Supplementary Materials ## A High-Throughput Microfluidic Magnetic Separation (µFMS) Platform for Water Quality Monitoring ## Keisha Y. Castillo-Torres 1, Eric S. McLamore 2 and David P. Arnold 1,* - Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering; University of Florida, Gainesville, FL 32611, USA; keishact@ufl.edu - Institute of Food and Agricultural Sciences, Department of Agricultural and Biological Engineering; University of Florida, Gainesville, FL 32611, USA; emclamore@ufl.edu - * Correspondence: darnold@ufl.edu **Figure S1.** Vibrating sample magnetometer (VSM) data obtained (before and after filtration) from 0.2 mL samples filtered using the microfluidic magnetic separation (μ FMS) device at different flow rates : 5 μ L/s, 30 μ L/s, 60 μ L/s, and 120 μ L/s. Table S1 summarizes the saturation magnetic moment for each sample, as well as the capture efficiency (%). Micromachines 2019, 11, 16 2 of 4 | Table S1. Summary of | Capture Efficienc | v (%) Calculatio | ns for Microdiscs | |----------------------|-------------------|------------------|-------------------| | | | | | | | Saturation Magnetic Moment (10 ⁻⁷ A·m²) | | | | | |------------------------|--|-----------|-------------------------------|---------------------------------|--| | Sample | Mean | Std. Dev. | Uncertainty
(95% CI; N=56) | Capture Efficiency (%) (95% CI) | | | stock | 0.745 | 0.038 | 0.199 | - | | | filtrate (5 μL/s) | 0.041 | 0.029 | 0.008 | 94.5 ± 1.8 | | | filtrate (15 μL/s) | 0.050 | 0.036 | 0.010 | 93.3 ± 2.2 | | | filtrate (30 μL/s) | 0.040 | 0.031 | 0.008 | 94.6 ± 1.8 | | | filtrate (60 μL/s) | 0.037 | 0.033 | 0.009 | 95.0 ± 1.8 | | | filtrate (120
μL/s) | 0.034 | 0.026 | 0.007 | 95.4 ± 1.6 | | Figure S2. VSM data obtained (before and after filtration) from 0.2 mL IONs samples filtered using the microfluidic magnetic separation (μ FMS) device at different flow rates: 5 μ L/s and 120 μ L/s. Table S2 summarizes the saturation magnetic moment for each sample, as well as the capture efficiency (%). Table S2. Summary of Capture Efficiency (%) Calculations for IONs. | Sample | Saturation Magnetic Moment (10-7 A·m²) | | | - Capture Efficiency (%) | | |---------------------|--|-----------|----------------------------|---------------------------|--| | Sample | Mean | Std. Dev. | Uncertainty (95% CI; N=40) | - Capture Efficiency (70) | | | stock | 0.972 | 0.046 | 0.015 | - | | | filtrate (5 μL/s) | 0.051 | 0.041 | 0.013 | 94.7 ± 1.3 | | | filtrate (120 μL/s) | 0.054 | 0.034 | 0.011 | 94.4 ± 1.1 | | Micromachines 2019, 11, 16 3 of 4 **Figure S3A.** VSM data obtained (before and after filtration) from 50 mL sample containing iron-oxide nanoparticles (IONs) at a concentration of 0.1 mg/mL filtered using the μ FMS device at 120 μ L/s. The black dashed line represents the average saturation magnetic moment for each of the samples (8.10 ×10⁻⁸ A·m² for the 20 μ L from the stock sample, and 2.43 ×10⁻⁸ A·m² for the 20 μ L from the filtrate sample), which resulted in the 70.0% capture efficiency. Figure S3B. Images of 50 mL sample (A) before and (B) after filtration using the μ FMS device at 120 μ L/s. Micromachines 2019, 11, 16 4 of 4 **Figure S4.** Plot of simulated capture efficiencies (COMSOL) as a function of change in hydrodynamic diameter of IONs, considering possible aggregation of particles. It is shown how the capture efficiency increases as the hydrodynamic/magnetic diameter increases.