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Abstract: Forceps are essential tools for digital nerve manipulation during digital nerve repair
surgery. However, surgeons have to operate forceps with extreme caution to prevent detrimental
post-operative complications caused by over-gripping force. Their intrinsically safe characteristics
have led to the increasing adoption of soft robotics in various biomedical applications. In this paper,
a miniaturized hybrid soft surgical gripper is proposed for safe nerve manipulation in digital nerve
repair surgery. This new surgical gripper includes a soft inflatable actuator and a gripper shell with
a hook-shaped structure. The ability to achieve a compliant grip and safe interaction with digital
nerves is provided by the inflated soft pneumatic actuator, while the rigid hook retractor still allows
surgeons to scoop up the nerve from its surrounding tissues during surgery. The performance of
the proposed surgical gripper was evaluated by the contact/pulling force sensing experiments and
deformation measurement experiments. In the cadaver experiments, this new surgical gripper was
able to complete the required nerve manipulation within the limited working space. The average
deformation of the digital nerve with an average diameter of 1.45 mm gripped by the proposed
surgical gripper is less than 0.22 mm. The average deformity is less than 15% of its original diameter.

Keywords: soft pneumatic actuator; surgical gripper; digital nerve manipulation

1. Introduction

Digital nerves are the nerves that supply sensations such as pain, discriminatory touch, or other
sensations between the brain and fingers [1]. They are located with the digital arteries along the sides
of each finger. Digital nerves can be damaged by many different causes, including stretch and avulsion
injuries (excessive strain exerted on a nerve), crush and compression injuries (external forces crushing
the tissue), and penetrating injuries (shape laceration by a knife or piece of glass) [2]. In addition,
iatrogenic nerve injuries caused by medical interventions or inflicted accidentally by a treating surgeon
also may result in digital nerve damage [3,4]. Digital nerve repair is a microsurgical procedure used to
treat a severed or damaged nerve by reconnecting the ends of the severed nerve in the hand to allow
the nerve to heal, so as to reduce the possibility of scarring, neuroma, or painful growths [5,6].

After the patient has been given anesthesia, sharp dissection is used to free the damaged ends of
the injured digital nerve, and the surgeon examines the damaged ends of the nerve to determine the
best course of action by using an operative microscope. The damaged ends of the nerve are trimmed to
reveal healthy nerve fascicles, which are then repaired via end-to-end neurorrhaphy with fine sutures
placed in the epineurium (shown in Figure 1a) if the ends of the nerve can be pulled together without
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creating tension [7,8]. The nerve conduit may be used to bridge the gap when substantial tension is
required to bring the nerve ends together. The surgeon sews the ends of the nerve to the conduit ends
in order to form a channel guiding the fascicles as they grow together and rejoin [9,10].
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pigment epithelium (RPE) sheet transplantation based on the pneumatic balloon actuator. The 
largest force generated by the transplantation tool is about 3 mN. Tweezer-like soft surgical grippers 
and a three-bloat soft surgical gripper were developed to allow for compliant gripping of small 
objects [23,24]. However, the gripping components are bulky, which encroaches on the limited 
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(b) the forceps used in real digital nerve repair surgeries.

It has been reported by a research group from University of Washington [11] that the mechanical
stress caused by a minimally invasive surgery (MIS) grasper can cause unintended damage to tissue by
several means during tissue manipulations in MIS and even less severe immediate injury from grasping
or manipulation may still lead to clinically relevant consequences. Marucci et al. [12] mentioned that
iatrogenic trauma due to grasper manipulation causes major complications in laparoscopic surgery.
Digital nerves are smaller and more delicate than the tissues involved in MIS. Surgeons have to be
extremely cautious to prevent over-gripping damage when operating forceps in digital nerve repair
surgery (as shown in Figure 1b). Only a minority group of veteran surgeons are capable of performing
such surgeries due to the fear of nerve damage caused by over-gripping force during the nerve repair
surgery. Regenbogen et al. [13] reviewed technical errors from 444 surgical malpractice claims from
liability insurers. From their research reports, the majority of surgical adverse events involved technical
errors and two-thirds of the technical errors were linked to manual error. In addition, a majority of the
technical errors involved routine operations and 73% involved experienced surgeons operating within
their area of expertise and training. Thus, there is a strong drive to design a new surgical gripping
technology for safe digital nerve manipulation.

