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Abstract: A new method, a 3D printing technique, in particular, selective laser melting (SLM), has been
used to fabricate moulds for the injection moulding of thermoplastic microfluidic chips that are suitable
for prototyping and early stage scale-up. The micro metallic patterns are printed on to a pre-finished
substrate to form a microstructured mould. The dimensional accuracy, surface morphology, bonding
strength between the printed patterns and substrate, as well as the microstructure of micro features
were all characterized. A microfluidic mould was successfully printed and used directly for injection
moulding of cyclic olefin copolymer (COC) microfluidic chips, which were used subsequently to
successfully monitor nitrite concentrations in environmental water. The characterization indicated
that this new process can be used for fast fabrication of mould tools for injection moulding/hot
embossing microfluidic devices. It is faster, more flexible and less expensive than conventional
micro-machining processes, although the accuracy and finish are still needed to improve though
process optimization and hybrid SLM and machining processes.
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1. Introduction

Injection moulding is one of the most used technologies for prototyping and the production
of plastic microfluidic devices. Mould with micro scale protrusions are important for this process.
Currently, precision moulds are generally produced by micro machining or micro electroforming
process. Micro machining, such micro milling, is well used in industry for machining stainless steel
moulds. However, micro milling requires high precision machine tools and delicate cutters with
a diameter as small as 100 µm. Additionally, tool wear during the milling process can influence
mould feature precision. Surface cutting tracks and machining burrs can influence the mould finish,
resulting in significant labour efforts to remove burrs [1]. Meanwhile, electroforming is one of most
used processes for making nickel mould tools using ultraviolet (UV) lithography and/or dry etch,
metallization, electroforming process. This process demonstrates high precision but requires expensive
masters and takes several weeks to complete the entire process. The thickness uniformity and flatness
can be constrained when growing thick deposits [2].

Furthermore, 3D printing has been gradually used for fast prototyping of microfluidics. Some other
3D printing processes, such as stereolithography and inkjet printing, were used as fast methods for the
fabrication of microfluidic devices [3–5] or for making a master for casting of Polydimethylsiloxane
(PDMS) chips [3]. People use 3D printing to make a microfluidic chip due to its fast prototyping
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process and less effort compared with micro machining. Some work also used 3D printed moulds
for fast prototyping of products [6–8], e.g., Stratasys and Formlabs. This mould can be used for tens
of times for the proof of concept and mould design validation. Additionally, in laboratory, PDMS
casting is widely used, due to its ease to use along with UV lithography process or 3D printing
inverted channels. However, PDMS is expensive for mass production and proved to be different from
thermoplastics, which are used for mass production. There are also physical differences between PDMS
and thermoplastics, including cyclic olefin copolymer (COC) or Polymethylmethacrylate (PMMA), in
gas permeability, methods of bonding and of surface functionalization, compatibility with different
assays (e.g., PDMS absorbs small molecules) and scale-up capability etc [9]. As a result, a fast
prototyping thermoplastic chip is required, particularly in cases where scale up production is required.

Metal 3D printing using selective laser sintering/melting has been gradually used in prototyping
of micro parts, such as medical stents [10], stainless steel micro electrode arrays [11], micro chemical
reactors and fuel cells [12–15], columns for capillary liquid chromatography [16], and the surface with a
roughness of 1.69 µm [17]. The 3D printed metallic flow reactors are available in [18]. More applications
can be found in the review paper recently published [19]. This work is trying to use selective laser
melting (SLM) to make a fast-metallic mould for prototyping plastic microfluidics. To the authors’
knowledge, this is the first attempt to develop SLM printed microstructured metallic moulds for
the injection moulding of microfluidics. This process chain offers the benefit of spanning the gap
between using 3D printing for laboratory prototyping of microfluidics and commercial scale production
requirements. The present work focuses on studying the precision of feature printing, characterizing
the bond strength between the substrate and micro patterns, and the subsequent finishing process.
The 3D printed tool is validated for prototyping a microfluidic chip for water quality monitoring.
The limitations and future research efforts associated with this work are also discussed.

