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Abstract: Silicon oxide-based memristors have been extensively studied due to their compatibility
with the dominant silicon complementary metal–oxide–semiconductor (CMOS) fabrication technology.
However, the variability of resistance switching (RS) parameters is one of the major challenges for
commercialization applications. Owing to the filamentary nature of most RS devices, the variability
of RS parameters can be reduced by doping in the RS region, where conductive filaments (CFs) can
grow along the locations of impurities. In this work, we have successfully obtained RS characteristics
in Pt dispersed silicon oxide-based memristors. The RS variabilities and mechanisms have been
analyzed by screening the statistical data into different resistance ranges, and the distributions are
shown to be compatible with a Weibull distribution. Additionally, a quantum points contact (QPC)
model has been validated to account for the conductive mechanism and further sheds light on the
evolution of the CFs during RS processes.

Keywords: silicon oxide-based memristors; resistance switching mechanism; variability; conductive
filament; Weibull distribution; quantum point contact

1. Introduction

Memristors are nonvolatile resistance switching (RS) devices which can keep their internal
resistance depending on the applied voltage and current status [1–6]. Currently, memristors have
attracted considerable attention due to their great potentials for next generation scalable nonvolatile
memory applications and neuromorphic computing [7–24]. Among numerous RS materials, silicon
oxide-based memristors have been intensively investigated, owing to their compatibility with the
dominant silicon complementary metal–oxide–semiconductor (CMOS) fabrication technology [25–35].
However, the variability of RS parameters is a major challenge for the progression of silicon oxide-based
memristors from research to application.

In this work, we fabricated Pt dispersed silicon oxide-based memristors and successfully obtained
their RS characteristics. In order to investigate the variability of RS parameters, the statistics of RS
parameters have been analyzed by screening the statistical data into different resistance ranges in
both the Reset and Set processes. Additionally, a quantum point contact model has been validated
to account for the conductive mechanism and further shed light on the evolution of the conductive
filaments (CFs) during RS processes.
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2. Materials and Methods

The studied Pt/Pt:SiOx/Ta memristors (the inset of Figure 1a) were fabricated on a Si wafer. Metallic
Ta and Pt layers were deposited by DC sputter deposition at ambient temperature. The RS layers of
the Pt:SiOx films were deposited by radiofrequency (RF) magnetron co-sputtering in pure Ar, using
SiO2 and Pt targets as dielectric and metal sources, respectively. The as-grown Pt dispersed SiO2 thin
films were composed of a SiO2 matrix with 2–3 nm-sized Pt nanoclusters. Pt concentrations were
of about 20–45 atomic%, which were controlled by the RF power of the Pt sputtering target [36,37].
The sandwich structure of the Pt/Pt:SiOx/Ta memristors consisted of (from bottom to top) a 10 nm
Ta bottom electrode, a 7 nm silicon dioxide blanket layer, and a 16 nm Pt disc (the diameter is about
50 µm) top electrode.
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the Set and Reset transitions. A current compliance limit of 0.5 mA is given in the Set process to avoid
the breakdown; (b) The ON and OFF resistance states in 400 cycles, extracted at low voltage (0.1 V).

The Current–Voltage (I–V) switching curves and resistance measurements were performed by
using an Agilent B1500 semiconductor parameter analyzer. After the electroforming operation, long
lasting repetitive cycling experiments were performed using voltage ramp stress for both the Set
and Reset processes, and a current compliance limit of 0.5 mA was given in the Set process to avoid
the breakdown. The Pt/Pt:SiOx/Ta memristors show a bipolar switching behavior, i.e., Set to the
low-resistance state (LRS) under negative voltages and Reset to the high-resistance state (HRS) under
positive voltages, as shown in Figure 1a. Figure 1b presents the ON and OFF resistance states of 400
cycles, and the average RS range is approximately from 1 to 10 kΩ.

3. Results

3.1. Statistical Distributions

To investigate the variability of RS parameters in both the Set and Reset processes, the statistics of
RS parameters versus the initial resistances has been done, and are shown in Figure 2. Figure 2a,b
shows the Reset voltage and Reset current (VRESET and IRESET) versus the ON-state resistance (RON),
which is calculated at a low voltage (0.1 V). According to the statistics results, we can see that VRESET
is nearly independent of RON, whereas IRESET is inversely proportional to RON. This observation is
compatible with the thermal-activated dissolution model [38]. In this model, the Reset event happens
only when the temperature of the CFs reaches a critical value. Figure 2c,d shows the Set voltage and
Set current (VSET and ISET) versus the OFF-state resistance (ROFF), also calculated at 0.1 V. From these
two figures, it can be seen that VSET is proportional to ROFF, whereas ISET is nearly independent of
ROFF. Through the statistics of RS parameters, we can know that the variations of RON and ROFF have
a strong impact on the uniform distributions of RS parameters. We could improve the performance of
memristors by controlling the sizes of the CFs before the Reset and Set transitions.
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Figure 2. The statistics of resistance switching (RS) parameters in Pt/Pt:SiOx/Ta memristors. (a) The
Reset voltages and (b) the Reset currents versus the ON-state resistances for the measured 400 cycling
data of the same device. (c) The Set voltages and (d) the Set currents versus the OFF-state resistances
for the measured 400 cycling data of the same device.

