

Supplementary Materials

A High-Throughput Microfluidic Magnetic Separation (µFMS) Platform for Water Quality Monitoring

Keisha Y. Castillo-Torres 1, Eric S. McLamore 2 and David P. Arnold 1,*

- Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering; University of Florida, Gainesville, FL 32611, USA; keishact@ufl.edu
- Institute of Food and Agricultural Sciences, Department of Agricultural and Biological Engineering; University of Florida, Gainesville, FL 32611, USA; emclamore@ufl.edu
- * Correspondence: darnold@ufl.edu

Figure S1. Vibrating sample magnetometer (VSM) data obtained (before and after filtration) from 0.2 mL samples filtered using the microfluidic magnetic separation (μ FMS) device at different flow rates : 5 μ L/s, 30 μ L/s, 60 μ L/s, and 120 μ L/s. Table S1 summarizes the saturation magnetic moment for each sample, as well as the capture efficiency (%).

Micromachines 2019, 11, 16 2 of 4

Table S1. Summary of	Capture Efficienc	v (%) Calculatio	ns for Microdiscs

	Saturation Magnetic Moment (10 ⁻⁷ A·m²)				
Sample	Mean	Std. Dev.	Uncertainty (95% CI; N=56)	Capture Efficiency (%) (95% CI)	
stock	0.745	0.038	0.199	-	
filtrate (5 μL/s)	0.041	0.029	0.008	94.5 ± 1.8	
filtrate (15 μL/s)	0.050	0.036	0.010	93.3 ± 2.2	
filtrate (30 μL/s)	0.040	0.031	0.008	94.6 ± 1.8	
filtrate (60 μL/s)	0.037	0.033	0.009	95.0 ± 1.8	
filtrate (120 μL/s)	0.034	0.026	0.007	95.4 ± 1.6	

Figure S2. VSM data obtained (before and after filtration) from 0.2 mL IONs samples filtered using the microfluidic magnetic separation (μ FMS) device at different flow rates: 5 μ L/s and 120 μ L/s. Table S2 summarizes the saturation magnetic moment for each sample, as well as the capture efficiency (%).

Table S2. Summary of Capture Efficiency (%) Calculations for IONs.

Sample	Saturation Magnetic Moment (10-7 A·m²)			- Capture Efficiency (%)	
Sample	Mean	Std. Dev.	Uncertainty (95% CI; N=40)	- Capture Efficiency (70)	
stock	0.972	0.046	0.015	-	
filtrate (5 μL/s)	0.051	0.041	0.013	94.7 ± 1.3	
filtrate (120 μL/s)	0.054	0.034	0.011	94.4 ± 1.1	

Micromachines 2019, 11, 16 3 of 4

Figure S3A. VSM data obtained (before and after filtration) from 50 mL sample containing iron-oxide nanoparticles (IONs) at a concentration of 0.1 mg/mL filtered using the μ FMS device at 120 μ L/s. The black dashed line represents the average saturation magnetic moment for each of the samples (8.10 ×10⁻⁸ A·m² for the 20 μ L from the stock sample, and 2.43 ×10⁻⁸ A·m² for the 20 μ L from the filtrate sample), which resulted in the 70.0% capture efficiency.

Figure S3B. Images of 50 mL sample (A) before and (B) after filtration using the μ FMS device at 120 μ L/s.

Micromachines 2019, 11, 16 4 of 4

Figure S4. Plot of simulated capture efficiencies (COMSOL) as a function of change in hydrodynamic diameter of IONs, considering possible aggregation of particles. It is shown how the capture efficiency increases as the hydrodynamic/magnetic diameter increases.