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Abstract: In this paper, a novel gallium nitride (GaN)-based heterostructure Gunn diode is proposed
for the first time to enhance the output characteristics of Gunn oscillation waveforms. A well-designed
grooved anode contact is adopted to separate the long-channel diode into two short-channel diodes
in parallel. If the grooved anode contact is positioned in the middle of the device, the output power
nearly doubles in the grooved-anode diode compared with the single-channel ones, as does the output
frequency. Based on the numerical results, the best output characteristics are obtained at the 2.0-µm
symmetrical grooved-anode diode, which produces nearly 5.48 mW of power at the fundamental
frequency of 172.81 GHz, with 3.13% efficiency of power conversion. If the grooved anode contact is
not positioned in the middle of the diode, the harmonic frequency would be enhanced. The GaN
heterostructure grooved-anode Gunn diode has been demonstrated to be an excellent solid-state
source of terahertz oscillator.

Keywords: wide band gap semiconductors; numerical simulation; terahertz Gunn diode; grooved-anode
diode

1. Introduction

Terahertz (THz) waves (300 GHz–10 THz) have been extensively studied in recent years due to
their potential applications in the fields of communication, imaging, radar, spectroscopy and security
screening [1–3]. Terahertz has been a “research gap” for a long time. Indeed, no powerful radiation
sources have been available until the last few years. From a practical point of view, solid-state
devices show excellent potential as terahertz sources, which can be integrated with other electronic or
optoelectronic devices within a single chip [4]. GaN-based Gunn diodes are one of the most excellent
solid-state terahertz oscillators [4] and attract much interest thanks to the unique properties of gallium
nitride, such as its wide band gap (3.42 eV) [5], high electron mobility [6], high breakdown field (3.3
MV/cm) [5], high thermal conductivity [7] and so on. In recent years, the research has been mainly
concentrated on heterostructural planar Gunn diodes rather than the traditional vertical ones [8–12].
Compared with the traditional vertical Gunn diode, the heterostructural planar Gunn diode has great
advantages. First of all, it allows for the easy integration with other devices in terahertz monolithic
integrated circuits, as all the contacts of planar diodes are fabricated on one plane [10]. Secondly, its
oscillation frequency is controllable by determining the contacts’ distance. Lastly, due to the excellent
electron transport properties of the two-dimensional electron gas (2DEG), the planar Gunn diode
generates a higher oscillation frequency than bulk ones [9–12]. However, on one hand, the radio
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frequency (RF) output power of the planar Gunn diode has been predicted to be much lower than
the vertical ones [13–15]. On the other hand, the fundamental oscillation of Gunn diodes with a
channel length of 1–2 µm reported so far have been far from the terahertz regime [8–11]. Achieving
a Gunn diode with a terahertz oscillation and higher output characteristics is a worldwide problem
that should be solved with great urgency. High RF power and high operation frequency seem to be
two contradictory pursuits which are difficult to satisfy simultaneously. The shorter the transit region
length, the higher the oscillation frequency is [16]. However, the operation bias for short-transit-region
diodes is relatively low, which limits their RF output characteristics. In addition, the small-size
devices also face a complicated process. Some reported planar Gunn diodes, like nanowire slot diodes
and self-switching diodes (SSD) produce very high frequency oscillation, even as high as several
THz [17–21]. Nevertheless, all of these emerging devices face the same serious problem–that is, how to
generate sufficient RF power. Some theoretical work also shows other solutions, like the harmonic
Gunn diode reported in [22,23] and the multi-channel Gunn diode in [24], which either suffers from
low RF output power or a complicated process. In order to achieve higher frequency and higher output
power simultaneously, for the first time, we propose this new-type grooved-anode Gunn diode, which
is realized by simply etching a rectangle groove onto the semiconductor layer at one lithographic step.
The anode contact is deposited in the rectangle groove and two cathodes are defined as being adjacent
to terminals of AlGaN/GaN heterostructural channel. Therefore, one diode actually turns into two
diodes placed in parallel. In the symmetric grooved-anode Gunn diode, where the length of the left
and right channel is equal, the output power and oscillation frequency approximately doubles in the
grooved-anode diodes compared with the single-channel ones. In the asymmetric grooved-anode
Gunn diode, the harmonic frequency is greatly enhanced. In this paper, we present a detailed study
into the GaN-based heterostructural grooved-anode Gunn diode based on the Silvaco simulator. We
have demonstrated that it effectively improves the RF output power and operation frequency of the
Gunn diode simultaneously as compared with many other structures.

