube, arch-shaped PI film was sutured to the sciatic nerve by knotting the thread through the
epineurium and the suture hole of PI film together. The ground electrode was placed near the muscle
and the silicon tube was placed along the subcutaneous path to the head and exposed through the
incision line at the back of the neck. The surgical site was sutured with a 3-0 suture thread. Before fixing
the head stage, an incision was made on the scalp. All tissues around the skull were removed and the
surface of the skull was sanded with the hand drill to attach the dental cement firmly. To increase the
binding force, four screws were tightened into the skull at each of the four quadrants, which has their
crossing point for the vertical and horizontal lines at the bregma (Figure S2A). After the skull surface
had completely dried, dental cement was applied between the skull and the head stage. The scalp
was sutured closed around the head stage and the head stage was filled with the removable gingival
mask to prevent contamination. Animal care and surgical procedures complied with the Institutional
Animal Care and Use Committee guidelines.
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Figure 3. Implantation process of wire electrodes with the artificial conduit. (A) Schematics of the
implantation process. (B) in vivo images of the implantation process. Longitudinal incision of the sciatic
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2.5. Measurement Set-up

A SmartBox (NeuroNexus Inc., Ann Arbor, MI, USA) was used to record neural signals.
The SmartBox has a 64-channel connector (Smart Link 64ch, NeuroNexus Inc.) with two 32-channel
male Omnetic connectors for access. Therefore, an interconnection cable was fabricated to go between
the head stage of the rat and the Omnetic connectors. One side of the cable consists of a 32-channel
omnetic connector (female) and the other side consists of a five-channel molex connector for connecting
to the head stage of the rat. All recorded signals were sampled at 20 kHz and through a band-pass
filter with the range set to 30 Hz–5 kHz. After setting the equipment for recording neural signals, the
rat was anesthetized using isoflurane. The neural signal measurement equipment and head stage fixed
to the skull were connected for signal acquisition by using the interconnection cable. Attempts were
made to evoke sensory single unit action potential via mechanical stimulation (Figure 4B). The sole of
the electrode-implanted leg was mechanically stimulated using a cotton swab and brush.
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Figure 4. Neural signal measurement. (A) Electrochemical impedance and phase changes across
the frequency of the neural electrode with the artificial conduit. The impedances before and after
electro-plating were 156.2 kΩ and 38.5 kΩ at 1 kHz. (B) Schematic for the neural signal recording setup.
(C) Results of neural signal acquisition for the three wire electrodes.

2.6. Immunohistochemistry

For IHC, the neural electrode-implanted SD rats were perfused with 4% paraformaldehyde (PFA)
in PBS. Then, the sciatic nerves were extracted and fixed in 4% PFA for three days at 4 ◦C. Tissues were
then dehydrated with sucrose solution at 4 ◦C. Nerves were frozen in an optimal cutting temperature
compound (OCT compound) (FSC22, Leica Biosystems Richmond, Inc., Dublin, Island) at −80 ◦C
overnight and then frozen-sectioned longitudinally at 10 µm-thick intervals. The sections were attached
to saline-coated micro slides (5116-20F, MUTO Pure Chemicals Co., Ltd., Tokyo, Japan) and dried for a
few minutes. The OCT compound was washed in PBS three times and the sections were fixed with
4% PFA solution for 20 minutes at 4 ◦C and washed again with PBS three times. The sections were
permeabilized in 0.2% Triton X-100 for 15 minutes, washed three times in PBS, and blocked overnight
in 4% Bovine serum albumin (BSA) at 4 ◦C. After blocking, the sections were incubated overnight with
the following primary antibodies: mouse anti-neurofilament medium (ab7794, Abcam Inc., Cambridge,
UK) and rabbit anti-fibronectin (ab2413, Abcam Inc.). After washing in 1% BSA, the samples were
incubated for two hours at room temperature with the appropriate secondary antibodies: AlexaFluor
594-donkey anti-rabbit IgG (ab150076, Abcam Inc.) and AlexaFluor 488 anti-mouse IgG (ab150113,
Abcam Inc.). Preparations were washed in 1% BSA three times and incubated for 10 minutes at room
temperature with 4′,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific Inc., Waltham, MA,
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USA) in the dark to stain the cell nucleus. Sections were washed in 1% BSA and PBS once each and
preserved with mountant (ThemoFisher Scientific Ltd.). Images were visualized using a confocal
microscope (Leica Microsystems, Wetzler, Germany).