2. Experimental Methods

2.1. Printing of Microfluidic Features Using Selective Laser Melting

In the present work, a Mlab cusing laser melting system (Concept laser, Lichtenfels, Germany)
was used to print micro scale metallic patterns on a pre-finished substrate. This was a selective laser
melting process, whereby a high-energy fiber laser melted fine metal powders locally and the material
solidified as it cooled. The stainless-steel CL 20ES powders (316L) (Concept laser, Lichtenfels, Germany)
were used for printing the micro patterns. The laser scanning speed was 600 mm/s with a power of
100 W and a layer thickness of 25 µm.

A series of generic patterns was designed to test the pattern printing precision and bonding
strength with the substrate, as shown in Figure 1a. These rectangular ridges had the widths of 0.1,
0.2, 0.4, 0.6, 0.8, 1 mm and the height 1, 0.6 and 0.3 mm, as shown in Figure 1b. The substrate
(17-4PH stainless steel) (Special Steels Ltd., Dublin, Ireland) was pre-machined by die sinking electrical
discharge machining (EDM) (Agie Charmilles, Losone, Switzerland) and was pre-located in the powder
platform before printing.

In addition to these test features, a microfluidic pattern was also printed that was designed for
water quality monitoring, and which contained inverted channels, marking letters, two logos, and
inverted ports, as shown in Figure 2. In terms of the rough surface of SLM, electropolishing was used
to finish the tool surface to obtain an acceptable surface roughness for subsequent injection moulding.
In the present work, the electropolishing electrolyte was composed of 35% H2SO4, 45% H3PO4 and
20% H2O, based on work from [20].
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Figure 1. Testing patterns with large ridge and micro ridge arrays: (a) four identical testing patterns, 
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2.2. Bond Strength Testing and Characterization

A critical risk with this 3D printing manufacturing approach is the possibility of a weak bond
strength between the printed metal patterns and the substrate. The substrate surface finish is also
important for mould applications. For this reason, electrical discharge machining (EDM) finished
surfaces with roughness Ra of 2.5, 1.4, 0.8 and 0.4 µm were tested with four groups of the same printed
features (Figure 1c).
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The scratch tests and lap shear tests were used to evaluate the bonding of the printed patterns.
In the preparatory test, a Rockwell indenter was used and scratching was repeated three times across
the substrate and printed stainless steel 316L using a nominal load of 5.2 N. Additionally, the printed
large ridges in Figure 1c (6 × 7 mm) on each of the four different roughness surfaces were cut into
identical samples. The samples with a roughness of 2.5 µm and 0.4 µm were used to carry out shear
testing using a standard tensile tester. Figure 3 shows the test samples with one printed block on the
substrate. Each sample was gripped by a specially designed holder (Figure 3b) for tensile testing, with
shear force being applied to the printed ridge and bond strength being assessed directly.
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Generally, failure can happen when it breaks or deforms excessively. As a result, it is important
that the level of applied stress never exceeds the ultimate tensile strength or yield strength of the
material. It is assumed that the shear force τ on a section is uniformly distributed across the whole
area. Therefore, the shear stress can be found from [21],

τ = P/A (1)

where P is applied force and A represents the corresponding area. The design stress is based on
yield strength in shear. For many ductile metals, particularly steel, the estimation can be made as
follows [21]:

τd = 0.5 τy/N (2)

The specification of design shear stress τd depends somewhat on the application. The design
stress τd can be based on the yield strength τy or on the ultimate strength συ. Normally, for a dead
load on a ductile metal, as in this work, Equation (2) would be used with N = 2, where N is the design
factor. The yield strength of stainless steel 316L is 470 MPa. The yield strength in shear is estimated to
be 0.58 times the tensile yield strength. Therefore, from Equation (2), the design shear stress of the
experimental material can be calculated to be 68 MPa. By comparing the experimental shear stress τ
against the design shear stress td, it can be concluded that if τ > τd, the SLM printed pattern may be
acceptable, but if τ < τd, the printed pattern may be dangerous.

2.3. Microstructure

The microstructure of printed stainless steel 316L was observed using optical microscopy.
The polished sample was etched to expose the microstructure using hydrochloride, glycerine,
nitric acid and hydrogen peroxide [22]. The volume percentage of each component is listed as follows:
Mass percent concentration of 40% hydrochloric acid: 30–35%; mass percentage concentration of 68%
nitric acid: 15–20%; glycerol: 30–35%; mass percent concentration of 30% hydrogen peroxide: 15–20%.
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The etching was optimized to be 30 s for the substrate, 65 s for a 6 mm-wide feature and 250 s for the
smallest feature.