Soft-bodied robots made of soft materials can perform better in the interaction with organs and
tissues than instruments with rigid structures, because they can deform and absorb much of the
energy arising from a collision [14–17]. Regarding the existing soft surgical grippers, Liang et al. [18]
developed a micro, soft pneumatic actuator inspired by shape engineering and validated its future
potentials in biomedical applications by wrapping the sciatic nerve of a rat. This actuator can wrap
around the nerve tissues but cannot grip the nerves firmly. Lu and Kim et al. [19,20] proposed a
micro-gripper for retinal surgery. The micro-gripper can hold multiple micro-fingers according to
different applications, and each finger is composed of silicon phalanges connected by the joints
(polymer balloon actuators). The maximum gripping force generated by the micro-gripper with four
micro-fingers is approximately 20 mN at 551 kPa. Another similar soft robotic actuator was presented
by Gorissen et al. [21]. The maximum gripping force based on these two soft actuators was reported to
be 44 mN at 105 kPa. Konishi et al. [22] developed a novel surgical tool for retinal pigment epithelium
(RPE) sheet transplantation based on the pneumatic balloon actuator. The largest force generated
by the transplantation tool is about 3 mN. Tweezer-like soft surgical grippers and a three-bloat soft
surgical gripper were developed to allow for compliant gripping of small objects [23,24]. However,
the gripping components are bulky, which encroaches on the limited available space for the suturing
of the digital nerves. In addition to the surgical application, soft grippers have been widely applied in
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delicate object grasping applications. A fluid-driven micro bio-gripper and piezoelectric material-based
micro gripper were presented in [25,26], respectively. In addition, self-folding thermos-magnetically
responsive soft microgrippers were proposed by a research group from the Johns Hopkins University
in [27]. A passive compliant robotic gripper embedded with sensors made by conductive silicone
rubber elements and an adaptive neuro fuzzy inference strategy for controlling the input displacement
of the compliant gripper were proposed by Petković et al. [28]. However, these designs are difficult
to extend to the nerve manipulation in digital nerve repair surgery due to the large prototype size or
limited gripping force.

In addition to soft gripping the nerve, a surgical gripper should have the ability to scoop up
the nerve from the surrounding tissues, which include muscle, blood vessels, and connective tissues.
In this paper, a hybrid soft surgical gripper, which combines both a soft gripping component and a rigid
nerve hook retractor, is proposed for safe digital nerve manipulation in digital nerve repair surgery.
The proposed surgical gripper allows for the scooping up of the digital nerves by the hook-shaped
structure and then offers a compliant grip and soft contact with digital nerves via the inflated portion of
the soft pneumatic actuator when pressurized air is applied. To the best of our knowledge, no surgical
grippers combining soft pneumatic actuators for digital nerve manipulation have been reported.
The merits of the proposed surgical gripper are summarized as follows: (1) compared with forceps
with rigid structures, the proposed surgical gripper can offer a compliant grip and soft contact with
digital nerves provided by the inflated soft pneumatic actuator; (2) the inflated soft pneumatic actuator
of the proposed surgical gripper can provide a steady gripping force when constant pressurized
air is supplied. In addition, it can deform and absorb much of the energy arising from a collision.
The proposed surgical gripper can avoid unintended excessive stress damage to digital nerves while
handling nerves using forceps requires extreme caution; and (3) compared with the existing soft
surgical grippers, the proposed surgical gripper can provide much greater gripping force, and it still
allows surgeons to scoop up the nerves from the surrounding tissues.