The structure of the grooved-anode diode and the simulation method are described in Section 2.
The numerical Results and theoretical analysis are given in Section 3. Important conclusions are given
in Section 4.

2. Device Structure and Simulation Method

The GaN-based Gunn diode studied in this paper is illustrated in Figure 1. Figure 1a shows the
structure of the grooved-anode diode, in which all the structural dimension parameters are labeled
clearly. The doping levels of all the material layers are set to be 1 × 1015 cm−3. The adoption of
the Al0.1Ga0.9N back barrier layer leads to the enhancing confinement of the 2DEG under a high
electric field. A rectangular groove is etched through the GaN layer, which ensures that electrons have
individual paths in the left and right channels. To achieve the dual-channel diode, a groove-anode
area should be defined, and the groove area is etched using a controllable low-damage chlorine-based
Inductively Coupled Plasma- Reactive Ion Etching (ICP-RIE) process [25,26]. The definition of the
specific technology parameters should be explored further in the actual manufacturing. The anode
ohmic contact is deposited in the rectangle grooves and the two cathode ohmic contacts are defined as
vertical contacts instead of surface contacts. On one hand, the vertical contacts introduce the lowest
parasitic resistance; on the other hand, electric field peaks are easily formed by the surface contact,
which results in the premature breakdown of the devices. The total length of the Gunn diode is set to be
L. Meanwhile, in the grooved-anode diode, the length of each channel is set to be La and Lb separately,
where La + Lb = L. The width of the device is defined as a default of 1 µm in this 2-D simulator. The
vertical ohmic contacts can be realized by Molecular beam epitaxy (MBE) regrown technology. In order
to simplify the calculation, we performed the simulations under ideal conditions. We assumed that the
groove separates the longer channel completely, and the substrate is totally insulated. Therefore, we do
not discuss the coupling effect through the substrate here. An energy balance (EB) model with higher
order solution of the general Boltzman transport equation was adopted instead of the drift diffusion
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(DD) model. The energy relaxation time τε and momentum relaxation time τm for GaN 2DEG are
defined as 500 and 4 fs, respectively [27–29]. The temperature is set to be 300 K, ideally. In order to
calculate the RF output characteristics of the Gunn diode, we use the same method as explained in
detail in [22–24].
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Figure 1. Schematic structures of GaN-based heterostructure Gunn diodes: (a) Grooved-anode diode,
(b) Single-channel diode.

In order to calculate the electrical characteristics of the diode, we put a single-tone sinusoidal
voltage of form VDC + VACsin(2πft) across the diode instead of embedding it to a resonant circuit, as
the external circuit adds complexity to the calculation and easily results in non-convergence. This
method is very popular in the analysis of the RF performance of Gunn diodes [30–37] and its validity
has been proved in previous publications [33–37]. The applied DC voltage VDC has to be above a
critical value so that the device is biased in the negative differential mobility regime. The DC voltage
VDC is proportional to length of the diode and VAC = 1/4VDC. For example, for the 0.6-µm single
channel Gunn diode, VDC = 16 V, VAC = 4 V; for the 1.2-µm single-channel diode, VDC = 32 V, VAC

= 8 V; for the 0.6-0.6-µm grooved-anode Gunn diode, VDC1 = VDC2 = 16 V, VAC1 = VAC2 = 4 V. The
DC-to-AC conversion efficiency η is defined as η = −PAC/PDC (PAC is the time-average AC power; PDC

is the dissipated DC power).
The AC power delivered is given by [30]

PAC =
VAC

TR

∫ TR

0
I(t) sin(2πft)dt (1)

where TR =
1
f

(2)

Similarly, the DC power dissipation in the device is [30]

PDC =
VDC

TR

∫ TR

0
i(t)dt (3)