2.4. Chip Prototyping Using Injection Molding

The cyclic olefin copolymer (COC 8007X10) (TOPAS Advanced Polymers GmbH, Frankfurt,
Germany) was adopted for injection moulding of the microfluidic chip by using a mould tool insert
printed with the pattern of Figure 2. The mould temperature was set at 60 ◦C and the injection nozzle
temperature was 230 ◦C. The injection speed was set as 100 mm/s and the holding pressure was 50 MPa
for 2 s. The designed chip was used as a prototype chip for water quality monitoring.

3. Results and Discussion

3.1. Process Development

The present work developed a new process by directly printing metal micro patterns onto a
finished substrate to manufacture a mould tool for the prototyping and manufacturing of polymeric
microfluidic devices, as shown in Figure 4. The inverted microfluidic pattern was designed using 3D
CAD software (Autodesk, Inc., San Rafael, CA, USA), and this was converted to stereolithographic (STL)
format for a laser selective melting machine; the substrate onto which the pattern was printed and was
finished using Die-sinking electrical discharge machining or another finishing method. Subsequently,
the pattern was directly printed onto the substrate and the substrate was finished as a tool insert to be
incorporated into an injection moulding mould. The chip was then fabricated using injection moulding
and, finally, the chip was closed with a thermally bonded cover.
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The process offers many benefits, namely:

• High flatness and finish: Since the substrate can be machined with various finishing processes
required by the end applications, the flatness and roughness of the bottom mould insert can be
well controlled compared to the insert made by electroforming process and whole selective laser
sintering (SLS) printed insert, where the residual stresses can cause part distortion. Compared to
micro machining, substrate finished by optical grade die sinking electrical discharge machining
shows no cutting marks, requiring no labour cost for subsequent polishing;

• Cost-effective: The printing process consumes a minimal amount of material since the inverted
microfluidic patterns are only in micrometer scale;

• Fast prototyping: The printing process takes less than 20 min, which is notably faster than
precision machining and electroforming;

• Design flexibility: Any patterns larger than 100 µm are easily printed, even with a
freeform geometry;
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• Reusable substrate: For prototyping, the printed pattern can be removed and the substrate can
be reused again;

• High aspect ratio: Based on our subsequent work, the aspect ratios of the printed feature can be
as high as 5.

3.2. Dimensional Accuracy and Surface Finish

As shown in Figure 5, the high aspect ratios can be achieved. Thus, 100 µm wide patterns can
be printed, although patterns larger than 200 µm are easier to define. However, during the SLM
process, laser-induced melt splashes are caused by a high capillary instability of the melt, which can
form balls on surface of the as-printed part. Additionally, low laser energy also generated highly
coarsened balls possessing an interrupted dendritic structure in the surface layer of the as-printed part,
which influences surface finish of 3D printed mould tool [23]. This balling phenomenon is related to
laser scanning speed, laser power, oxygen content, and powder thickness, and scan interval [23,24],
which need to be optimized to establish the best surface finish. Limited by currently accessible SLM
systems, the SLM printing parameters were unable to be optimized. Table 1 shows the measured width
and height dimensions of the features that are all nominally 600 µm tall. All the feature heights are
consistent, ranging from 533–574 µm with dimensional deviation from 26–65 µm. The features of the
width 600, 400, 200 and 100 µm show lower width deviation from 2–73 µm.
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Table 1. Dimensions of printed micro feature (unit: µm).

