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Abstract: Second-order vector modes, possessing doughnut-shaped intensity distribution with unique
polarization, are widely utilized in material micromachining, optical tweezers, and high-resolution
microscopy. Since the hollow-core fiber can act as a flexible and robust optical waveguide for
ultra-short pulse delivery and manipulation, high-order vector modes guided in hollow-core fibers
will have huge potential in many advanced applications. We firstly reveal that a second-order vector
mode can be well guided in a hollow-core antiresonant fiber with the suppression of the fundamental
mode and other second-order vector modes at the red side of transmission band. We interpret
our observation through a phase-matched coupling mechanism between core modes and coupled
cladding modes. A single second-order vector mode such as TE01, TM01, or HE21 can be guided with
low confinement loss at specific wavelengths with appropriate structure parameters. Our proposed
hollow-core fibers have a modal engineering function which will open up a new avenue toward the
single second-order vector mode propagation and its fiberized applications.

Keywords: photonic crystal fiber; hollow-core fiber; suppression of the fundamental mode;
second-order mode propagation

1. Introduction

Hollow-core antiresonant fibers (HC-ARFs) attract considerable interest for their simple geometries
and extraordinary performances [1–3], which are utilized for a wide range of applications such as
telecommunications [4], micromachines [5], surgical procedures [6], ultraviolet laser delivery [7],
mid-infrared fiber lasers [8], and optofluidic sensors [9]. Additionally, HC-ARFs can also be further
exploited as interesting platforms to study complex sensitive processes in gases or microfluidics due to
the possibility of filling the hollow core with different gases or liquids, long interaction length, and the
ability to suppress unwanted modes, as discussed in references [10,11]. Light can be confined inside the
hollow core of the HC-ARF via the mechanism of antiresonant effect [12], and strengthened by inhibited
coupling between core and cladding modes [13]. In general, the fundamental mode transmission
without higher-order modes (HOMs) in HC-ARFs is required in some applications such as high-power
pulsed laser delivery [14], data transmission [15], and biochemical sensing [16]. Several recent works
were reported to suppress HOMs in HC-ARFs through the resonant coupling between HOMs in the
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core and tube modes in the cladding based on the structure parameter optimization to achieve only
single-mode operation [17–19].

In contrast to single-mode fibers (SMFs), few-mode fibers allow both the fundamental
mode and a few HOMs to be guided, promoting applications in few-mode fiber amplifiers [20],
mode-division-multiplexed systems [21], and multi-parameter sensing [22] with attractive features
that SMFs cannot implement. Furthermore, only HOM propagation is preferred in a variety
of applications instead of the fundamental mode because of its complex intensity pattern,
phase property, and polarization distribution. The advantageous applications of HOMs include
all-fiber Raman probe [23], ultra-large effective area high-power lasers [24], and nonlinear optics [25].
In particular, the second-order modes, including four degenerate vector modes, TE01 (azimuthally
polarized), TM01 (radially polarized), HE21(even), and HE21(odd) modes, possess doughnut-shaped
field distribution with unique polarization [26]; such properties of the second-order mode
provide opportunities in many significant applications such as high-resolution microscopy [27],
material micromachining [28], particle trapping and optical tweezers [29], mode division multiplexing
systems [30], plasmonic focusing [31], and so forth [32]. Additionally, the second-order mode in
few-mode fibers could be served as exciting light to realize all-fiber sensors with simple structures [33].