2. Materials and Methods

2.1. Target Application and Performance Requirements

The soft surgical gripper presented here is designed for nerve manipulation in digital nerve repair
surgery. During the surgical procedures, the surgeon will operate the soft surgical gripper to grip
and hold the ends of the damaged digital nerve for neurorrhaphy and to rotate the gripped nerve for
observation. The performance requirements for the proposed surgical gripper are as follows:

(1) Overall surgical gripper size: The length of an incision made over the lesion on the patient’s
finger is approximate 2 cm, and the required working space for end-to-end neurorrhaphy is estimated
at approximately 10 mm. The size of the new surgical gripper must be determined to guarantee that
the new gripper can complete the required nerve manipulation within the limited working space;

(2) Deformation: Although there is lack of in-vivo research to describe the maximum tolerance
of digital nerve deformation, it is believed that the neurons can be compressed too far and become
dysfunctional. Therefore, the new surgical gripper aims to achieve minimal deformation of the digital
nerve during repair surgery;

(3) Gripping force range: The required gripping force range is approximately 0–1.0 N based on
a summary of reported microsurgical force characterization experiments, including brain surgeries,
retinal surgeries, and small bold vessel anastomosis [29,30]. It is reported that the maximum gripping
force seen in microsurgical manipulation is no more than 1.0 N.

2.2. Prototype of the Proposed Surgical Gripper

The proposed surgical gripper (as shown in Figure 2a) consists of a soft inflatable actuator,
a stainless-steel gripper shell, and a silicone air-supply tube. The size of the whole surgical gripper is
5 mm × 5 mm × 3 mm, and the nest for the pneumatic inflatable actuator is 2.5 mm × 2.5 mm × 5 mm
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(as shown in Figure 2b). The opening area for the inflation of the soft pneumatic channel is
2.5 mm × 2.5 mm × 0.25 mm. The size of the new surgical gripper is determined based on the required
space for neurorrhaphy according to clinical requirements. A steel wire with a diameter of 0.8 mm
is inserted into the air-supply silicone tube as a flexible arm to ensure that the silicone tube still has
adequate rigidity to hold the gripper in place. The flexible arm can be bent into any configurations
easily, which allows the surgeon to rotate the gripper manually while holding the nerve for observation.
The soft inflatable actuator is positioned inside the nest and the pneumatic channel inflates through
the opening area to push the nerve against the retractor and hence achieve a compliant grip.
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2.3. Design of the Soft Inflatable Actuators

The soft inflatable actuator is composed of a silicone tube, which is used to provide air pressure,
and a pneumatic channel, which is inflated to provide the inflation to grip the nerve. Two types of soft
inflatable actuators—the conventional design and the proposed pneumatic actuator—are examined
and compared in this section.