3. Results and Discussion

3.1. Structural Design and Intrinsic Properties of the Wire Electrodes with the Artificial Conduit

To protect the Au-plated wire electrodes from scar formation that usually forms around the
electrodes after implantation, we applied the cone-shaped artificial conduit to the wire electrodes.
The artificial conduit was fabricated using PI that is both flexible and biocompatible. The diameter
of the narrow portion of the artificial conduit was ~200 µm and the wide portion was ~500 µm.
The artificial conduit that adhered to a suture thread was fully inserted into the sciatic nerve during
implantation and the aperture of the conduit played a role in allowing the respective, disconnected
axons to be connected. The thickness (~15 µm) of the artificial conduits was controlled by dipping
in liquid PI. The cone-shaped structure of the PI artificial conduit was mechanically reliable for
maintaining its form factor when compressively strained due to its high elastic modulus (~2.5 GPa).
The neural wire electrode with the artificial conduit consisted of a head stage that could be connected
to the external neural signal measurement equipment for real-time signal measurements (Figure 5).
The electrical characteristics of the fabricated wire neural electrodes with the artificial conduit
were evaluated using EIS. According to the measurement results, the impedances before and after
electroplating with Au were 156.2 kΩ (Ni-Cr) and 38.5 kΩ (Au-Ni-Cr) at 1 kHz, respectively (Figure 4A).
Previous reports support that the lowered impedance of our Au-Ni-Cr wires under 1 MΩ was suitable
for recording neural signals [25,26]. We confirmed that the electro-plated Au allowed the peripheral
nerves to avoid Ni-Cr alloy-induced nickel allergy and toxicity problems (Figure 6) [23,24,27]
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Figure 6. IHC analysis. Immunohistochemistry images of the representative longitudinal section of the
sciatic nerve implanted with the neural electrode and artificial conduit.

3.2. In Vivo Preparation and Long-Term Measurement for Peripheral Neural Signals

Each neural electrode was composed of three wires and an artificial conduit. Each of the five SD
rats had an electrode implanted into their sciatic nerve (Figure 5). Using a suture thread fixed to the
conduit, the neural electrodes were inserted into and fixed to the sciatic nerves (Figure 3B). A headstage
was fixed to the skull for periodic signal measurement. The adhesion of dental cement alone could not
hold the head stage in the long term. Therefore, the head stage was fixed more firmly by applying
skull screws to the skull in advance. The interconnection cables bridging between the sciatic nerve and
the headstage were placed subcutaneously inside a silicone tube to be protected. After implanting the
wire neural electrode, we used a neck collar to prevent self-injury such as toe-biting (Figure S2B).

After implanting the five neural electrodes, we could not immediately obtain neural signals
(Figure S3). This was expected since the damaged axons had not yet regenerated into the artificial
conduit and established connections between the proximal and distal axons. However, a low noise
level was identified (about 50 µV) that was suitable for acquiring neural signals. After 19 weeks,
we obtained neural signals from only two rats (Figure 4C and Figure S4A). The single waveforms
indicating sensory neural signals in each graph were almost identical due to the possibility that the
same nerve fibers were making contact with or near two or three wires simultaneously (Figure 4C and
Figure S4A). The neural signals were well synchronized with mechanical stimulations given to the foot
using a cotton swab and brush. This result is comparable to those of previous reports (Figures 4 and 5,
Supplementary Video) [28]. Unfortunately, we could not monitor neural signals from the other three
rats due to undesired incidents such as damage to the Cu interconnection cables or headstage modules
(Figures S4B–D and S5). The Cu interconnection cables inside the silicon tube were broken due to
mechanical fatigue that originated from the continuous movement of the rat’s neck. This issue could
be significantly improved by making the Cu interconnection cables more flexible and stretchable.
In addition, when we periodically measured neural signals, the delamination of the head stage from
the rat’s head could be due to its low adhesion. Therefore, the interconnection cable and the head stage
are very important components for long-term signal measurement. If these issues are optimized, our
chronic neural platform would be significantly improved.