Propagation properties of only second-order modes with suppression of the fundamental mode
were investigated in different types of microstructure optical fibers. In solid-core bandgap photonic
crystal fibers (PCFs), the transmission properties of only the LP11 mode at the red transmission band
edges were investigated [34]. Recently, a new design of the solid-core PCF was proposed to suppress
the fundamental mode by the coupling between the fundamental mode and the cladding mode to
keep the second-order modes with low confinement loss [35]. Another theoretical work by Chen et al.
focused on selectively eliminating the fundamental mode or the second-order mode through the use of
complex structures with a high-index core and a photonic bandgap cladding [36]. The hollow-core
fibers (HCFs) have unique advantages for ultra-short pulse laser delivery over solid-core fibers, and the
ability to guide only second-order vector mode in the HCFs will open up many new applications. In the
hollow-core bandgap PCFs, Digonnet et al. claimed that the guided core modes are determined by the
frequencies, and only HOMs can be guided in the core due to the cutoff of the fundamental mode at the
lower-frequency band edge [37]. Moreover, the favor propagation of the LP11 mode was presented in
inhibited-coupling guiding tubular fibers with modified cladding structure [38]. However, the design
for second-order mode operation they investigated involved degenerated modes (LP11 mode group)
instead of separated vector modes (TE01, TM01, HE21(even), and HE21(odd) modes) in these fibers,
which may be not ideal for many applications in which a pure second-order vector mode is desirable,
such as high-resolution microscopy [27], material micromachining [28], particle trapping and optical
tweezers [29], and so forth.

In this paper, we firstly demonstrate the unique modal-guiding property in a HC-ARF, where only
one second-order vector mode is well guided with the suppression of the fundamental mode and
other second-order vector modes at the red side of the transmission window. We further exploit the
detailed characteristics of the HC-ARF in terms of dispersions of core modes and cladding modes,
confinement losses of core modes, mode patterns, and the coupling mechanism at the transmission red
edge. By understanding the coupling mechanism, we propose that there are specific wavelength ranges
in which only one second-order vector mode of TE01, TM01, or HE21 mode can be well guided with
suitable design of fiber structure parameters. Through the modal engineering by optimizing the fiber
structure, only one second-order vector mode can be guided in a HCF. Since the HCFs are extremely
important for ultra-short pulse laser delivery, our selective second-order vector mode guiding in
a HC-ARF will open up advanced applications such as laser drilling [39], particle trapping [40],
and microscopy [41] by using ultra-short pulse lasers.
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2. Fiber Structures and Modal Engineering Conception

Here, a simple HC-ARF structure consisting of a hollow-core surrounded by eight identical silica
tubes (Figure 1) is used to investigate the modal characteristics. The core diameter of D, the inner
tube diameter of d, the tube thickness of t, and the tube gap of g are related by the expression
D = (d + 2t + g)/sin(π/8) − (d + 2t) [42]. Modal characteristics are calculated using a full-vector finite
element method (FEM) with the initial parameters of D of 41 µm, t of 0.394 µm, g of 3 µm, and d
of 19.769 µm. The white region represents the air with the refractive index of 1. The gray region
represents the background material of silica. The dispersion of silica can be calculated using the
Sellmeier equation [43] as follows:

n(λ) =

√
1 +

B1λ2

λ2 − λ2
1

+
B2λ2

λ2 − λ2
2

+
B3λ2

λ2 − λ2
3

, (1)

where B1 = 0.6961663, B2 = 0.4079426, B3 = 0.8974794, λ1 = 0.0684043 µm, λ2 = 0.1162414 µm,
and λ3 = 9.896161 µm [43]. The material loss is neglected, since the material absorption of silica is
quite low within the explored wavelength range [3,9,17,19,35].
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extremely fine meshes, with element sizes of less than λ/5 in air and less than λ/6 in the thin glass 
tube regions, are needed to achieve accurate results [3]. Additionally, the dispersion curves of core 
modes and cladding modes are depicted with the real part of the mode effective refractive index. The 
mode confinement loss can be calculated by the equation in reference [44] which is related to the 
imaginary part of the mode effective refractive index.  

Figure 2a shows the spectra of confinement losses of the fundamental modes (HE11(x, y)) and 
second-order mode group (TE01, TM01, and HE21(even, odd)) as a function of operating wavelength in 
the second transmission band. Moreover, the electric field distributions of these core modes are 
illustrated in Figures 2b–g, where the arrows indicate the polarization directions. Within the working 
wavelength range of 420–780 nm, the spectrum exhibits a bandwidth of over 300 nm, and the band 
edges of this transmission window are around 420 nm and 770 nm, respectively.  