In the conventional design (as shown in Figure 3a), two silicone tubes are introduced to hold the
soft pneumatic channel. One silicone tube is inserted into the pneumatic channel to supply air pressure,
and Sil Poxy Glue (Smooth-On, Macungie, PA, USA) is used to seal the connection part between
this tube and the pneumatic channel to prevent air leakage. The other silicone tube is employed to
hold and close the end of the pneumatic channel with the glue. After the soft inflatable actuator is
fabricated, it is inserted into the nest of the stainless-steel shell. When air pressure is supplied to the
pneumatic channel through the air-supply silicone tube, the pneumatic channel starts to inflate through
the opening area at the bottom side of the nest and compress the gripped small objects. The advantage
of the conventional design is that it is much easier to obtain large inflation with less air pressure.
However, unexpected inflation (as shown in Figure 4a) occurred at the connection parts between the
silicone tube and the soft pneumatic channel during our experiments when approximately 35 kPa
was supplied. The cause of the unexpected inflation is shown in Figure 4b. The conventional soft
inflatable actuator will inflate along all directions when pressurized air is supplied. When pressure is
increasingly supplied to the pneumatic channel, the elastomer at the opening area is the first inflation
part, because it requires less pressure to form a balloon. When pressure is increased, the stretching
motion of the pneumatic channel is actuated, in addition to the inflation through the opening area.
The stretching force pushes the silicone tubes out of the nest of the gripper and leads to the unexpected
inflated bubble.
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A new design of the soft inflatable actuator is thus proposed to eliminate unexpected inflations.
Instead of using the elastomer as the body, a silicone air-supply tube is introduced to traverse through
the soft pneumatic channel to avoid its stretching motion (as shown in Figure 3b). A hole is cut in the
silicone air-supply tube to provide air pressure. The pneumatic channel covers the hole, and Sil Poxy
glue is applied to the surrounding area of the cut and also on the opening end of the tube to seal the
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end. The entire inflatable actuator is then inserted into the nest of the gripper to provide inflation.
When the entire structure is pressurized, the air pushes the elastomer surrounding the hole-region,
and hence, inflation of the actuator occurs (as shown in the right figure of Figure 3b). The thickness
of the inflatable section of the gripper is approximately 0.75 mm. Air pressure is gradually increased
to the pneumatic channel, and the unexpected inflations are eliminated. This new design allows the
inflatable actuator to sustain much more air pressure, thereby providing greater gripping force.

2.4. Fabrication of the Soft Pneumatic Channel

A communicating vessels-based fabrication method was proposed for the fabrication of the
soft pneumatic channels. The fabrication procedures for the soft pneumatic channels consist of
3D-printing of the rigid components, the molding process for the soft pneumatic channels, and the
detaching process.

The detailed fabrication steps are shown in Figure 5. First, the molds, including the top, middle,
and base holders; tube aligners; rod aligners; acrylic tubes; and steel rods, are prepared. The holders,
tube aligners, and rod aligners are 3D-printed (Stratasys, Eden Prairie, MN, USA) with VeroClear RGD
810 material. These molds are shown in Figure 5a. The tube and rod aligners are first integrated with
the holders. The acrylic tubes are then fixed to the slots of the top and base tube aligners. The steel
rods are inserted through the holes of the top rod aligner and locked to the holes of the base rod aligner.
The slots and holes in the base and top aligners are designed to align and fix the acrylic tubes and steel
rods, which can guarantee that the air channels inside the soft bodies are fabricated with consistent
dimensions along the bodies. After the molds are assembled, the prepared silicone material is poured
into the middle groove (shown in Figure 5b). The silicone material will gradually flow into the acrylic
tubes from bottom to top based on the principle of communicating vessels until the acrylic tubes are
completely filled. This procedure usually requires 5 min. The soft pneumatic channels are molded
inside the acrylic tubes. Thus, the inner diameter of the acrylic tubes defines the outer diameter of the
soft pneumatic channel. Steel rods are used to form air channels inside the soft cylinders. Therefore,
the diameter of the steel rod determines the inner diameter of the soft pneumatic channel. The length of
the fabricated soft pneumatic channels depends on the length of the acrylic tubes. The soft pneumatic
channels, with different dimensions according to different applications, can be fabricated by using
corresponding acrylic tubes and steel rods. In addition to acrylic tubes and steel rods, other tubes
having a smooth inner surface (e.g., stainless-steel tubes) and rigid rods (e.g., carbon pins or plastic
rods) holding the smooth outer surface can also be used to form the soft pneumatic channel in the
fabrication process. In our case, we needed a soft pneumatic channel with a thickness of 0.75 mm.
The selected inner diameter of the acrylic tubes and the diameter of the steel rods were 3 mm and
1.5 mm, respectively. The advantage of the communicating vessels-based fabrication method is that
it can effectively avoid air bubbles and allow the silicone materials to enter every corner of the thin
cavities. Even if there are some visible air-bubbles generated during the procedures, the upward soft
material flow can push the bubbles to the top, and the main part of the soft pneumatic channel remains
intact. Another notable feature of this fabrication method is that room temperature (approximately
24 ◦C) is used for curing instead of an oven, in which micro-bubbles may inflate and form larger
bubbles when heated, which may spoil the structure of the soft pneumatic channel when pressurized
air is provided. The curing procedure usually takes approximately 3 h, and the demolding process is
conducted by detaching the holders, detaching the top and base aligners, taking out the acrylic tubes,
and pulling out the steel rods from the soft pneumatic channels (as shown in Figure 5c). The fabrication
method is very robust, and the air bubbles are eliminated from the soft bodies. The structures of the
inner air channels are highly consistent along the body due to the fine inner wall of the acrylic tubes
and the alignment of the rods.
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After obtaining these soft pneumatic channels, the inflatable actuators can be fabricated and
connected to pneumatic power according to the methods mentioned above.