3.3. Immunohistochemistry

The wire neural electrodes with artificial conduit inserted in the sciatic nerve were double stained
with anti-neuro-filament medium (NFM) antibody and anti-fibronectin antibody to demonstrate the
regenerating axons into the PI cone-shaped conduit and observe the formation of neuronal scarring
(Figure 6). The sample was also stained with DAPI for nuclear acid to see the cells’ general location.
Six months after surgery, it was found that newly sprouted axons had extended and filled the space of
the conduit. Recently grown axons showed different extending tendencies from pre-existing neuronal
axons, which formed a cone shape. Meanwhile, fibronectin, which is the structural molecule of
neuronal scar tissue, was found just outside the conduit. More importantly, scar tissue scarcely existed
inside the conduit cavity. Fibronectin was highly expressed at the upper side of the conduit due
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to the surgical procedure. As mentioned, to insert the conduit, a longitudinal neural incision was
made to form a gap. In this procedure, neuronal injury was made to cause neuronal scarring in the
long-term. Nevertheless, it is shown that this neural scarring from the surgical procedure does not
invade the inside of the conduit. There is visible fibronectin at the lower side of the cone because
fibronectin is also a major component of the peripheral nerve epineurium [29]. Therefore, it can be
concluded that the wire electrode placed inside the conduit was protected from scar tissue, which
further verifies the chronic neural signal acquisition feasibility of the neural electrode with the artificial
conduit. This section may be divided into subheadings.

4. Conclusions

For the ultimate purpose of the long-term implantation of neural electrodes, a peripheral nerve
electrode with a cone-shaped artificial conduit protecting the wire electrodes from scar formation
was developed. The conduit was fabricated using a flexible and biocompatible material, PI, and
Au-plated Ni-Cr wires. The neural electrode was implanted directly into the sciatic nerve of the rat,
and, after 19 weeks, neural signals were obtained during mechanical stimulation to the sole of the rat.
IHC analysis showed that scar tissues were formed outside the conduit, but no scars were found inside
the conduit. Nerve fibers grew into the conduit in both directions and connected to each other to make
contact with the wire electrodes. Therefore, neural signals could be acquired. Using the cone-shaped
conduit structure, chronic signal acquisition could be achieved by preventing performance degradation
in the electrode due to scar-tissue formation. Furthermore, we have attempted to find a way to further
accelerate nerve regeneration through experiments with various hydrogels filling the artificial conduit.
We expect that this will be applied to the development of prosthetic hands with movements similar to
that of natural hands by overcoming the limitation on the low number of distinguishable movement
intentions in existing EMG prosthetic arms and solving the neural signal attenuation problem in the
long-term implantation of neural interfaces.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/3/184/
s1: Figure S1: (A) Pre-bent PI film for fixing the silicon tube onto the epineurium. (B) Fixed PI film onto the
silicon tube using the gingival mask. Figure S2: (A) Fixing the screws on the skull to increase the binding force.
(B) Neck collar for preventing self-injury and head stage filled with a gingival mask for preventing contamination.
Figure S3: Result of periodic neural signal measurement showing a low noise level. Figure S4: Neural signal
measurement. (A) Neural signals obtained from two of the three channels. It was expected that the same nerve
fibers would touch the two wire electrodes simultaneously since the nerve grew longitudinally and the electrodes
were arrayed longitudinally. One wire electrode broke (The third graph of the figure). (B,C,D) The neural signal
was not obtained because the regenerated axon could not contact the electrode and the wire electrode was broken.
Figure S5: Difficulty of long-term implantation due to broken Cu wires and dropped head stage. (A) The Cu
wires inside the silicon tube were broken due to the continuous movement of the rat’s neck. (B) Periodic signal
measurements caused the head stage to be dropped from the skull by a mechanical force. Video S1: Measurement
of peripheral neural signals while providing mechanical stimulation.
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