Next, the nature of the variation of RS parameters was explored using a data screening method.
The cumulative distributions of VRESET and IRESET in different ON-state resistance ranges are shown
in Figure 3a,b, respectively, and the cumulative distributions of VSET and ISET in different OFF-state
resistance ranges are shown in Figure 4a,b, respectively. In these four cases, the cumulative distributions
are almost straight lines, which are compatible with the Weibull distribution. Therefore, we can use
the Weibull distribution function to fit the experimental data of RS parameters in different resistance
ranges to obtain the Weibull parameters. The Weibull distribution is defined as:

F = 1− exp
[
−(x/x63%)β

]
(1)

or
W ≡ Ln(−Ln(1− F)) = βLn(x/x63%) (2)

where β is the Weibull slope or shape factor, which represents the statistical dispersion. x63% is the
scale factor parameter, which is the value of F ≈ 63%. After fitting of the experimental data by
the Weibull distribution, we can obtain the Weibull parameters of VRESET and IRESET, as shown in
Figure 3c,d. The scale factor of VRESET (VRESET63%) is independent of RON, and the scale factor of IRESET
(IRESET63%) is inversely proportional to RON, which is consistent with the scatter plots of Figure 2a,b.
The Weibull slope of VRESET and IRESET is nearly independent of the ON-state resistances, which
means that there are no microstructure variations of the CFs before the Reset point [38,39]. Similarly,
the Weibull parameters of VSET and ISET can be obtained by fitting the experimental data using the
Weibull distribution function, as shown in Figure 4c,d, respectively. The scale factor of VSET (VSET63%)
is proportional to ROFF, and the scale factor of ISET (ISET63%) is independent of ROFF, which is consistent
with the scatter plots of Figure 2c,d. The Weibull slopes of VSET and ISET are nearly independent of
the OFF-state resistances, which means that there are no obvious microstructure variations of the CFs
before the Set point [40].



Micromachines 2019, 10, 369 4 of 10
Micromachines 2019, 10, x 4 of 10 

 

 
Figure 3. The Weibull distributions of the Reset voltage and the Reset current in 
Pt/Pt:SiOx/Ta devices. Experimental distributions (symbols) and the fitting to Weibull 
distribution (lines) of (a) the Reset voltage and (b) the Reset current as functions of the ON-
state resistance. Weibull slopes and scale factors of (c) the Reset voltage and (d) the Reset 
current versus <𝑅 >, where <𝑅 > is the average value of the ON-state resistance (𝑅 ) in 
each screening range. It can be seen that the Weibull slopes of the Reset voltage and the 
Reset current are independent of <𝑅 >, and the scale factor of the Reset voltage is constant, 
whereas the Reset current is inversely proportional to <𝑅 >. 

 
Figure 4. The Weibull distributions of the Set voltage and the Set current in Pt/Pt:SiOx/Ta 
devices. Experimental distributions (symbols) and the fitting to Weibull distribution (lines) 
of (a) the Set voltage and (b) the Set current as functions of the OFF-state resistance. Weibull 
slopes and scale factors of (c) the Set voltage and (d) the Set current versus <𝑅 >, where 
<𝑅 > is the average value of the OFF-state resistance (𝑅 ) in each screening range. It can 
be seen that the Weibull slopes of the Set voltage and the Set current are independent of 
<𝑅 >, and the scale factor of the Set voltage is proportional to <𝑅 >, whereas the Set 
current is constant. 

Figure 3. The Weibull distributions of the Reset voltage and the Reset current in Pt/Pt:SiOx/Ta devices.
Experimental distributions (symbols) and the fitting to Weibull distribution (lines) of (a) the Reset
voltage and (b) the Reset current as functions of the ON-state resistance. Weibull slopes and scale
factors of (c) the Reset voltage and (d) the Reset current versus <RON>, where <RON> is the average
value of the ON-state resistance (RON) in each screening range. It can be seen that the Weibull slopes of
the Reset voltage and the Reset current are independent of <RON>, and the scale factor of the Reset
voltage is constant, whereas the Reset current is inversely proportional to <RON>.
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Figure 4. The Weibull distributions of the Set voltage and the Set current in Pt/Pt:SiOx/Ta devices.
Experimental distributions (symbols) and the fitting to Weibull distribution (lines) of (a) the Set voltage
and (b) the Set current as functions of the OFF-state resistance. Weibull slopes and scale factors of (c) the
Set voltage and (d) the Set current versus <ROFF>, where <ROFF> is the average value of the OFF-state
resistance (ROFF) in each screening range. It can be seen that the Weibull slopes of the Set voltage and
the Set current are independent of <ROFF>, and the scale factor of the Set voltage is proportional to
<ROFF>, whereas the Set current is constant.
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3.2. Quantum Point Contact Model

Many different conduction models have been proposed for the HRS, including Schottky
emission [41–44], trap-assisted tunneling [45–47], Poole–Frenkel conduction [43,48], space-charge
limited current [49–52], thermally activated hopping [53,54], and the Quantum Point Contact model
(QPC) [55–61], among others. Specifically, the QPC model can provide a smooth transition from
tunneling in the HRS to Ohmic conduction in the LRS for several kinds of RS devices [58–61]. To analyze
the conductive mechanisms of RS processes for Pt/Pt:SiOx/Ta memristors, the QPC model has been
introduced here to fit the I–V curves in both the Reset and Set processes.