2.5. Control System

The control system of the proposed surgical gripper (as shown in Figure 6a) includes a push
button, a portable pump (D737-23-01, Parker Hannifin Corporation, Mayfield Heights, OH, USA),
a valve (X-Valve, Parker Hannifin Corporation), and a control board (Arduino UNO, ATmega328,
company, city, state abbr. if USA or Canada). The maximum free flows of the pump and valve are
both 11 slpm. When the push button is triggered, pressurized air is supplied to the soft pneumatic
channel for holding the object, and once the push button is triggered the second time, the valve is
activated to release the air and the gripped object. The amount of time for actuating the proposed
surgical gripper is approximately 220 ms. A pressure sensor is used to monitor the input air pressure
to the soft pneumatic inflatable actuator. The valve is activated to supply the air when the input air
pressure is less than the required value (150 kPa in our case). On the contrary, the valve is activated
to release the air when the input air pressure is more than the required value. The connection of the
components in the control system is shown in Figure 6b.
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3. Experimental Results

In order to evaluate the performance of the proposed soft hybrid robotic surgical gripper described
above, three types of experiments were conducted:

(1) Force sensing experiments: to determine the relationship between the pulling/gripping forces
generated by the inflated soft actuator and the input air pressure;

(2) Deformation measurement experiments: to measure the deformation of the digital nerves
gripped by the proposed surgical gripper with respect to the input air pressure;

(3) Gripping tests: to demonstrate the gripper’s ability to grip the digital nerve within the required
working space in digital nerve repair surgery based on cadaver experiments.

3.1. Force Sensing Experiments

During digital repair surgery, the gripping force must guarantee that the surgical gripper can
hold the nerve firmly and rotate the nerve for observation. The relationship between the gripping
force and the air pressure was determined for estimating the normal force exerted on the nerve during
the surgical procedures. Additionally, the pulling force was measured using Instron Universal Tester
(Instron, Norwood, MA, USA) and using real human digital nerves.

To measure the contact force generated by the inflation of the soft pneumatic actuator inside
the hook structure of the proposed soft hybrid surgical gripper, a support component (as shown in
Figure 7) was 3D-printed to translate the press to a sensitive force sensor. The thickness of the thin
top plane of the support component is 0.3 mm. The thin top plane was positioned in the middle of
the hook structure. When the air pressure was supplied to the inflatable actuator, the inflated balloon
contacted and pressed on thin top plane. The contact force could then be sensed by the force sensor.