Feature 600 400 200 100

Width 527.1 ± 3.8 349.6 ± 10.8 173.7 ± 6.4 101.9 ± 10.1

Height 549.8 ± 11.7 546.3 ± 15.9 574.8 ± 15.6 566.4 ± 15.3

Figure 6 shows the microfluidic features printed on the substrate based on the microfluidic design
shown in Figures 2 and 4. The inverted channel width is ~230 µm and height is ~380 µm. Similarly, the
top of the inverted channels is not flat, and both sidewalls also show balls and partially melted particles.
The ball formation during laser melting at the top of the micro channel makes the channel rougher
than the sidewalls, where the ball size is from ~70–100 µm, based on scanning electron microscope
(SEM) measurement.
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Electropolishing was used to finish the tool insert before injection moulding. A current of 0.2 A
was used with a gradually increasing polishing time, in order to reduce the significant amount of balls
formed on the top and sides of the inverted micro channels. Comparison SEM images, before and after
polishing, are shown for the same location of the features in Figure 7. Due to the material removal from
the sharp balls, the channel dimension was reduced by ~2.4%. The small un-melted powders were
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taken away after polishing. Both the channel top and walls exhibit a relatively better surface finish.
It is worthwhile to observe that the polished features display dense submicron structures (Figure 8),
indicating the effectiveness of polishing. The creation of such submicron structures could provide a
new method for large-area sub-micron structuring. However, it still needs to be noted that the balls
generated in the laser melting process are so big that the electropolishing process could not provide a
surface finish that was comparable to the machined surfaces. This, of course, is an attribute that could
be optimized in the SLM process. Additionally, the newly developed hybrid selective laser meting
and mechanical machining, such as Sodick OPM250L, can be employed in the implementation of the
current strategy, which may eliminate the problem of as-printed rough surfaces [25].
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3.3. Pattern and Substrate Bonding Strength

The bonding strength of the interface between the printed pattern and substrate was evaluated
using the scratch and shear testing. Figure 9 shows the scratch made from printed stainless steel 316L
to the substrate. No fracture around the interface over the four roughness substrates was observed.
This means that the bonding between the substrate and printed metal is sufficiently strong to sustain
the scratching load without any crack or delamination. From the corresponding 3D graphs, it appears
that the substrate (17-4PH stainless steel) is harder than the printed stainless steel 316L, with fewer
plastic deformation peaks.

Figure 10 displays the load versus displacement (time) at shear testing. The tensile shear strength
is obtained directly from the peak load. According to Equation (1), the average tensile shear strength
for the Ra = 0.4 µm substrate is 573.4 MPa, while it is 599.8 MPa for the Ra = 2.5 µm substrate.
The Ra = 2.5 µm sample has a 4.6% improvement in the shear stress compared to the Ra = 0.4 µm
sample. The shear strength is obviously much larger than the design shear stress of 68 MPa. It is also
seen in Figure 11 how the fracture surface shows that the crack occurs purely within the printed ridge
rather than at the bonding interface. This confirms the sufficient mechanical strength between SLM
printed patterns and the substrate. In other words, 3D printing via SLM can provide a strong tool for
mould tool applications. As a printed structure, the pores formed by entrapped air may influence the
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mechanical strength. Figure 12 displays the cross-section of micro features, showing internal pores.
Some discontinuous regions of metal are also observed, because of insufficient melting and a lack of
diffusion of metal powders. This indicates that the process needs to be optimized. Subsequent heat
treatment could be also an effective way to form denser features.
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3.4. Microstructures of Micro Features

Since the fracture failure happens only within stainless steel 316L, the hardness and microstructure
of the features themselves are important to determine the performance of the tools. Figure 13a shows
the microstructure of SLM printed stainless steel of 6 mm width for the shearing test. The grain size
is approximately 50 µm. These grains are arranged in a fish-scale segregation pattern with a clear
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indication of the scan layer path from the bottom to the top, which is also the heat transfer direction
during laser scanning and solidification, similar to what was found from [26]. Additionally, the voids
on the cross-section are also present, due to possible entrapped gas that is insoluble in molten pools of
stainless steel 316L, and a possible excessive energy input and unstable process [27]. Figure 13b shows
the smallest feature that has a 100 µm nominal width. It can be seen that the single grain layers stack
together to form an individual feature. This means that the laser spot size limits the feature size that
can ultimately be achieved. Promoting diffusion is important to enhance the mechanical strength of
micro features. The hardness of printed stainless-steel micro patterns was measured to be 250HV0.2.
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3.5. Prototyped Microfluidic Chip Testing