As shown in Figure 2a, the confinement losses of second-order modes are much larger than those 
of the fundamental modes at the center part of transmission band. However, the results are quite 
different at the red side of the transmission window. As the wavelength is larger than 670 nm, the 
losses of HE11, TE01, TM01, and HE21 modes all fluctuate with the wavelength, which can be explained 
by the fact that the core modes couple to cladding modes localized in silica tubes [45]. The similar 
loss fluctuations at the red side of the second transmission band are also observed in the HC-ARF 
with seven tubes [45]. Although the losses of the different modes increase with fluctuations at the red 
side of the band, the loss of the fundamental mode is always lower than those of HOMs due to the 
strong coupling between HOMs and tube modes with optimized d/D of 0.7 [45]. However, some 
interesting phenomena occur in our simulation, which are quite different from the results in reference 
[45]. For example, the HE21 mode is well guided with the lowest confinement loss of 0.72 dB/m at 
762.5 nm, and the losses of the fundamental mode and other HOMs are much higher at this 
wavelength. The modal properties within the wavelength range from 755 nm to 770 nm, marked with 

Figure 1. Cross-section of the proposed hollow-core antiresonant fiber (HC-ARF).

The FEM is utilized to investigate the mode characteristics and propagation constants of the core
modes and cladding modes. The confinement loss is calculated through the use of a perfectly matched
layer (PML) to surround the simulation area as the imaginary part of the eigenvalue returned by the
modal solver [3]. The mesh size is carefully optimized to make the calculation accurate. In this case,
extremely fine meshes, with element sizes of less than λ/5 in air and less than λ/6 in the thin glass tube
regions, are needed to achieve accurate results [3]. Additionally, the dispersion curves of core modes
and cladding modes are depicted with the real part of the mode effective refractive index. The mode
confinement loss can be calculated by the equation in reference [44] which is related to the imaginary
part of the mode effective refractive index.

Figure 2a shows the spectra of confinement losses of the fundamental modes (HE11(x, y)) and
second-order mode group (TE01, TM01, and HE21(even, odd)) as a function of operating wavelength
in the second transmission band. Moreover, the electric field distributions of these core modes are
illustrated in Figure 2b–g, where the arrows indicate the polarization directions. Within the working
wavelength range of 420–780 nm, the spectrum exhibits a bandwidth of over 300 nm, and the band
edges of this transmission window are around 420 nm and 770 nm, respectively.

As shown in Figure 2a, the confinement losses of second-order modes are much larger than those
of the fundamental modes at the center part of transmission band. However, the results are quite
different at the red side of the transmission window. As the wavelength is larger than 670 nm, the losses
of HE11, TE01, TM01, and HE21 modes all fluctuate with the wavelength, which can be explained by
the fact that the core modes couple to cladding modes localized in silica tubes [45]. The similar loss
fluctuations at the red side of the second transmission band are also observed in the HC-ARF with seven
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tubes [45]. Although the losses of the different modes increase with fluctuations at the red side of the
band, the loss of the fundamental mode is always lower than those of HOMs due to the strong coupling
between HOMs and tube modes with optimized d/D of 0.7 [45]. However, some interesting phenomena
occur in our simulation, which are quite different from the results in reference [45]. For example,
the HE21 mode is well guided with the lowest confinement loss of 0.72 dB/m at 762.5 nm, and the
losses of the fundamental mode and other HOMs are much higher at this wavelength. The modal
properties within the wavelength range from 755 nm to 770 nm, marked with dashed line in Figure 2a,
are further investigated in detail in Section 3.1. The cladding modes are affected by the tube structure
parameters, which can be optimized to produce the desirable coupled cladding modes. Thus, they will
have mode resonance with unwanted core modes, filtering specific core modes even it is a fundamental
mode. Through the proposed modal engineering, only second-order vector mode operation can
be implemented.
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Figure 2. (a) The confinement loss curves, and (b–g) electric field distributions of HE11(x, y), TE01,
TM01, and HE21(even, odd) core modes in the HC-ARF at the wavelength of 570 nm. The fiber structure
parameters are D = 41 µm, t = 0.394 µm, g = 3 µm, d = 19.769 µm, and d/D = 0.482. Both HE11(x, y) and
HE21(even, odd) are degenerated modes in two different polarization directions.