3. Results and Discussion

Both the traditional GaN-based heterostructural Gunn diode with only one channel and the
grooved-anode diode were studied as a comparison. In the tradition planar Gunn diode, as the
channel length L ranges from 1.2 to 3.6 µm, the frequency f ranges from 143.38 to 45.63 GHz, as
shown in Figure 2. The f–L curve of the grooved-anode diode nearly doubles as compared with that
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of the single-channel diode, as the real channel length of grooved-anode diode is only half of the
single-channel diode. The curves also show that f varies inversely to L, which almost matches the
formula f = vsat/L. In grooved-anode diode, the best output characteristics are achieved at an L of
2.0 µm. The 2.0-µm-grooved-anode diode operates at a frequency f of 172.81 GHz with a DC-to-AC
efficiency η of 3.13% and RF output power PRF of 5.48 mW. Meanwhile, the 2.0-µm-single-channel
diode generates a frequency of 86.47 GHz with η of 2.09% and PAC of 3.15 mW, as shown in Figures 2
and 3. Therefore, we conclude that the operating frequency and RF output power nearly doubles as
compared with the single-channel diode with the same channel length. In addition, the DC-to-AC
efficiency η is also greatly enhanced in the grooved-anode diode.
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Figure 4 gives the I-V characteristics for the grooved-anode diode and single-channel diode of
2.0 µm, from which we can see the grooved-anode diode provides practically the same current, twice
the value obtained in the single diode. The grooved-anode diode is equal to two shorter diodes in
parallel connection, as the grooved anode is designed in the middle of the diode and divides the
long channel into two shorter channels; therefore, the anode current doubles. Perturbation occurs
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in the I-V characteristics as the applied voltage increases above 17 V in the grooved-anode diode
and nearly 34 V in the single-channel diode, which means there are electron domains coming into
being in the 2DEG channel. When the anode voltage of the 2.0-µm -grooved-anode diodes increases
up to 28 V, prefect stable dipole domains come into being. Figure 5a,b separately give the electron
concentration profiles and the corresponding electric field profiles during one oscillating period
extracted from the 2.0-µm-grooved-anode diode which show the electron periodic movement during
one oscillation period. From Figure 5, we can observe the distinct formation of dipole domains rather
than accumulation layers. Theoretically, the dipole domain mode is the most stable mode and generates
the highest RF output power and efficiency as compared with other operation modes of the Gunn
diode. Based on [13], in order to make the GaN Gunn diode work at a stable dipole domain mode,
some conditions should be satisfied [16]:

NAC × LAC > 5 × 1013 cm−2 (4)