Injection moulding was used to produce microfluidic chips using SLM printed tools, as shown in
Figure 14. The chips were then subsequently bonded by thermal diffusion bonding. However, it has to
be mentioned that the current printed mould has a rough surface leading to demoulding difficulties. A
mould release agent was used to help demoulding of the injection moulded part. Several hundred
plastic chips were fabricated without any problem presented from the tool. In Figure 14c,d, the 3D
images measured using Keyence VHX-5000 digital microscope (Keyence, Milton Keynes, UK) shows
the morphology of the bottom channels of microfluidic chip, where the average roughness is ~96 µm.
This value is obviously larger than reported in the literature where average roughness can be as low
as ~7 µm [28]. Due to accessibility of the SLM system, the authors could not optimize the printing
process. Future work will be carried out with the SLM process optimization and hybrid SLM and
the machining process, as discussed in Section 3.7. The injection moulding process can be further
optimized based on new mould insert.
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3.6. Microfluidic Chip Testing

To demonstrate the feasibility of this process, the plastic chip was used for water quality monitoring.
In order to test the efficiency of various path lengths, a range of Nitrite concentrations (0–20 µM) were
passed through each cuvette. To demonstrate the practical utility of such a chip, one was plumbed in a
fashion to enable Nitrite detection, as shown in Figure 15a. Any ports not required for the particular
analyte under the test were sealed using standard luer port plugs. In addition to the chip itself, a custom
optical cuvette was 3D printed using Polyjet technology, which was used to incorporate light emitting
diode (LED) and detector. The principle of operation for Nitrate testing involves mixing a sample
containing known values of Nitrate with a reagent to enable proportionate colour changes based on
the concentration of Nitrate present in the sample. For this test, the colour change was measured using
a combined LED and photodiode. The increased concentrations of Nitrate present in the cuvette would
attenuate the incident LED light on the photodiode (Figure 15b). Typically, the chip is placed inside a
darkened enclosure to mitigate against photodiode noise caused by ambient light. Furthermore, the
additional electronics, such as a constant current source and transimpedance amplifier circuitry, are
required to drive the LED and amplify the photodiode signal. The final experimental configuration
can be seen in Figure 15d. The configuration shown includes a syringe pump for passing both Nitrate
and reagent through the chip, a power supply for the driving electronics and a multimeter to measure
the output from the Photodiode.
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Figure 15. The experimental procedure from chip to system for testing of plastic chip manufactured
using the injection moulding process based selective laser melting fabricated tools: (a) microfluidic
chip with connectors and (b) cuvette, and (c,d) entire enclosure and testing system.

In order to test the range and sensitivity capabilities of the chip, the tests were carried out using
three different cuvette path lengths of 5, 10 and 15 mm. For each cuvette length, a drop in the photodiode
signal was observed for the increasing Nitrate concentration, as seen in Figure 16. Furthermore, the
reduction in measured photodiode signal indicated by photodiode voltage with increasing Nitrite
concentration, was more pronounced with the increasing cuvette path length. These findings are
entirely consistent with existing literature [29] and demonstrate the utility of the manufacturing process
in developing a test platform for nutrient detection.
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Figure 16. The results from the polymer injection moulded chips. A reduction in photodiode signal
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3.7. Discussion and Limitation

Table 2 compares the properties of these alternative tool fabrication processes based on our
experimental trials and experience in ultraviolet lithographie, galvanoformung, abformung (UV LIGA)
process. Machining the same micro pattern using a high-speed micromilling machine took at least
6 days to machine the same patterns, i.e., more than two orders of magnitude difference in time
alone. This test was done with the same microfluidic pattern design using 5-axis machining centre.
For micromachining, the trench size is limited by the milling tool. Depending on the process selected,
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the size can be from 50 to several hundreds of microns if commercial cutters are used. The micromilling
tool was easily damaged and wore when it was used to machine tool the steel. Furthermore, it also
can have machining burrs. The LIGA and LIGA like process requires lithography, metallisation and
electroforming. It was generally used to make masters for the injection moulding compact disc (CD),
digital versatile disc (DVD) and blue rays, with a feature size down to 100 nm. It is also used to make
precision micro parts. However, the process takes many steps and takes time to be done. However,
the dimensional accuracy is very high, up to 5% of the channel size, and dependent on the precision
of lithography and reactive ion etching. SLM printing of micro features on a pre-finished substrate
is fast, flexible and sustainable for prototyping and early-stage scale-up for polymeric microfluidics.
Since it is only the micro-scale pattern that is printed, only a very small amount of material is used,
and printing time is less than 20 min. The printed material and substrate were both stainless-steel, the
bonding strength of which was measured up to 600 MPa, which is sufficient to ensure its usage for
injection moulding, as has been tested in this work. The substrate was easily reused when a printed
pattern was not ideal. These patterns were easily removed by EDM, and new patterns then re-printed.