3. Characteristics of Second-Order Modes in HC-ARFs and Discussion

3.1. Characteristics of Only HE21 Mode Propagation

In order to gain more detailed insight into the fluctuation in Figure 2a, the dispersion curves and
confinement loss curves of HE11, TE01, TM01, and HE21 modes at the wavelength range of 755–770 nm
are shown in Figure 3a,b. The step of calculated points is 0.5 nm and it is added to 0.1 nm at the peak
region of the curves. In Figure 3b, the confinement losses of HE11, TE01, and TM01 core modes are
larger than that of the HE21 mode at the wavelength range from 759.5 nm to 766.0 nm. Furthermore,
the losses of HE11, TE01, and TM01 core modes reach to high peaks at the wavelength around 764 nm.
To explain the high loss peaks of core modes around 764 nm, the electric field distributions of HE11, TE01,
TM01, and HE21 core modes and the related cladding modes at 764 nm are illustrated in Figure 4a–g.
Additionally, the dispersion curves of the core modes and the related cladding modes are plotted in
Figure 3a to further explain these high loss peaks.

As shown in Figure 3a, the intersection points between the dispersion curves of HE11, TE01,
and TM01 core modes and those of related coupled cladding modes correspond to phase matching
conditions, leading to high loss peaks of HE11, TE01, and TM01 core modes around 764 nm. It should be
noted that, although the dispersion curves of TE01 and TM01 coupled cladding modes cross with that
of the HE21 mode around 764 nm, the loss of HE21 mode is kept with the low value without resonant
coupling due to the mismatched polarization directions. Furthermore, the electric field distributions in
Figure 4a–g show that the HE11, TE01, and TM01 core modes can couple with related cladding modes
with matched polarization directions at 764 nm, while the HE21 mode can be well confined in the
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core due to the mismatched polarization directions at 764 nm. In other words, the high loss peaks
of HE11, TE01, and TM01 core modes around 764 nm arise from the resonance coupling between core
modes and related cladding modes as the effective index and polarization matching conditions are
simultaneously satisfied.

Mode extinction ratio (MER) is commonly defined as the loss ratio between different modes to
quantify the degree of mode suppression; here, we introduce MER of the fundamental mode and other
second-order mode to the desirable specific second-order vector mode, describing the propagation
performance of desirable second-order vector mode. In Figure 3b, the loss of HE21 mode is 1.02 dB/m,
and the losses of HE11, TE01, and TM01 modes are 46.28 dB/m, 267.57 dB/m, and 101.76 dB/m at
763.5 nm, respectively. Thus, the MER for HE21 mode is larger than 45 at 763.5 nm; in this case, only one
second-order vector mode, HE21 mode, is well guided at the specific wavelength. We also noticed that
this remarkable MER for the second-order vector mode cannot be observed in the first transmission
band due to the relatively weak coupling from the cladding modes. Additionally, similar results of only
HE21 mode guiding can be obtained around 413.5 nm at the red side of the third transmission band,
which verify the reliability of the unique modal-guiding property at the red side of transmission bands.
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Figure 3. (a) The dispersion curves of HE11, TE01, TM01, and HE21 core modes and related coupled
cladding modes. (b) Confinement losses of different core modes. The fiber structure parameters are
D = 41µm, t = 0.394 µm, g = 3 µm, d = 19.769 µm, and d/D = 0.482. The step of calculated points is
0.5 nm and the step is added to 0.1 nm at the peak region of curves.
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3.2. Characteristics of Only TM01 Mode Propagation

Based on our understanding of only HE21 mode guiding with the suppression of the fundamental
mode and other second-order vector modes at the red side of the transmission window, we also realize
the propagation of only TM01 or TE01 mode with suppression of other modes by choosing suitable
parameters of HC-ARFs. To keep the invariance of the transmission window, the initial parameters of
core diameter and tube thickness are always kept constant as D of 41 µm and t of 0.394 µm, and the
dispersion and confinement loss are also investigated in the red side of the transmission window.