The QPC model is based on the Landauer transmission approach to calculate conduction along
narrow microscopic constrictions [57,58]. According to the Landauer’s approach, the current flowing
through a CF with N paths can be calculated as [62]:

I(V) =
2e
h

N

∞∫
−∞

T(E)
{
f (E− βeV) − f (E + (1− β)eV)

}
dE (3)

where f is the Fermi–Dirac distribution function, E is the energy, T(E) is the transmission probability, β is
the averaged asymmetry parameter (with the constraint 0 < β ≤ 1), and V is the applied voltage assumed
to drop at the cathode and anode interfaces with a fraction of β and (1 − β), respectively. Assuming an
inverted parabolic potential barrier, we can obtain an expression for the tunneling probability [63–65],
T(E) =

{
1 + exp[−α(E−Φ)]

}−1, where Φ is the barrier height, α = tBπ2h−1
√

2m∗/Φ is related to the
inverse of the potential barrier curvature, m∗ is the effective electron mass, and tB is the barrier width
at the equilibrium Fermi energy, assumed to be equal to tgap. Inserting the tunneling probability into
Equation (3), we can obtain:

I =
2e
h

N
{

eV +
1
α

Ln
[

1 + exp
{
α[Φ − βeV]

}
1 + exp

{
α[Φ + (1− β)eV]

} ]} (4)

There are four parameters in Equation (4). In order to simplify the fitting process, here we fixed
Φ = 0.5 eV and β = 1 by considering the asymmetry structure of the devices. Then, we extracted the
number of CF paths N and the average tgap from the fitting experimental data of 400 cycles by using
Equation (4) and the least squares estimation (LSE) method. The I–V fitting results are excellent in
both log and linear scales, as shown in Figure 5a,b. Furthermore, Figure 5c,d shows the exacted QPC
parameters versus the CF resistance. It can be seen that the average tgap is approximately 0.1 nm the in
LRS (ON-state) and 0.25 nm in the HRS (OFF-state), and the average number of CF paths is about 30 in
the LRS and five in the HRS.
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results together with experimental data of ON and OFF states (a) in log scale and (b) linear scale. (c) The
barrier thickness and (d) the number of CF paths versus the initial resistance, respectively. The averaged
values are: < tgap > = 0.1 nm,< N > = 30 in the ON-state; and < tgap > = 0.25 nm, < N > = 5 in
the OFF-state.

4. Discussion

According to the screening of the statistical data into different resistance ranges, the distributions
of RS parameters were shown to be compatible with a Weibull distribution. After using the Weibull
distribution function to fit the experimental data of RS parameters into different resistance ranges,
we can obtain that VRESET63% is independent of RON and IRESET63% is inversely proportional to RON,
whereas VSET63% is proportional to ROFF and ISET63% is independent of ROFF, which are consistent
with the experimental results. Besides, the Weibull slopes of VRESET, IRESET, VSET, and ISET are nearly
independent of the initial resistances, which means that there are no microstructure variations of the
CFs before the Reset and Set points. Furthermore, the QPC model has been validated to account for
the conductive mechanism and further show the evolution of the CFs during RS processes. From the
LRS to HRS, the number of CF paths would decrease, while the barrier gap would increase.

Combining the fitting results of the QPC model with the statistics of RS parameters, we now try
to propose the conductive mechanisms of RS processes. During the ON switching, the RS process is
mainly driven by an applied electric field, and the CFs are more likely to grow along the locations
of Pt nanostructures. Cation migration and metallic CF formation in RS layers can be identified as a
candidate RS mechanism due to the abrupt increase of the current in I–V curves (Figure 1a) [66,67].
During the OFF switching, cations are driven out of the CFs and thus introduce a gap between the CFs
and the top Pt electrode. Therefore, the number of CF paths would decrease, while the barrier gap
would increase from the LRS to the HRS. The Reset event happens only when the temperature of the CFs
reaches a critical value, according to the thermal-activated dissolution model. In addition, according to
the statistics, we can know that the variations of the RS parameters can be significantly reduced and the
performance of memristors could be improved by controlling the sizes of the CFs before the Reset and
Set transitions. That is to say, the variability of RS parameters can be reduced by doping in RS regions,
where CFs can be induced to grow along the locations of impurities, or by inserting a two-dimensional
material with engineered nanopores, which can modify the RS characteristics of memristors.
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