The force sensor (XK3190-C801, Shanghai Yaohua, Shanghai, China) used in this paper has a
sensing range of 0–5 N, and its analog output is from 0 V to 5 V. A 16-bit analog-to-digital converter
(ADC) was employed to sample the signals from the force sensor. We used several dead weights,
including 1 g and 5 g to validate the accuracy of the force sensor. These weights were positioned on
the thin top plane of the support component, and the measured grams were shown on the screen.
The errors between the measured weight and the dead weights were less than 0.1 g, approximately
equaling 0.001 N (as shown in Figure 8). Thus, the thin top plane can perceive even a very tiny
compressive force from the inflation of the soft inflatable actuator accurately.
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The experimental setup for sensing the contact force generated by the soft inflatable actuator is
shown in Figure 7a. A holder was used to position the hybrid surgical gripper and ensure that the thin
top plane of the support component was located in the middle part of the hook structure. A pump
was employed to increasingly supply pressurized air to the soft pneumatic channel to produce the
inflation through the silicone tube. The pressure values and force signals were recorded by 16-bit
data acquisition equipment at the same time. In order to explore which silicone material is more
suitable to our application, two common types of soft materials (Ecoflex 0030 and DragonSkin 10
medium, Smooth-On, Macungie, PA, USA) with different Young moduli were used to fabricate the soft
pneumatic channels based on the proposed fabrication procedures. According to the size of the nest
for the soft inflatable actuator, a thickness of 0.75 mm was selected for both soft pneumatic actuators.
Two types of soft inflatable actuators were used to determine the relationship between the input air
pressure and contact force, respectively. The average force with deviation bars is shown in Figure 9.
The contact force depends on the input air pressure and the contact area between the inflated balloon
and the thin top plane. When the air pressure was gradually supplied to the soft pneumatic actuator,
the balloon was expanded along the gap between the thin top plane and the opening area of the nest
of the surgical gripper. The contact area was also enlarged with the increasing of the air pressure.
Thus, the relationship between the contact force and the input air pressure is not linear. Based on the
experimental results, the soft pneumatic actuator made of Ecoflex 0030 can generate greater force with
much lower air pressure than that made of DragonSkin 10 medium. In addition, the soft actuator
made of Ecoflex 0030 slightly showed Mullin’s effect after five repeated experiments, while the soft
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actuator made of DragonSkin 10 medium was more stable. As the soft inflatable actuator made of
Ecoflex 0030 can provide over 1 N force with much smaller air pressure and its compliance is also
small, Ecoflex 0030 was selected to fabricate the soft pneumatic channel of the surgical gripper for
digital nerve surgery. The relationship between the contact force and the input air pressure based on
the soft inflatable actuator made of Ecoflex 0030 was determined by the general Fourier-model-based
fitting with a root-mean-square error (RMSE) of 0.0042. The fitting equation is as follows:{

Fcontact = 0, x ≤ 34 kPa
Fcontact = a0 + a1 × cos(ω × x) + b1 × sin(ω × x), x > 34 kPa

(1)

where a0, a1, b1, and ω equal 1.439, −1.487, −0.006228, and 0.007646, respectively. An approximate
contact force value can be estimated according to the current air pressure based on Equation (1) during
a surgical procedure.
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Figure 9. The experimental results for the measurement of the contact force.

The pulling force depends on the coefficient of friction of the contacted surface between the
gripped object and the inflated balloon, as well as the normal force. Therefore, to obtain the most
accurate value, actual human digital nerves were used in the pulling experiments. One end of the
nerve was gripped by the Instron metallic gripper and the other end was gripped by the surgical
gripper, which was positioned by a clamp locked by a rigid multi-joint arm (as shown in Figure 10).
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After the soft pneumatic channel was inflated with the specified air pressure, the digital nerve was
stretched at a rate of 1 mm/second until grip failure occurred. Grip failure at the instrument–tissue
interface includes tissue slippage through the gripping area and tissue tearing. Unlike traditional
forceps with teeth or wave patterns, which have stress concentration points or edges, the inflated
balloon of the proposed surgical gripper provides distributed force to the gripped nerve. Thus, only
tissue slippage will occur during the pulling experiments. We investigated the pulling force at various
pressures ranging from 90 to 180 kPa with a step of 30 kPa. The peak force was sensed and recorded
by the load cell integrated with the Instron metallic gripper. The experiment was repeated five times
for each pressure. The digital nerves were thus cut into 20 segments of 2 cm length, and a new digital
nerve sample was used for each experiment. The average gauge length in the pulling experiments
was 7.27 mm. The experimental results of the peak force measurement are summarized in Table 1.
Based on the experimental results, the pulling force did not elevate substantially when the air pressure
was increased from 150 to 180 kPa. Additionally, it is important to note the influence of the nerve
dimension and gripped position on the pulling force.