In this part, we propose the propagation of only TM01 mode with low confinement loss. The fiber
structure parameters are D = 41 µm, t = 0.394 µm, g = 2 µm, and d = 21.389 µm. Figure 5a depicts the
dispersion curves of HE11, TE01, TM01, and HE21 core modes and related coupled cladding modes.
In order to make the Figure 5a clear, only the dispersion curves of cladding modes corresponding to
relatively high loss peaks of the core modes are depicted. Figure 5b shows the confinement losses
of different core modes at the wavelength range from 750 nm to 765 nm. Several confinement loss
peaks of HE11, TM01, and HE21 core modes occur at the wavelength range from 750 nm to 765 nm.
The electric field distributions of the core modes and related coupled cladding modes at particular
resonant wavelengths are shown in Figure 6a–h.

As shown in Figure 5, the confinement losses of HE11, TE01, TM01, and HE21 core modes rise to
relatively high loss peaks when the dispersions curves of HE11, TE01, TM01, and HE21 core modes and
related cladding modes are crossed at particular wavelengths. The wavelengths corresponding to the
relatively high loss peaks of HE21, TE01, HE11, and TM01 modes are 754.9 nm, 759.2 nm, 761.4 nm,
and 763.3 nm, respectively. At these wavelengths, the HE11, TE01, TM01, and HE21 core modes couple
with cladding modes, as shown in Figure 6a–h. The TM01 mode is well guided with the low losses of
0.80 dB/m at 754 nm and 0.90 dB/m at 758 nm. The confinement losses of HE11, HE21, and TE01 modes
are 4.95 dB/m, 4.86 dB/m, and 59.82 dB/m, respectively. Thus, the MER for the TM01 mode is larger than
5 at 758 nm. Additionally, the electric field distributions of HE11, TE01, TM01, and HE21 core modes at
758 nm are shown in Figure 7a–d. The electric fields of HE11, TE01, and HE21 core modes are partly
distributed into the cladding tubes, indicating the resonant coupling loss, while the TM01 mode can be
well confined in the hollow core. The propagation of TM01 mode with low confinement loss appears at
two wavelength ranges around 754 nm and 758 nm with the proposed fiber structure parameters.
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wavelengths corresponding to relatively high loss peaks: (a,e) at the wavelength of 761.4 nm; (b,f) at
the wavelength of 759.2 nm; (c,g) at the wavelength of 763.3 nm; (d,h) at the wavelength of 754.9 nm.
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3.3. Characteristics of Only TE01 Mode Propagation

So far, the propagation of only TM01 and only HE21 modes with low confinement loss were
discussed in HC-ARFs with different tube gaps. In this part, we set tube gap g as 0µm and tube diameter
d as 24.628 µm to propose only TE01 mode propagation with the suppression of the fundamental mode
and other second-order vector modes. Figure 8 presents the dispersion and confinement loss curves of
HE11, TE01, TM01, and HE21 core modes at the wavelength range from 744 nm to 758 nm. In Figure 8b,
the losses of HE11, TE01, TM01, and HE21 core modes all fluctuate within the investigated wavelength
range and the TE01 mode possesses high MER around 750 nm. Similarly, only the dispersion curves
of the cladding modes corresponding to relatively high loss peaks are depicted in Figure 8a to make
the figure clear. Moreover, the electric field distributions of the core modes and the coupled cladding
modes at the wavelengths corresponding to relatively high loss peaks are shown in Figure 9a–h.Micromachines 2019, 10, x FOR PEER REVIEW 9 of 13 
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As shown in Figure 8a, the dispersion curves of HE11, TE01, TM01, and HE21 core modes cross
with those of related cladding modes at particular wavelengths, where the losses of HE11, TE01, TM01,
and HE21 core modes reach to high peaks in Figure 8b. The loss peaks of TE01, HE11, TM01, and HE21