Table 2. Comparison of the fast mould tool prototyping process.

Minimum Feature
Size Aspect Ratio Dimensional

Accuracy
Young’s

Modulus
Roughness

(Ra) Time

Micromilling 50 µm for sunk
features

1.5 (features in the range
between 50 and 100 µm) 20 µm 180 GPa 0.5–1 µm 6 days

LIGA and LIGA
like processes 100 nm 2 (features in the range

between 10 and 100 µm) 5 µm 170 GPa <15 nm 30 days

Selective laser
melting 100 µm 6–10 (features width is

larger than 100 µm) 50 µm 180 GPa 20~30 µm ~20 min

For stainless steel tools, in contrast to precision machining and electroforming, 3D printing
based on SLM is a rapid and cost-effective way to prototype tools for polymer microfluidic chips.
It is a fast way to validate a particular channel design. However, it must be emphasized that SLM
provides a rough surface during laser melting, which is related to laser energy, oxygen concentration,
scanning speed, powder size and uniformity etc. The SLM process has to be optimized to obtain
an acceptable finish. Additionally, due to the limits of a laser beam size (40 µm), the SLS powder
size/uniformity and the layer thickness (25 µm), the resolution of an SLM micro pattern is not as good
as can be obtained by precision milling. This means it should only be used in cases where dimension
tolerance is larger than 50 µm and the surface roughness does not really matter, such as in the present
demonstrated case of a water quality monitoring chip. However, it is worthwhile to notice that with
the development of a hybrid SLM and machining process [25], the surface finish and precision can
improve for the development of fast mould tools for microfluidics, where the subsequent subtractive
milling process can effectively compensate for the surface finish (Figure 17a,b) and dimensional and
geometric inaccuracies (Figure 17c) resulting from the powder melting process. The strategy that this
work developed and validated can be well implemented for the fast development of mould tools for
the injection moulding plastic microfluidics.
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4. Conclusions

This present paper develops and discusses a new strategy for the fabrication of micro structured
moulds using metal 3D printing via selective laser melting. In this process, a pre-finished substrate
was used as a base for printing micro patterns. This printing process only takes ~20 min to make a
microstructured mould. It offers many benefits, such as high flatness, low cost, good design flexibility
and recyclability of substrates.

Based on the characterization, the bonding strength of a printed pattern to the substrate is
~600 MPa, which is significantly higher than the design shear strength. The interfacial bond is even
stronger than printed metal itself, which indicates that the developed process is robust. The pores
are also found within the micro patterns and the observed microstructure of the printed patterns
indicates that the process can be optimized further. All the feature heights are consistent, ranging
from 533–574 µm with a dimensional deviation from 26–65 µm (maximum 11% dimensional error).
The features of the width 600, 400, 200 and 100 µm show lower width deviation from 2–73 µm
(maximum 12% dimensional error). The replicated channel bottom roughness is ~96 µm, due to the
large ball formation at the bottom of the channel (~70–100 µm). Due to the roughness from both
the wall and bottom channel, difficulty was experienced for the demoulding of the microfluidic part
and a mould release agent had to be used. By using electropolishing, the printed pattern width
reduced by 2.4%. The chip was finally fabricated and bonded, and was used successfully in injection
moulding for prototyping of a microfluidic chip that could be used for water quality monitoring; nitrite
concentrations were shown to be successfully monitored.

Although the authors have proven that this process is useful for manufacturing microstructured
mould tools, the precision and surface finish are still needed to be improved. Future work will focus
on the implementation of process optimization and the hybrid process of SLM with machining. By the
implementation with such machine tools, the current process can be readily applied for fast fabrication
of stainless-steel moulds for injection moulding or hot embossing plastic microfluidic.
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