Table 1. Peak force (N) for the pulling experiments.

Pressure No. 90 kPa 120 kPa 150 kPa 180 kPa

1 0.21 0.32 0.58 0.56
2 0.17 0.33 0.41 0.46
3 0.29 0.29 0.51 0.62
4 0.25 0.29 0.54 0.47
5 0.17 0.32 0.48 0.5

Average 0.218 0.31 0.504 0.522

3.2. Deformation Measurement Experiments

The schematic diagram of measuring the deformation gripped by the proposed surgical gripper
is shown in Figure 11a. An ink marking was made on the surface of the section of the digital nerve
that was required to be gripped. The original diameter of the ink-marked section was measured and
recorded (as shown in Figure 11b). The proposed surgical gripper was then used to grip the ink-marked
area, and the compression was held for 10 s (as shown in Figure 11c). Afterwards, the diameter of the
gripped ink-marked section was measured and recorded again (as shown in Figure 11d).

In order to avoid bias from the experimenters, two experienced surgeons were asked to measure
the diameter variation of the digital nerve. The original diameter of the digital nerve was measured by
one surgeon, and the other surgeon was asked to measure the diameter of the digital nerve after it was
gripped by the proposed surgical gripper. Each measurement was repeated five times, and the average
value was recorded as the measurement result, with the purpose of reducing measurement error.
Pressures ranging from 90 to 180 kPa with a step of 30 kPa were respectively applied to soft inflatable
actuator, and each setting was repeated three times (e.g., 90 kPa for 10s on the digital nerve was
repeated three times, each at a different section). The differences in the diameter before and after being
gripped based on different pressures are summarized in Table 2. The results suggest that deformation
depends on the original diameter and the gripped location of the digital nerve. Thus, the deformity
could vary even under the same pressure setting. It is observed that the average deformation of
a digital nerve with an average diameter of 1.45 mm is less than 0.22 mm. Therefore, the average
deformity is less than 15% of the original diameter.
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Figure 11. The deformation measurement experiments on digital nerves: (a) the schematic diagram for
the deformation measurement experiments; (b) measuring the original diameter of the ink-marked
area; (c) gripping the ink-marked area using the proposed surgical gripper; and (d) measuring the
diameter of the ink-marked area after being gripped.

Table 2. Results of the deformation experiments.

Pressure No. Diameter before
Gripped (mm)

Diameter after
Gripped (mm)

Difference (mm)/
Deformity (%)

90 kPa
1 1.23 1.10 0.13/11%
2 1.46 1.28 0.18/12%
3 1.30 1.10 0.2/15%

120 kPa
1 1.52 1.33 0.19/13%
2 1.69 1.59 0.1/6%
3 1.60 1.21 0.39/24%

150 kPa
1 1.90 1.59 0.31/16%
2 1.13 1.00 0.13/12%
3 1.48 1.15 0.33/22%

180 kPa
1 1.30 1.00 0.3/23%
2 1.08 0.97 0.11/10%
3 1.72 1.47 0.25/15%

3.3. Gripping Tests

In order to validate the proposed surgical gripper’s abilities to manipulate a digital nerve during
repair surgery, gripping tests were conducted based on a digital nerve located in the middle finger of
a cadaver.