modes reach to 31.42 dB/m, 16.11 dB/m, 243.66 dB/m, and 153.28 dB/m at 745.0 nm, 749.7 nm, 749.7 nm,
and 753.1 nm, respectively. At these wavelengths, the core modes couple to cladding modes residing
in silica tubes as shown in Figure 9a–h. In other words, the core modes couple to related cladding
modes as the effective index and polarization matching conditions are both satisfied, causing high
confinement loss at resonant wavelengths, which is the same mechanism as the results demonstrated
in the above sections. Based on this coupling mechanism, HE11 and TM01 core modes couple to the
related cladding modes and reach to high loss peaks around 750 nm. Although the HE21 core mode
does not couple with the related cladding mode around 750 nm, the HE21 core mode keeps with
relatively high confinement loss within the studied wavelength range. The confinement losses of HE11,
HE21, and TM01 modes are 10.65 dB/m, 13.20 dB/m, and 69.61 dB/m, respectively, which are much
larger than the confinement loss of 1.17 dB/m of the TE01 mode at 750 nm, and the MER for the TE01

mode is larger than 9 at 750 nm. Moreover, the electric field patterns of the core modes in Figure 10a–d
show that HE11, TM01, and HE21 modes are distributed in the cladding tubes, while the TE01 mode is
well confined in the hollow core without of the resonance coupling with cladding modes. Therefore
HE11, HE21, and TM01 modes can be effectively suppressed and the TE01 mode can be well guided
with relatively low transmission loss with the proposed fiber structure parameters.
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We also have a simple investigation checking the sensitivity of the optical properties to small
variations of 1% increase or decrease in d/D due to the fabrication tolerance of the HC-ARF. For example,
the optimized MER for the HE21 mode is 46.75 at 763 nm and 42.63 at 763.8 nm with −1% and +1%
changes of d/D of 0.482; it is not highly sensitive to the small variation of the designed parameters.
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We noticed it is quite similar for the TM01 and TE01 modes for small variation, where the slight change
of d/D leads to only a very small shift of the wavelengths corresponding to the optimized MER at
different d/D. Indeed, the phenomenon of propagation of second-order vector mode with the lowest
confinement loss can be observed for the slight change of d/D, and optimized MERs and working
wavelengths are similar, which indicate that the stable propagation of second-order vector mode in
HC-ARFs can be achieved even with the slight variation of fabrication parameters.

As we mentioned, the previous reports about the mode propagation in HC-ARFs were mainly
about fundamental mode with suppression of HOMs based on the mode coupling between core
HOMs and tube modes, which was studied comprehensively. However, only HOM propagation in
HC-ARFs was rarely investigated. Considering the wide applications of only one second-order vector
mode, our research about propagation of only one second-order vector mode with suppression of the
fundamental mode in the HC-ARF is significantly important. Actually, it is much more difficult to
suppress the fundamental mode while keeping the second-order mode with high MER because the
fundamental mode generally has lowest confinement loss. In this section, we proposed the propagation
of only TE01, TM01, or HE21 modes with low confinement loss at specific wavelengths in HC-ARFs,
and also investigated their modal characteristics, confinement losses, and mechanism of mode coupling
in detail. To the best of our knowledge, this is the first discussion about propagation of only one
second-order vector mode with low confinement loss in HC-ARFs. It should be noted that the MER
for the second-order mode is not fully optimized since we keep the core diameter D and the tube
thickness t constant and only modify the tube gap g to vary the coupled cladding mode. We believe
that much larger MER for second-order mode can be achieved based on further optimized structures
in our future work.

4. Conclusions

We firstly demonstrated the unique modal-guiding property in a HC-ARF, whereby only
a second-order vector mode can be well guided with low confinement loss while the fundamental
mode and other second-order vector modes reach to high loss peaks at the red side of transmission
band. The specific modal characteristics can be interpreted by the mode coupling between the
core modes and cladding modes when phase matching conditions are satisfied in terms of effective
refractive index and polarization matching. The second-order vector mode characteristics including
dispersion properties, confinement losses, and mode patterns at the red edge of transmission windows
were investigated, and only one second-order vector mode guiding of TE01, TM01, or HE21 modes
is theoretically implemented at specific wavelength ranges with suppression of the fundamental
mode in the HC-ARF. It is expected that the propagation of only TE01, TM01, or HE21 modes with
low confinement loss in HC-ARFs will have fruitful applications for ultra-short pulse laser delivery,
including femtosecond laser drilling, particle trapping, and microscopy, by using our proposed design
and strategies.
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