NAC × d > 2 × 1011 cm−2 (5)
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NAC is the electron concentration of the active channel, LAC is channel length and d is the channel
thickness. These conditions are easily satisfied in GaN-based heterostructure Gunn diode, as in the
AlGaN/GaN/AlGaN heterojunction, the electron concentration of 2DEG is up to 1019 cm−3. Such a
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high 2DEG is induced by a strong polarization effect of AlGaN/GaN without any doping and well
confined in the quantum well. Therefore, 2DEG is well away from the ionized impurity scattering,
ensuring the easier formation of the dipole domain in a short channel length. Even when the length of
the GaN planar Gunn diode is reduced to several hundred nanometers or the channel thickness is
reduced to several nanometers, the diode can still generate stable dipole-domain mode oscillation,
as shown in Figure 6. However, a shorter channel length results in a smaller electron domain. In
the 1.2-µm-grooved-anode diode, each channel length is 0.6 µm, which is not long enough for the
electron dipole to grow mature before exiting from the anode side. Therefore, comparing Figures 5
and 6, especially the Figures 5b and 6b, from the electric field distribution for the 2.0-µm and 1.2-µm
diodes we can conclude that a bigger domain forms in the 2.0-µm-grooved-anode diode. Therefore,
higher DC-to-AC efficiency is obtained in the 2.0-µm diode.
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Meanwhile, if the channel length is too long, the electron domain grows to its mature size before
reaching the anode contact. The remaining channel will be regarded as invalid growth space for the
electron domain, which results in the decrease of the efficiency of the Gunn diode. The formation of
the electron domain results in the current decline. When the electron domain grows to its full size,
the current will drop to its lowest value. If L is too long, the lowest current will last for a period until
the electron domain begins to disappear from the anode side. As shown in Figure 7, the lowest-value
part of the current wave obviously extends as the channel length L increases, which aggravates the
nonlinearity of the oscillation wave, and enhances the harmonic component of the oscillation wave.
It is worth noting that two current peaks occur in the 3.6-µm diode, as shown in Figure 7. Figure 8
gives the electron movement tracks in the 3.6-µm diode, which shows that two dipole domains form
simultaneously inside each channel; while one forms at near the cathode side, one forms near the
middle of the channel. As the electron concentration of 2DEG is very high, therefore, the effective
channel lengths for both nucleating points satisfy the condition of the dipole domain. The formation of
two domains inside one oscillation circle also aggravates the nonlinearity of the oscillation wave, and
weakens the fundamental frequency. In addition, as the two domains restrict each other, neither of
them are able to grow to their full size. Therefore, the fundamental and harmonic components of both
are reduced. Figure 9 gives the frequency spectrum diagram of the grooved-anode diode for different
L from 1.2 to 3.6 µm, which demonstrates that the harmonic component enhances and fundamental
component decreases with L. As a result, the noise performance deteriorates with L. In conclusion,
in order to avoid the harmonic component enhancement and increase the fundamental component,
suitable channel length is of great importance.
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We also study the asymmetric grooved-anode Gunn diode, where Lb = 2La = 2.0 µm. In order
to ensure that the electric field of each channel is in an appropriate range to generate stable Gunn
oscillations, we set VDC2 = 2VDC1 = 53.4 V, VAC2 = 2VAC1 = 13.4 V. As the length of the right channel
is twice as long as the length of the left channel, the movement period of the electron domain in the
right channel should be twice as long as that in the left channel. This is verified by Figure 10, which
shows the electric field profiles in one oscillation period derived in the 1.0-2.0-µm-grooved-anode
diode. When the dipole domain in the right channel disappears from the anode contact, the dipole
domain in the left channel completes two circles, which results in the two current peaks in the current
oscillation wave, as shown in Figure 11a. The small current peak is generated as the domain exits
from the shorter channel, and the larger current peak is generated as the domain exits from the longer
channel. Therefore, two frequencies are obtained, and the second harmonic frequency is greatly
enhanced, as shown in Figure 11b. As the two channels are independent of each other, the fundamental
and harmonic frequencies are enhanced at the same time. The frequency of the second harmonic is
about 175.47 GHz, η is about 1.85%, and PAC is about 4.45 mW. The asymmetric structure realizes the
modulation of the operation frequency via a single diode. By changing the length proportion of the
two channels, the size and the number of the harmonic wave are able to be controlled.
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4. Conclusions

In this paper, for the first time we propose the grooved-anode planar Gunn diode to greatly
enhance the RF output power at a high operation frequency. We present an explicit numerical study
into its working principle and output characteristics based on a simulation method. The grooved-anode
diode is equal to two shorter diodes in parallel connection, as the grooved anode divides the long
channel into two shorter channels. In the symmetric grooved-anode diode, the RF output power is
almost doubled in the grooved-anode diode as compared with the single-channel diode. The 1.0-1.0-µm
grooved-anode diode shows the best output characteristics. It operates at a fundamental frequency
of 172.81 GHz and the corresponding DC-to-AC conversion efficiency is about 3.13%. It produces
over 5.48 mW of power, nearly twice as high as that of the 1.0-µm single-channel diode. This novel
grooved-anode diode realizes the enhancement of the frequency and RF output power simultaneously,
by simply etching a rectangular grooved anode onto the semiconductor layer at one lithographic step,
which provides good design ideas in improving the output characteristic of the terahertz sources
and other power devices. In the asymmetric 1.0-2.0-µm grooved-anode diode, two frequencies are
obtained, and the second harmonic is enhanced as compared with the fundamental wave. The
harmonic-enhanced Gunn diode shows its potentials as a mixer or frequency multiplier. Furthermore,
it will provide a fast conversion between two different frequencies without connecting with other
terahertz oscillators. We have demonstrated that the proposed GaN heterostructure grooved-anode
planar Gunn diode is an excellent candidate as a solid-state terahertz device.
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