First, the surgeon made an incision in the middle finger to expose the digital nerve with sharp
dissection (as shown in Figure 12a). The following operations on the digital nerve were conducted
under a microscope, and the figures were captured from the microscopic view. The proposed soft
hybrid surgical gripper was manually controlled to approach the section of the digital nerve that
needed to be gripped (as shown in Figure 12b). The digital nerve was then scooped up from the
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surrounding tissues (as shown in Figure 12c). After that, the soft pneumatic actuator was pressurized
to firmly grip the digital nerve by the inflated balloon (as shown in Figure 12d). Then, 150 kPa
was selected to inflate the soft pneumatic actuator during the gripping experiments according to the
measured contact and pulling force in the force sensing experiments. The interaction between the
balloon and the gripped nerve is shown in Figure 12e. Finally, the operation rotating the digital nerve
was tested (as shown in Figure 12f), which is used for suturing the reverse side of the digital nerve and
for observation.

Based on the experimental results, our findings show that the overall dimension of the proposed
surgical gripper can allow for the manipulation of the digital nerve within the limited working space.
In addition, the hook retractor structure of the proposed surgical gripper can scoop up the digital
nerve from the surrounding tissues and hold it in place by the inflated balloon.
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Figure 12. Gripping experiment on a digital nerve located in the middle finger of a cadaver using the
proposed soft hybrid surgical gripper ((b–f) were captured from microscopic view): (a) making an
incision to expose the digital nerve of the middle finger; (b) approaching the digital nerve that needed
to be gripped; (c) scooping up the digital nerve; (d) inflating the soft pneumatic actuator to grip the
digital nerve; (e) the zoomed-in figure of the inflated balloon; and (f) rotating the digital nerve for
suturing the reverse side of the digital nerve and for observation.
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4. Discussion and Conclusions

In this paper, a hybrid soft robotic surgical gripper is proposed for delicate nerve manipulation
in digital nerve repair surgery. It combines a soft inflatable actuator and a gripper shell with a
hook-shaped structure. The soft pneumatic actuator is inflated to achieve soft contacts and compliant
grip, which potentially reduces the risk of over-gripping damage. It also facilitates the surgeon’s
delicate nerve manipulation process. The surgeon does not have to worry about sudden over-gripping
force stimulation, as the gripping force generated by the proposed surgical gripper will vary little
when steady air pressure is provided. In contrast, handling a digital nerve by using traditional forceps
requires extreme caution. Additionally, the rigid hook retractor allows surgeons to scoop up the digital
nerve from the surrounding tissues. Contact/pulling force sensing experiments and deformation
measurement experiments were conducted to evaluate the performance of the proposed surgical
gripper. The operability of the proposed surgical gripper used in digital repair surgery was tested
based on cadaver experiments.

Furthermore, this new design possesses other key qualities, such as having low-cost components
and being water-resistant and non-corrosive. The cost for each gripper is approximately $25 US dollars
($10 US dollars for the soft inflatable actuator and $15 US dollars for the fabrication of the gripper
shell). The proposed fabrication method is also simple, low cost, and effective. The communicating
vessels-based fabrication can prevent the formation of small bubbles in the soft pneumatic channels
and can be easily extended to other applications. The air-supply tube combined with an interior steel
wire forms a flexible arm, which not only supplies air pressure, but also provides easy bending into
any desired configuration during digital nerve manipulation procedures. Moreover, the fabricated
soft inflatable actuator is a pluggable component in the proposed soft hybrid surgical gripper.
The soft inflatable actuator is designed for one-time use and can be thrown away after surgery.
The stainless-steel hook retractor can be sterilized before and after surgery; hence, it can be reused
many times. A new inflatable actuator can be inserted into the nest of the gripper for the next surgery.

Additionally, the proposed surgical gripper can be extended to grip tissues of larger dimensions in
other surgeries by enlarging the size of the hook structure. We revised the design of the hook structure
by increasing it 2 mm (the other parts remained the same) for gripping a human artery. It can also
grip an artery via the inflated balloon (as shown in Figure 13). In the current design, the new surgical
gripper includes a rigid hook-shaped structure in order to provide larger gripping force and to scoop
up the digital nerve from the surrounding tissues. In future studies, a fully soft robotic gripper will be
proposed for digital nerve repair surgery.
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